xref: /aosp_15_r20/external/ComputeLibrary/tests/validation/NEON/DepthwiseConvolutionLayerNative.cpp (revision c217d954acce2dbc11938adb493fc0abd69584f3)
1 /*
2  * Copyright (c) 2019-2022 Arm Limited.
3  *
4  * SPDX-License-Identifier: MIT
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to
8  * deal in the Software without restriction, including without limitation the
9  * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10  * sell copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in all
14  * copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22  * SOFTWARE.
23  */
24 #include "src/cpu/kernels/CpuDepthwiseConv2dNativeKernel.h"
25 #include "tests/NEON/Accessor.h"
26 #include "tests/NEON/Helper.h"
27 #include "tests/framework/Macros.h"
28 #include "tests/framework/datasets/Datasets.h"
29 #include "tests/validation/Validation.h"
30 #include "tests/validation/fixtures/DepthwiseConvolutionLayerFixture.h"
31 
32 namespace arm_compute
33 {
34 namespace test
35 {
36 namespace validation
37 {
38 using namespace arm_compute::misc::shape_calculator;
39 
40 // Create function for CpuDepthwiseConvolutionKernel
41 using CpuDepthwiseConvolutionNative = NESynthetizeFunctionWithZeroConstantKernelBorder<cpu::kernels::CpuDepthwiseConv2dNativeKernel>;
42 
43 // Fixture for NEDepthwiseConvolutionLayerKernel
44 template <typename T>
45 using CpuDepthwiseConvolutionNativeFixture = DepthwiseConvolutionLayerNativeValidationFixture<Tensor, Accessor, CpuDepthwiseConvolutionNative, T>;
46 
47 namespace
48 {
49 // *INDENT-OFF*
50 // clang-format off
51 RelativeTolerance<float> rel_tolerance_f32(0.001f);
52 constexpr float          abs_tolerance_f32(0.0001f);
53 
54 /** Width values to test - Precommit */
55 const auto width_values_precommit = framework::dataset::make("width", { 17U } );
56 
57 /** Width values to test - Nightly */
58 const auto width_values_nightly = framework::dataset::make("width", { 53U, 47U } );
59 
60 /** Height values to test - Precommit */
61 const auto height_values_precommit = framework::dataset::make("height", { 19U } );
62 
63 /** Height values to test - Nightly */
64 const auto height_values_nightly = framework::dataset::make("height", { 39U, 43U } );
65 
66 /** Channel values to test - Precommit */
67 const auto channel_values_precommit = framework::dataset::make("channels", { 15U });
68 
69 /** Channel values to test - Nightly */
70 const auto channel_values_nightly = framework::dataset::make("channels", { 33U, 19U });
71 
72 /** Batch values to test - Precommit */
73 const auto batch_values_precommit = framework::dataset::make("batch", { 1U, 2U });
74 
75 /** Batch values to test - Nightly */
76 const auto batch_values_nightly = framework::dataset::make("batch", { 1U, 3U });
77 
78 /** Kernel size values to test - Precommit */
79 const auto kernel_sz_values_precommit = framework::dataset::make("kernel_size", { Size2D(1U, 1U), Size2D(1U, 3U) });
80 
81 /** Kernel size values to test - Nightly */
82 const auto kernel_sz_values_nightly = framework::dataset::make("kernel_size", { Size2D(3U, 5U), Size2D(5U, 1U), Size2D(1U, 7U), Size2D(9U, 7U) });
83 
84 /** Depth multiplier values to test - All */
85 const auto depth_multiplier_values = framework::dataset::make("depth_multiplier", { 1U, 3U });
86 
87 /** Dilation values to test - All */
88 const auto dilation_values = framework::dataset::make("dilation", { Size2D(1U, 1U), Size2D(3U, 3U) });
89 
90 /** Stride values to test - All */
91 const auto stride_values = framework::dataset::make("stride", { Size2D(1U, 1U), Size2D(3U, 2U) });
92 
93 /** Padding values to test - All */
94 const auto padding_valid_values = framework::dataset::make("padding_valid", { true, false });
95 
96 /** Data type values to test - All */
97 const auto data_type_values = framework::dataset::make("data_type", { DataType::F32 });
98 
99 /** Data layout values to test - All */
100 const auto data_layout_values = framework::dataset::make("data_layout", { DataLayout::NHWC });
101 } // namespace
102 
103 TEST_SUITE(NEON)
TEST_SUITE(DepthwiseConvolutionLayerNative)104 TEST_SUITE(DepthwiseConvolutionLayerNative)
105 
106 TEST_CASE(ValidateNoPadding, framework::DatasetMode::ALL)
107 {
108     // this test case will ensure that the kernel is not adding implicit padding
109     constexpr uint32_t vector_size = 8; // Asummed vector size of the current native kernel
110     constexpr auto     depth = vector_size * 2 + 1; // mis-aligned depth to force padding if exists.
111     constexpr auto     data_layout = DataLayout::NHWC;
112     constexpr auto     data_type = DataType::F32;
113 
114     const auto input_size  = Size2D{ 100, 100 }; // random plane size of the input
115     const auto kernel_size = Size2D{ 4, 4 }; // random plane size of the kernel
116     const auto pad_stride_info = PadStrideInfo(3, 3); // random convolution information to
117 
118     TensorShape src_shape{ depth, input_size.x(), input_size.y() };
119     TensorShape weights_shape{ depth, kernel_size.x(), kernel_size.y() };
120     TensorShape bias_shape{ depth };
121 
122     auto src     = create_tensor<Tensor>(src_shape, data_type, 1, QuantizationInfo(), data_layout);
123     auto weights = create_tensor<Tensor>(weights_shape, data_type, 1, QuantizationInfo(), data_layout);
124     auto biases  = create_tensor<Tensor>(bias_shape, data_type, 1, QuantizationInfo(), data_layout);
125     auto dst     = create_tensor<Tensor>(TensorShape(), data_type, 1, QuantizationInfo(), data_layout);
126 
127     cpu::kernels::CpuDepthwiseConv2dNativeKernel dwc;
128     const ConvolutionInfo info{pad_stride_info, 1, ActivationLayerInfo(), Size2D(1, 1)};
129     dwc.configure(src.info(), weights.info(), biases.info(), dst.info(), info);
130 
131     ARM_COMPUTE_EXPECT(src.info()->padding().empty(), framework::LogLevel::ERRORS);
132     ARM_COMPUTE_EXPECT(weights.info()->padding().empty(), framework::LogLevel::ERRORS);
133     ARM_COMPUTE_EXPECT(biases.info()->padding().empty(), framework::LogLevel::ERRORS);
134     ARM_COMPUTE_EXPECT(dst.info()->padding().empty(), framework::LogLevel::ERRORS);
135 }
136 
137 TEST_SUITE(KERNEL_SELECTION)
138 DATA_TEST_CASE(KernelSelection_mul_and_add, framework::DatasetMode::ALL,
139                combine(combine(framework::dataset::make("CpuExt", std::string("NEON")),
140                        framework::dataset::make("DataType", { DataType::F32,
141                                                               DataType::F16,
142                                                               DataType::QASYMM8_SIGNED,
143                                                               DataType::QASYMM8,
144                                                               DataType::QSYMM8_PER_CHANNEL
145                                                             })),
146                        framework::dataset::make("DataType_per_channel", { DataType::QASYMM8,
147                                                                           DataType::QASYMM8_SIGNED
148                                                             })),
149                 cpu_ext, data_type, data_type_per_channel)
150 {
151     using namespace cpu::kernels;
152 
153     cpuinfo::CpuIsaInfo cpu_isa{};
154     cpu_isa.neon = (cpu_ext == "NEON");
155     cpu_isa.fp16 = (data_type == DataType::F16);
156 
157     const auto *selected_impl = CpuDepthwiseConv2dNativeKernel::get_implementation(
158         DepthwiseConv2dNativeDataTypeISASelectorData{ data_type, data_type_per_channel,cpu_isa },
159         cpu::KernelSelectionType::Preferred );
160 
161     ARM_COMPUTE_ERROR_ON_NULLPTR(selected_impl);
162 
163     std::string per_channel_str = "_";
164     if (data_type == DataType::QSYMM8_PER_CHANNEL)
165     {
166         per_channel_str = "_" + cpu_impl_dt(data_type_per_channel) + "_" ;
167     }
168     std::string expected = lower_string(cpu_ext) + "_" + cpu_impl_dt(data_type)  + per_channel_str + "deptwiseconv2dnative";
169     std::string actual   = selected_impl->name;
170 
171     ARM_COMPUTE_EXPECT_EQUAL(expected, actual, framework::LogLevel::ERRORS);
172 }
173 TEST_SUITE_END() // KERNEL_SELECTION
174 
TEST_SUITE(Float)175 TEST_SUITE(Float)
176 TEST_SUITE(FP32)
177 FIXTURE_DATA_TEST_CASE_NEW(RunSmall, CpuDepthwiseConvolutionNativeFixture<float>, framework::DatasetMode::ALL,
178                 combine(combine(combine(combine(combine(combine(combine(combine(combine(combine(width_values_precommit,
179                                                                                                 height_values_precommit),
180                                                                                                 channel_values_precommit),
181                                                                                                 batch_values_precommit),
182                                                                                                 kernel_sz_values_precommit),
183                                                                                                 depth_multiplier_values),
184                                                                                                 dilation_values),
185                                                                                                 stride_values),
186                                                                                                 padding_valid_values),
187                                                                                                 data_type_values),
188                                                                                                 data_layout_values))
189 {
190     // Validate output
191     validate(Accessor(_target), _reference, rel_tolerance_f32, 0.f, abs_tolerance_f32);
192 }
193 
FIXTURE_DATA_TEST_CASE_NEW(RunLarge,CpuDepthwiseConvolutionNativeFixture<float>,framework::DatasetMode::NIGHTLY,combine (combine (combine (combine (combine (combine (combine (combine (combine (combine (width_values_nightly,height_values_nightly),channel_values_nightly),batch_values_nightly),kernel_sz_values_nightly),depth_multiplier_values),dilation_values),stride_values),padding_valid_values),data_type_values),data_layout_values))194 FIXTURE_DATA_TEST_CASE_NEW(RunLarge, CpuDepthwiseConvolutionNativeFixture<float>, framework::DatasetMode::NIGHTLY,
195                 combine(combine(combine(combine(combine(combine(combine(combine(combine(combine(width_values_nightly,
196                                                                                                 height_values_nightly),
197                                                                                                 channel_values_nightly),
198                                                                                                 batch_values_nightly),
199                                                                                                 kernel_sz_values_nightly),
200                                                                                                 depth_multiplier_values),
201                                                                                                 dilation_values),
202                                                                                                 stride_values),
203                                                                                                 padding_valid_values),
204                                                                                                 data_type_values),
205                                                                                                 data_layout_values))
206 {
207     // Validate output
208     validate(Accessor(_target), _reference, rel_tolerance_f32, 0.f, abs_tolerance_f32);
209 }
210 
211 TEST_SUITE_END() // FP32
212 TEST_SUITE_END() // Float
213 TEST_SUITE_END() // DepthwiseConvolutionLayerNative
214 TEST_SUITE_END() // Neon
215 } // namespace validation
216 } // namespace test
217 } // namespace arm_compute
218