xref: /aosp_15_r20/external/ComputeLibrary/tests/validate_examples/graph_depthwiseconvolution.cpp (revision c217d954acce2dbc11938adb493fc0abd69584f3)
1 /*
2  * Copyright (c) 2019-2020 Arm Limited.
3  *
4  * SPDX-License-Identifier: MIT
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to
8  * deal in the Software without restriction, including without limitation the
9  * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10  * sell copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in all
14  * copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22  * SOFTWARE.
23  */
24 #include "arm_compute/graph.h"
25 
26 #include "tests/NEON/Accessor.h"
27 #include "tests/validation/Validation.h"
28 #include "tests/validation/reference/DepthwiseConvolutionLayer.h"
29 #include "tests/validation/reference/Permute.h"
30 
31 #include "utils/CommonGraphOptions.h"
32 #include "utils/GraphUtils.h"
33 #include "utils/Utils.h"
34 
35 #include "ValidateExample.h"
36 #include "graph_validate_utils.h"
37 
38 #include <utility>
39 
40 using namespace arm_compute::utils;
41 using namespace arm_compute::graph::frontend;
42 using namespace arm_compute::graph_utils;
43 using namespace arm_compute::graph;
44 using namespace arm_compute;
45 using namespace arm_compute::test;
46 using namespace arm_compute::test::validation;
47 
48 namespace
49 {
50 /** Depthwise Convolution command line options used to configure the graph examples
51  *
52  * (Similar to common options)
53  * The options in this object get populated when "parse()" is called on the parser used to construct it.
54  * The expected workflow is:
55  *
56  * CommandLineParser parser;
57  * CommonOptions options( parser );
58  * parser.parse(argc, argv);
59  */
60 class DepthConvolutionOptions final : public CommonGraphValidateOptions
61 {
62 public:
DepthConvolutionOptions(CommandLineParser & parser)63     explicit DepthConvolutionOptions(CommandLineParser &parser) noexcept
64         : CommonGraphValidateOptions(parser),
65           width(parser.add_option<SimpleOption<int>>("width", 9)),
66           height(parser.add_option<SimpleOption<int>>("height", 9)),
67           channels(parser.add_option<SimpleOption<int>>("channels", 1)),
68           batch(parser.add_option<SimpleOption<int>>("batch", 1)),
69           weights_width(parser.add_option<SimpleOption<int>>("weights_width", 3)),
70           weights_height(parser.add_option<SimpleOption<int>>("weights_height", 3)),
71           padding_top(parser.add_option<SimpleOption<int>>("padding_top", 0)),
72           padding_left(parser.add_option<SimpleOption<int>>("padding_left", 0)),
73           padding_bottom(parser.add_option<SimpleOption<int>>("padding_bottom", 0)),
74           padding_right(parser.add_option<SimpleOption<int>>("padding_right", 0)),
75           stride_x(parser.add_option<SimpleOption<int>>("stride_x", 1)),
76           stride_y(parser.add_option<SimpleOption<int>>("stride_y", 1)),
77           padding_mode(),
78           conv_mode(),
79           depth_multiplier(parser.add_option<SimpleOption<int>>("depth_multiplier", 1)),
80           data_layout(),
81           scale(parser.add_option<SimpleOption<float>>("scale", 1.0f)),
82           offset(parser.add_option<SimpleOption<int>>("offset", 0)),
83           weights_scale(parser.add_option<SimpleOption<float>>("weights_scale", 1.0f)),
84           weights_offset(parser.add_option<SimpleOption<int>>("weights_offset", 0)),
85           output_scale(parser.add_option<SimpleOption<float>>("output_scale", 1.0f)),
86           output_offset(parser.add_option<SimpleOption<int>>("output_offset", 0)),
87           input_range_low(parser.add_option<SimpleOption<uint64_t>>("input_range_low")),
88           input_range_high(parser.add_option<SimpleOption<uint64_t>>("input_range_high")),
89           weights_range_low(parser.add_option<SimpleOption<uint64_t>>("weights_range_low")),
90           weights_range_high(parser.add_option<SimpleOption<uint64_t>>("weights_range_high")),
91           input_npy(parser.add_option<SimpleOption<std::string>>("input_image")),
92           output_npy(parser.add_option<SimpleOption<std::string>>("reference_image")),
93           weights_npy(parser.add_option<SimpleOption<std::string>>("weights_npy")),
94           bias_npy(parser.add_option<SimpleOption<std::string>>("bias_image"))
95     {
96         const std::set<ConvolutionPaddingMode> available_padding_modes
97         {
98             ConvolutionPaddingMode::Valid,
99             ConvolutionPaddingMode::Same
100         };
101 
102         const std::set<arm_compute::graph::DepthwiseConvolutionMethod> supported_convolution_methods
103         {
104             arm_compute::graph::DepthwiseConvolutionMethod::Default,
105             arm_compute::graph::DepthwiseConvolutionMethod::GEMV,
106             arm_compute::graph::DepthwiseConvolutionMethod::Optimized3x3,
107         };
108 
109         const std::set<DataLayout> supported_data_layouts
110         {
111             DataLayout::NHWC,
112             DataLayout::NCHW,
113         };
114 
115         padding_mode = parser.add_option<EnumOption<ConvolutionPaddingMode>>("padding_mode", available_padding_modes, ConvolutionPaddingMode::Valid);
116         conv_mode    = parser.add_option<EnumOption<arm_compute::graph::DepthwiseConvolutionMethod>>("convolution_method", supported_convolution_methods,
117                                                                                                      arm_compute::graph::DepthwiseConvolutionMethod::Default);
118         data_layout = parser.add_option<EnumOption<DataLayout>>("layout", supported_data_layouts, DataLayout::NHWC);
119 
120         padding_mode->set_help("Set padding mode");
121         width->set_help("Set Input dimension width");
122         height->set_help("Set Input dimension height");
123         channels->set_help("Set Input dimension channels");
124         batch->set_help("Set Input dimension batch");
125         weights_width->set_help("Set weights_dimensions width");
126         weights_height->set_help("Set weights_dimensions height");
127         padding_top->set_help("Set padding top");
128         padding_bottom->set_help("Set padding bottom");
129         padding_left->set_help("Set padding left");
130         padding_right->set_help("Set padding right");
131         stride_x->set_help("Set padding stride x");
132         stride_y->set_help("Set padding stride y");
133         conv_mode->set_help("Set convolution method");
134         data_layout->set_help("Data layout to use");
135         scale->set_help("Quantization scale from QASYMM8");
136         offset->set_help("Quantization offset from QASYMM8");
137         output_scale->set_help("Quantization scale from QASYMM8");
138         output_offset->set_help("Quantization offset from QASYMM8");
139         input_npy->set_help("Use input .npy instead");
140         output_npy->set_help("Use .npy as a reference");
141         input_range_low->set_help("Lower bound for input randomization range");
142         input_range_high->set_help("Lower bound for input randomization range");
143         weights_scale->set_help("Quantization scale from QASYMM8");
144         weights_offset->set_help("Quantization offset from QASYMM8");
145         weights_range_low->set_help("Lower bound for input randomization range");
146         weights_range_high->set_help("Lower bound for input randomization range");
147         depth_multiplier->set_help("Depth multiplier");
148     }
149 
150     /** Fill out the supplied parameters with user supplied parameters
151      *
152      * @param[out] os            Output stream.
153      * @param[in]  common_params Example parameters to output
154      *
155      * @return None.
156      */
consume_parameters(ExampleParams & common_params)157     void consume_parameters(ExampleParams &common_params)
158     {
159         common_params.input.width      = width->value();
160         common_params.input.height     = height->value();
161         common_params.input.fm         = channels->value();
162         common_params.input.batch      = batch->value();
163         common_params.input.quant_info = QuantizationInfo(scale->value(), offset->value());
164         common_params.input.npy        = input_npy->value();
165         common_params.input.range_low  = input_range_low->value();
166         common_params.input.range_high = input_range_high->value();
167 
168         common_params.weights.width      = weights_width->value();
169         common_params.weights.height     = weights_height->value();
170         common_params.weights.npy        = weights_npy->value();
171         common_params.weights.range_low  = weights_range_low->value();
172         common_params.weights.range_high = weights_range_high->value();
173         common_params.weights.quant_info = QuantizationInfo(weights_scale->value(), weights_offset->value());
174 
175         common_params.bias.npy = bias_npy->value();
176 
177         common_params.output.quant_info = QuantizationInfo(output_scale->value(), output_offset->value());
178         common_params.output.npy        = output_npy->value();
179 
180         common_params.convolution.padding_mode     = padding_mode->value();
181         common_params.convolution.padding_top      = padding_top->value();
182         common_params.convolution.padding_bottom   = padding_bottom->value();
183         common_params.convolution.padding_left     = padding_left->value();
184         common_params.convolution.padding_right    = padding_right->value();
185         common_params.convolution.padding_stride_x = stride_x->value();
186         common_params.convolution.padding_stride_y = stride_y->value();
187         common_params.convolution.depth_multiplier = depth_multiplier->value();
188 
189         common_params.data_type                = data_type->value();
190         common_params.data_layout              = data_layout->value();
191         common_params.depth_convolution_method = conv_mode->value();
192     }
193 
print_parameters(::std::ostream & os,const ExampleParams & common_params)194     void print_parameters(::std::ostream &os, const ExampleParams &common_params) override
195     {
196         os << "Threads : " << common_params.common_params.threads << std::endl;
197         os << "Target : " << common_params.common_params.target << std::endl;
198         os << "Data type : " << common_params.data_type << std::endl;
199         os << "Input dimensions(X,Y, Channels, Batch) : (" << common_params.input.width << "," << common_params.input.height << "," << common_params.input.fm << "," << common_params.input.batch << ")"
200            << std::endl;
201         os << "Weight dimensions(X,Y, Channels(same as input)) : (" << common_params.weights.width << "," << common_params.weights.height << "," << common_params.input.fm << ","
202            << ")" << std::endl;
203         os << "Padding(top, bottom, left, right) (stride x, stride y) : (" << common_params.convolution.padding_top << "," << common_params.convolution.padding_bottom << "," <<
204            common_params.convolution.padding_left << "," << common_params.convolution.padding_right << ") (" << common_params.convolution.padding_stride_x << "," << common_params.convolution.padding_stride_y <<
205            ")" << std::endl;
206         os << "Padding Mode: " << common_params.convolution.padding_mode << std::endl;
207         os << "Convolution Method: " << common_params.depth_convolution_method << std::endl;
208         os << "Depth multiplier: " << common_params.convolution.depth_multiplier;
209     }
210 
211     /** Prevent instances of this class from being copied (As this class contains pointers) */
212     DepthConvolutionOptions(const DepthConvolutionOptions &) = delete;
213     /** Prevent instances of this class from being copied (As this class contains pointers) */
214     DepthConvolutionOptions &operator=(const DepthConvolutionOptions &) = delete;
215     /** Allow instances of this class to be moved */
216     DepthConvolutionOptions(DepthConvolutionOptions &&) noexcept(true) = default;
217     /** Allow instances of this class to be moved */
218     DepthConvolutionOptions &operator=(DepthConvolutionOptions &&) noexcept(true) = default;
219     /** Default destructor */
220     ~DepthConvolutionOptions() override = default;
221 
222 private:
223     SimpleOption<int>                                          *width;              /**< Input width */
224     SimpleOption<int>                                          *height;             /**< Input height */
225     SimpleOption<int>                                          *channels;           /**< Input channels */
226     SimpleOption<int>                                          *batch;              /**< Input batch */
227     SimpleOption<int>                                          *weights_width;      /**< weights width */
228     SimpleOption<int>                                          *weights_height;     /**< weights height */
229     SimpleOption<int>                                          *padding_top;        /**< Padding top */
230     SimpleOption<int>                                          *padding_left;       /**< Padding left */
231     SimpleOption<int>                                          *padding_bottom;     /**< Padding bottom */
232     SimpleOption<int>                                          *padding_right;      /**< Padding right */
233     SimpleOption<int>                                          *stride_x;           /**< Padding stride x */
234     SimpleOption<int>                                          *stride_y;           /**< Padding stride y */
235     EnumOption<ConvolutionPaddingMode>                         *padding_mode;       /**< Padding mode */
236     EnumOption<arm_compute::graph::DepthwiseConvolutionMethod> *conv_mode;          /**< Convolution method */
237     SimpleOption<int>                                          *depth_multiplier;   /**< Depth multiplier */
238     EnumOption<arm_compute::DataLayout>                        *data_layout;        /**< Graph data layout */
239     SimpleOption<float>                                        *scale;              /**< Input Quantization scale from QASYMM8 */
240     SimpleOption<int>                                          *offset;             /**< Input Quantization offset from QASYMM8 */
241     SimpleOption<float>                                        *weights_scale;      /**< Weights Quantization scale from QASYMM8 */
242     SimpleOption<int>                                          *weights_offset;     /**< Weights Quantization offset from QASYMM8 */
243     SimpleOption<float>                                        *output_scale;       /**< Output Quantization scale from QASYMM8 */
244     SimpleOption<int>                                          *output_offset;      /**< Output Quantization offset from QASYMM8 */
245     SimpleOption<uint64_t>                                     *input_range_low;    /**< Lower bound for input randomization range */
246     SimpleOption<uint64_t>                                     *input_range_high;   /**< Upper bound for input randomization range */
247     SimpleOption<uint64_t>                                     *weights_range_low;  /**< Lower bound for weights randomization range */
248     SimpleOption<uint64_t>                                     *weights_range_high; /**< Upper bound for weights randomization range */
249 
250     SimpleOption<std::string> *input_npy;   /**< Use input .npy image */
251     SimpleOption<std::string> *output_npy;  /**< Use output .npy image to verify*/
252     SimpleOption<std::string> *weights_npy; /**< Use weights .npy image */
253     SimpleOption<std::string> *bias_npy;    /**< Use bias .npy image */
254 };
255 
256 /** DepthwiseConvolutionLayer Graph example validation accessor class */
257 template <typename D>
258 class DepthConvolutionVerifyAccessor final : public VerifyAccessor<D>
259 {
260 public:
261     using BaseClassType = VerifyAccessor<D>;
262     using BaseClassType::BaseClassType;
263     using BaseClassType::_params;
264     using TBias = typename std::conditional<std::is_same<typename std::decay<D>::type, uint8_t>::value, int32_t, D>::type;
265 
266 public:
reference(SimpleTensor<D> & src,SimpleTensor<D> & weights,SimpleTensor<TBias> & bias,const TensorShape & output_shape)267     SimpleTensor<D> reference(SimpleTensor<D> &src, SimpleTensor<D> &weights, SimpleTensor<TBias> &bias, const TensorShape &output_shape) override
268     {
269         // Calculate padding information
270         const PadStrideInfo padding_info = calculate_convolution_padding(_params);
271 
272         //Calculate reference
273         return reference::depthwise_convolution<D>(src, weights, bias, output_shape, padding_info,
274                                                    _params.convolution.depth_multiplier,
275                                                    Size2D(1U, 1U),
276                                                    _params.output.quant_info);
277     }
278 
relative_tolerance()279     float relative_tolerance() override
280     {
281         const std::map<arm_compute::graph::Target, const std::map<DataType, float>> relative_tolerance
282         {
283             {
284                 arm_compute::graph::Target::CL,
285                 {   { DataType::F16, 0.01f },
286                     { DataType::F32, 0.01f },
287                     { DataType::QASYMM8, 0.0f }
288                 }
289             },
290             {
291                 arm_compute::graph::Target::NEON,
292                 {   { DataType::F16, 0.01f },
293                     { DataType::F32, 0.01f },
294                     { DataType::QASYMM8, 1.0f }
295                 }
296             }
297         };
298 
299         return relative_tolerance.at(_params.common_params.target).at(_params.data_type);
300     }
301 
absolute_tolerance()302     float absolute_tolerance() override
303     {
304         const std::map<Target, const std::map<DataType, float>> absolute_tolerance
305         {
306             {
307                 Target::CL,
308                 {   { DataType::F16, 0.0f },
309                     { DataType::F32, 0.0000f },
310                     { DataType::QASYMM8, 0.0f }
311                 }
312             },
313             {
314                 Target::NEON,
315                 {   { DataType::F16, 0.2f },
316                     { DataType::F32, 0.002f },
317                     { DataType::QASYMM8, 0.0f }
318                 }
319             }
320         };
321 
322         return absolute_tolerance.at(_params.common_params.target).at(_params.data_type);
323     }
324 
tolerance_number()325     float tolerance_number() override
326     {
327         const std::map<Target, const std::map<DataType, float>> absolute_tolerance
328         {
329             {
330                 Target::CL,
331                 {   { DataType::F16, 0.05f },
332                     { DataType::F32, 0.00f },
333                     { DataType::QASYMM8, 0.0f }
334                 }
335             },
336             {
337                 Target::NEON,
338                 {   { DataType::F16, 0.05f },
339                     { DataType::F32, 0.0f },
340                     { DataType::QASYMM8, 0.0f }
341                 }
342             }
343         };
344 
345         return absolute_tolerance.at(_params.common_params.target).at(_params.data_type);
346     }
347 };
348 
349 } // namespace
350 
351 class GraphDepthwiseConvolutionValidateExample final : public GraphValidateExample<DepthwiseConvolutionLayer, DepthConvolutionOptions, DepthConvolutionVerifyAccessor>
352 {
353     using GraphValidateExample::graph;
354 
355 public:
GraphDepthwiseConvolutionValidateExample()356     GraphDepthwiseConvolutionValidateExample()
357         : GraphValidateExample("DepthWiseConvolution Graph example")
358     {
359     }
360 
GraphFunctionLayer(ExampleParams & params)361     DepthwiseConvolutionLayer GraphFunctionLayer(ExampleParams &params) override
362     {
363         const PixelValue lower = PixelValue(params.input.range_low, params.data_type, params.input.quant_info);
364         const PixelValue upper = PixelValue(params.input.range_high, params.data_type, params.input.quant_info);
365 
366         const PixelValue weights_lower = PixelValue(params.weights.range_low, params.data_type, params.weights.quant_info);
367         const PixelValue weights_upper = PixelValue(params.weights.range_high, params.data_type, params.weights.quant_info);
368 
369         // Calculate padding information
370         const PadStrideInfo padding_info = calculate_convolution_padding(params);
371 
372         return DepthwiseConvolutionLayer(params.weights.width, params.weights.height,
373                                          get_accessor(params.weights, weights_lower, weights_upper, 1),
374                                          get_accessor(params.bias, lower, upper, 2),
375                                          padding_info, params.convolution.depth_multiplier, params.weights.quant_info, params.output.quant_info);
376     }
377 };
378 
379 /** Main program for Graph Depthwise Convolution test
380  *
381  * @param[in] argc Number of arguments
382  * @param[in] argv Arguments ( Input dimensions [width, height, channels, batch]
383  *                             Weights dimensions [width, height, channels]
384  *                             Padding [top,bottom,left,right, Stride x, Stride y, mode [Valid / Same / Manual] )
385  *                             Convolution Method[ Default/GEMV/Optimized3x3]
386  *                             Verification[tolerance_number,absolute_tolerance,relative_tolerance] )
387  *
388  */
main(int argc,char ** argv)389 int main(int argc, char **argv)
390 {
391     return arm_compute::utils::run_example<GraphDepthwiseConvolutionValidateExample>(argc, argv);
392 }
393