1 /*
2 * Copyright (c) 2018-2020 Arm Limited.
3 *
4 * SPDX-License-Identifier: MIT
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to
8 * deal in the Software without restriction, including without limitation the
9 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10 * sell copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in all
14 * copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22 * SOFTWARE.
23 */
24 #include "Im2Col.h"
25
26 #include "arm_compute/core/Types.h"
27 #include "tests/validation/Helpers.h"
28 #include "tests/validation/reference/Utils.h"
29
30 namespace arm_compute
31 {
32 namespace test
33 {
34 namespace validation
35 {
36 namespace reference
37 {
38 template <typename T>
im2col_nchw(const SimpleTensor<T> & src,SimpleTensor<T> & dst,const Size2D & kernel_dims,const PadStrideInfo & conv_info,bool has_bias,unsigned int num_groups)39 void im2col_nchw(const SimpleTensor<T> &src, SimpleTensor<T> &dst, const Size2D &kernel_dims, const PadStrideInfo &conv_info, bool has_bias, unsigned int num_groups)
40 {
41 ARM_COMPUTE_ERROR_ON(src.data_layout() != DataLayout::NCHW);
42 const int stride_x = conv_info.stride().first;
43 const int stride_y = conv_info.stride().second;
44 const int kernel_width = kernel_dims.width;
45 const int kernel_height = kernel_dims.height;
46 const int pad_x = conv_info.pad().first;
47 const int pad_y = conv_info.pad().second;
48 const int src_width = src.shape().x();
49 const int src_height = src.shape().y();
50 const int src_channels = src.shape().z();
51 const int batches = src.shape().total_size_upper(3);
52 const int dst_height = dst.shape().y();
53 const int pad_val = is_data_type_quantized_asymmetric(src.data_type()) ? src.quantization_info().uniform().offset : 0;
54 int dst_idx = 0;
55
56 // Compute width and height of the convolved tensors
57 std::pair<unsigned int, unsigned int> convolved_dims = scaled_dimensions(src_width, src_height, kernel_dims.width, kernel_dims.height, conv_info);
58
59 for(int b = 0; b < batches; ++b)
60 {
61 for(int g = 0; g < static_cast<int>(num_groups); ++g)
62 {
63 const int first_group_ch = g * (src_channels / num_groups);
64 const int last_group_ch = (g + 1) * (src_channels / num_groups);
65
66 for(int yo = 0; yo < dst_height; ++yo)
67 {
68 // Compute input spatial coordinates
69 const int xi = (yo % convolved_dims.first) * stride_x;
70 const int yi = (yo / convolved_dims.first) * stride_y;
71
72 for(int ci = first_group_ch; ci < last_group_ch; ++ci)
73 {
74 for(int yk = 0; yk < kernel_height; ++yk)
75 {
76 for(int xk = 0; xk < kernel_width; ++xk)
77 {
78 dst[dst_idx++] = tensor_elem_at(src, Coordinates(xi + xk - pad_x, yi + yk - pad_y, ci, b), BorderMode::CONSTANT, static_cast<T>(pad_val));
79 }
80 }
81 }
82
83 if(has_bias)
84 {
85 dst[dst_idx++] = static_cast<T>(1);
86 }
87 }
88 }
89 }
90 }
91
92 template <typename T>
im2col_nhwc(const SimpleTensor<T> & src,SimpleTensor<T> & dst,const Size2D & kernel_dims,const PadStrideInfo & conv_info,bool has_bias)93 void im2col_nhwc(const SimpleTensor<T> &src, SimpleTensor<T> &dst, const Size2D &kernel_dims, const PadStrideInfo &conv_info, bool has_bias)
94 {
95 ARM_COMPUTE_ERROR_ON(src.data_layout() != DataLayout::NHWC);
96 const int stride_x = conv_info.stride().first;
97 const int stride_y = conv_info.stride().second;
98 const int kernel_width = kernel_dims.width;
99 const int kernel_height = kernel_dims.height;
100 const int pad_x = conv_info.pad().first;
101 const int pad_y = conv_info.pad().second;
102 const int src_width = src.shape().y();
103 const int src_height = src.shape().z();
104 const int src_channels = src.shape().x();
105 const int batches = src.shape().total_size_upper(3);
106 const int dst_width = has_bias ? dst.shape().x() - 1 : dst.shape().x();
107 const int dst_height = dst.shape().y();
108 const int pad_val = is_data_type_quantized_asymmetric(src.data_type()) ? src.quantization_info().uniform().offset : 0;
109
110 // Compute width and height of the convolved tensors
111 std::pair<unsigned int, unsigned int> convolved_dims = scaled_dimensions(src_width, src_height, kernel_dims.width, kernel_dims.height, conv_info);
112 #if defined(_OPENMP)
113 #pragma omp parallel for schedule(dynamic, 1) collapse(2)
114 #endif /* _OPENMP */
115 for(int b = 0; b < batches; ++b)
116 {
117 for(int yo = 0; yo < dst_height; ++yo)
118 {
119 // Compute input spatial coordinates
120 const int xi = (yo % convolved_dims.first) * stride_x;
121 const int yi = (yo / convolved_dims.first) * stride_y;
122
123 for(int ci = 0; ci < src_channels; ++ci)
124 {
125 for(int yk = 0; yk < kernel_height; ++yk)
126 {
127 for(int xk = 0; xk < kernel_width; ++xk)
128 {
129 dst[ci + (xk + yk * kernel_width) * src_channels + yo * dst.shape().x() + b * dst.shape().x() * dst.shape().y()] = tensor_elem_at(src, Coordinates(ci, xi + xk - pad_x, yi + yk - pad_y, b),
130 BorderMode::CONSTANT, static_cast<T>(pad_val));
131 }
132 }
133 }
134
135 if(has_bias)
136 {
137 dst[dst_width + yo * dst.shape().x() + b * dst.shape().x() * dst.shape().y()] = static_cast<T>(1);
138 }
139 }
140 }
141 }
142
143 template <typename T>
im2col(const SimpleTensor<T> & src,SimpleTensor<T> & dst,const Size2D & kernel_dims,const PadStrideInfo & conv_info,bool has_bias,unsigned int num_groups)144 void im2col(const SimpleTensor<T> &src, SimpleTensor<T> &dst, const Size2D &kernel_dims, const PadStrideInfo &conv_info, bool has_bias, unsigned int num_groups)
145 {
146 switch(src.data_layout())
147 {
148 case DataLayout::NCHW:
149 {
150 im2col_nchw(src, dst, kernel_dims, conv_info, has_bias, num_groups);
151 break;
152 }
153 case DataLayout::NHWC:
154 {
155 im2col_nhwc(src, dst, kernel_dims, conv_info, has_bias);
156 break;
157 }
158 default:
159 {
160 ARM_COMPUTE_ERROR("Not supported.");
161 break;
162 }
163 }
164 }
165
166 template void im2col(const SimpleTensor<uint8_t> &src, SimpleTensor<uint8_t> &dst, const Size2D &kernel_dims, const PadStrideInfo &conv_info, bool has_bias, unsigned int num_groups);
167 template void im2col(const SimpleTensor<half> &src, SimpleTensor<half> &dst, const Size2D &kernel_dims, const PadStrideInfo &conv_info, bool has_bias, unsigned int num_groups);
168 template void im2col(const SimpleTensor<float> &src, SimpleTensor<float> &dst, const Size2D &kernel_dims, const PadStrideInfo &conv_info, bool has_bias, unsigned int num_groups);
169 } // namespace reference
170 } // namespace validation
171 } // namespace test
172 } // namespace arm_compute
173