1 /*
2 * Copyright (c) 2017-2020 Arm Limited.
3 *
4 * SPDX-License-Identifier: MIT
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to
8 * deal in the Software without restriction, including without limitation the
9 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10 * sell copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in all
14 * copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22 * SOFTWARE.
23 */
24 #include "DepthwiseConvolutionLayer.h"
25
26 #include "ConvolutionLayer.h"
27 #include "Utils.h"
28
29 #include "tests/validation/Helpers.h"
30 #include "tests/validation/reference/Utils.h"
31 #include "tests/validation/reference/UtilsQuantizedAsymm.h"
32
33 #include "arm_compute/core/utils/quantization/AsymmHelpers.h"
34
35 namespace arm_compute
36 {
37 namespace test
38 {
39 namespace validation
40 {
41 namespace reference
42 {
43 namespace
44 {
45 /** Perform a depthwise convolution for floating-point types
46 *
47 * - Three dimensions tensors
48 * - Third dimention is number of channels
49 * - Depths of input tensor and filter are equals
50 * - Padding, stride and output shape "match"
51 *
52 */
53 template <typename T>
depthwise_convolution_fp(const SimpleTensor<T> & src,const SimpleTensor<T> & weights,const SimpleTensor<T> & biases,const TensorShape & dst_shape,const PadStrideInfo & conv_info,unsigned int depth_multiplier,const Size2D & dilation,const QuantizationInfo & out_quant_info)54 SimpleTensor<T> depthwise_convolution_fp(const SimpleTensor<T> &src, const SimpleTensor<T> &weights, const SimpleTensor<T> &biases, const TensorShape &dst_shape, const PadStrideInfo &conv_info,
55 unsigned int depth_multiplier, const Size2D &dilation, const QuantizationInfo &out_quant_info)
56 {
57 ARM_COMPUTE_UNUSED(out_quant_info);
58
59 SimpleTensor<T> dst{ dst_shape, src.data_type(), 1 };
60
61 // Compute reference
62 const int filter_width = weights.shape().x();
63 const int filter_height = weights.shape().y();
64 const int filter_plane = filter_width * filter_height;
65 const int input_width = src.shape().x();
66 const int input_height = src.shape().y();
67 const int input_depth = src.shape().z();
68 const int num_batches = src.shape().total_size() / (input_width * input_height * input_depth);
69
70 const int pad_left = conv_info.pad_left();
71 const int pad_top = conv_info.pad_top();
72
73 const float patch_width = (filter_width + (dilation.x() - 1) * (filter_width - 1));
74 const float patch_height = (filter_height + (dilation.y() - 1) * (filter_height - 1));
75
76 const int patch_half_width_floor = patch_width / 2;
77 const int patch_half_height_floor = patch_height / 2;
78
79 const auto patch_half_width_ceil = static_cast<int>(std::ceil(patch_width / 2));
80 const auto patch_half_height_ceil = static_cast<int>(std::ceil(patch_height / 2));
81
82 const int minimum_x = -pad_left + patch_half_width_floor;
83 const int minimum_y = -pad_top + patch_half_height_floor;
84 const int maximum_x = (conv_info.stride().first * (dst_shape[0] - 1));
85 const int maximum_y = (conv_info.stride().second * (dst_shape[1] - 1));
86
87 const T border_value(0);
88
89 int out_pos = 0;
90 for(int r = 0; r < num_batches; ++r)
91 {
92 for(int z = 0; z < input_depth; ++z)
93 {
94 for(unsigned int m = 0; m < depth_multiplier; ++m)
95 {
96 const int out_z = z * depth_multiplier + m;
97
98 for(int y = minimum_y; y <= minimum_y + maximum_y; y += conv_info.stride().second)
99 {
100 for(int x = minimum_x; x <= minimum_x + maximum_x; x += conv_info.stride().first)
101 {
102 Coordinates coords(static_cast<int>(x), static_cast<int>(y), static_cast<int>(z), static_cast<int>(r));
103 size_t filter_offset = filter_plane * out_z;
104
105 T val(0);
106 for(int j = y - patch_half_height_floor; j < y + patch_half_height_ceil; j += dilation.y())
107 {
108 for(int i = x - patch_half_width_floor; i < x + patch_half_width_ceil; i += dilation.x())
109 {
110 coords.set(0, i);
111 coords.set(1, j);
112 val += *(weights.data() + filter_offset) * tensor_elem_at(src, coords, BorderMode::CONSTANT, border_value);
113 ++filter_offset;
114 }
115 }
116
117 dst[out_pos++] = saturate_cast<T>(val + *static_cast<const T *>(biases(Coordinates(out_z))));
118 }
119 }
120 }
121 }
122 }
123
124 return dst;
125 }
126
127 /** Perform a quantized depthwise convolution
128 *
129 * - Three dimensions tensors
130 * - Third dimention is number of channels
131 * - Depths of input tensor and filter are equals
132 * - Padding, stride and output shape "match"
133 * - QASYMM8/QASYMM8_SIGNED input, output
134 * - QASYMM8/QASYMM8_SIGNED or QSYMM8_PER_CHANNEL filter
135 *
136 */
137 template <typename T, typename TW, typename TB>
depthwise_convolution_quantized(const SimpleTensor<T> & src,const SimpleTensor<TW> & weights,const SimpleTensor<int32_t> & biases,const TensorShape & dst_shape,const PadStrideInfo & conv_info,unsigned int depth_multiplier,const Size2D & dilation,const QuantizationInfo & out_quant_info)138 SimpleTensor<T> depthwise_convolution_quantized(const SimpleTensor<T> &src, const SimpleTensor<TW> &weights, const SimpleTensor<int32_t> &biases, const TensorShape &dst_shape,
139 const PadStrideInfo &conv_info, unsigned int depth_multiplier, const Size2D &dilation, const QuantizationInfo &out_quant_info)
140 {
141 // if no explicit quantization has been set you the same as src
142 const QuantizationInfo &dst_qinfo = out_quant_info.uniform().empty() ? src.quantization_info() : out_quant_info;
143 SimpleTensor<T> dst{ dst_shape, src.data_type(), 1, dst_qinfo };
144
145 // Create reference
146 const int input_offset = -src.quantization_info().uniform().offset;
147 const float input_scale = src.quantization_info().uniform().scale;
148 const int weights_offset = -weights.quantization_info().uniform().offset;
149 const int output_offset = dst_qinfo.uniform().offset;
150 const float output_scale = dst_qinfo.uniform().scale;
151
152 const std::vector<float> weights_scale_vec = weights.quantization_info().scale();
153
154 // Compute reference
155 const int filter_width = weights.shape().x();
156 const int filter_height = weights.shape().y();
157 const int filter_plane = filter_width * filter_height;
158 const int input_width = src.shape().x();
159 const int input_height = src.shape().y();
160 const int input_depth = src.shape().z();
161 const int num_batches = src.shape().total_size() / (input_width * input_height * input_depth);
162
163 const int pad_left = conv_info.pad_left();
164 const int pad_top = conv_info.pad_top();
165
166 const float patch_width = (filter_width + (dilation.x() - 1) * (filter_width - 1));
167 const float patch_height = (filter_height + (dilation.y() - 1) * (filter_height - 1));
168
169 const int patch_half_width_floor = patch_width / 2;
170 const int patch_half_height_floor = patch_height / 2;
171
172 const auto patch_half_width_ceil = static_cast<int>(std::ceil(patch_width / 2));
173 const auto patch_half_height_ceil = static_cast<int>(std::ceil(patch_height / 2));
174
175 const int minimum_x = -pad_left + patch_half_width_floor;
176 const int minimum_y = -pad_top + patch_half_height_floor;
177 const int maximum_x = (conv_info.stride().first * (dst_shape[0] - 1));
178 const int maximum_y = (conv_info.stride().second * (dst_shape[1] - 1));
179
180 const bool is_quantized_per_channel = is_data_type_quantized_per_channel(weights.data_type());
181
182 const int min = std::numeric_limits<T>::lowest();
183 const int max = std::numeric_limits<T>::max();
184
185 int out_pos = 0;
186 for(int r = 0; r < num_batches; ++r)
187 {
188 for(int z = 0; z < input_depth; ++z)
189 {
190 for(unsigned int m = 0; m < depth_multiplier; ++m)
191 {
192 const int out_z = z * depth_multiplier + m;
193 const int32_t bias_val = *static_cast<const int32_t *>(biases(Coordinates(out_z)));
194
195 int output_multiplier = 0;
196 int output_shift = 0;
197 const float weights_scale = (is_quantized_per_channel) ? weights_scale_vec[out_z] : weights_scale_vec[0];
198 const float multiplier = input_scale * weights_scale / output_scale;
199 arm_compute::quantization::calculate_quantized_multiplier(multiplier, &output_multiplier, &output_shift);
200
201 for(int y = minimum_y; y <= minimum_y + maximum_y; y += conv_info.stride().second)
202 {
203 for(int x = minimum_x; x <= minimum_x + maximum_x; x += conv_info.stride().first)
204 {
205 Coordinates coords(x, y, z, r);
206 int filter_offset = filter_plane * out_z;
207
208 int32_t val = 0;
209 for(int j = y - patch_half_height_floor; j < y + patch_half_height_ceil; j += dilation.y())
210 {
211 for(int i = x - patch_half_width_floor; i < x + patch_half_width_ceil; i += dilation.x())
212 {
213 coords.set(0, i);
214 coords.set(1, j);
215 const auto in_val = tensor_elem_at<T>(src, coords, BorderMode::CONSTANT, -input_offset);
216 const TW w_val = *(weights.data() + filter_offset);
217 val += (in_val + input_offset) * (w_val + weights_offset);
218 ++filter_offset;
219 }
220 }
221 val += bias_val;
222 // Quantize down
223 val = quantize_down_scale_by_fixedpoint(val, output_multiplier, output_shift, output_offset, min, max);
224
225 // Store the result
226 dst[out_pos++] = val;
227 }
228 }
229 }
230 }
231 }
232
233 return dst;
234 }
235 } // namespace
236
237 template <>
depthwise_convolution(const SimpleTensor<float> & src,const SimpleTensor<float> & weights,const SimpleTensor<float> & biases,const TensorShape & dst_shape,const PadStrideInfo & conv_info,unsigned int depth_multiplier,const Size2D & dilation,const QuantizationInfo & out_quant_info)238 SimpleTensor<float> depthwise_convolution(const SimpleTensor<float> &src, const SimpleTensor<float> &weights, const SimpleTensor<float> &biases, const TensorShape &dst_shape,
239 const PadStrideInfo &conv_info, unsigned int depth_multiplier, const Size2D &dilation, const QuantizationInfo &out_quant_info)
240 {
241 return depthwise_convolution_fp(src, weights, biases, dst_shape, conv_info, depth_multiplier, dilation, out_quant_info);
242 }
243
244 template <>
depthwise_convolution(const SimpleTensor<half> & src,const SimpleTensor<half> & weights,const SimpleTensor<half> & biases,const TensorShape & dst_shape,const PadStrideInfo & conv_info,unsigned int depth_multiplier,const Size2D & dilation,const QuantizationInfo & out_quant_info)245 SimpleTensor<half> depthwise_convolution(const SimpleTensor<half> &src, const SimpleTensor<half> &weights, const SimpleTensor<half> &biases, const TensorShape &dst_shape,
246 const PadStrideInfo &conv_info, unsigned int depth_multiplier, const Size2D &dilation, const QuantizationInfo &out_quant_info)
247 {
248 return depthwise_convolution_fp(src, weights, biases, dst_shape, conv_info, depth_multiplier, dilation, out_quant_info);
249 }
250
251 template <>
depthwise_convolution(const SimpleTensor<uint8_t> & src,const SimpleTensor<uint8_t> & weights,const SimpleTensor<int32_t> & biases,const TensorShape & dst_shape,const PadStrideInfo & conv_info,unsigned int depth_multiplier,const Size2D & dilation,const QuantizationInfo & out_quant_info)252 SimpleTensor<uint8_t> depthwise_convolution(const SimpleTensor<uint8_t> &src, const SimpleTensor<uint8_t> &weights, const SimpleTensor<int32_t> &biases, const TensorShape &dst_shape,
253 const PadStrideInfo &conv_info, unsigned int depth_multiplier, const Size2D &dilation, const QuantizationInfo &out_quant_info)
254 {
255 return depthwise_convolution_quantized<uint8_t, uint8_t, int32_t>(src, weights, biases, dst_shape, conv_info, depth_multiplier, dilation, out_quant_info);
256 }
257
258 template <>
depthwise_convolution(const SimpleTensor<uint8_t> & src,const SimpleTensor<int8_t> & weights,const SimpleTensor<int32_t> & biases,const TensorShape & dst_shape,const PadStrideInfo & conv_info,unsigned int depth_multiplier,const Size2D & dilation,const QuantizationInfo & out_quant_info)259 SimpleTensor<uint8_t> depthwise_convolution(const SimpleTensor<uint8_t> &src, const SimpleTensor<int8_t> &weights, const SimpleTensor<int32_t> &biases, const TensorShape &dst_shape,
260 const PadStrideInfo &conv_info, unsigned int depth_multiplier, const Size2D &dilation, const QuantizationInfo &out_quant_info)
261 {
262 return depthwise_convolution_quantized<uint8_t, int8_t, int32_t>(src, weights, biases, dst_shape, conv_info, depth_multiplier, dilation, out_quant_info);
263 }
264
265 template <>
depthwise_convolution(const SimpleTensor<int8_t> & src,const SimpleTensor<int8_t> & weights,const SimpleTensor<int32_t> & biases,const TensorShape & dst_shape,const PadStrideInfo & conv_info,unsigned int depth_multiplier,const Size2D & dilation,const QuantizationInfo & out_quant_info)266 SimpleTensor<int8_t> depthwise_convolution(const SimpleTensor<int8_t> &src, const SimpleTensor<int8_t> &weights, const SimpleTensor<int32_t> &biases, const TensorShape &dst_shape,
267 const PadStrideInfo &conv_info, unsigned int depth_multiplier, const Size2D &dilation, const QuantizationInfo &out_quant_info)
268 {
269 return depthwise_convolution_quantized<int8_t, int8_t, int32_t>(src, weights, biases, dst_shape, conv_info, depth_multiplier, dilation, out_quant_info);
270 }
271 } // namespace reference
272 } // namespace validation
273 } // namespace test
274 } // namespace arm_compute
275