xref: /aosp_15_r20/external/ComputeLibrary/tests/validate_examples/graph_convolution.cpp (revision c217d954acce2dbc11938adb493fc0abd69584f3)
1 /*
2  * Copyright (c) 2019-2020 Arm Limited.
3  *
4  * SPDX-License-Identifier: MIT
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to
8  * deal in the Software without restriction, including without limitation the
9  * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10  * sell copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in all
14  * copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22  * SOFTWARE.
23  */
24 #include "arm_compute/graph.h"
25 
26 #include "tests/NEON/Accessor.h"
27 #include "tests/validation/Validation.h"
28 #include "tests/validation/reference/ConvolutionLayer.h"
29 #include "tests/validation/reference/Permute.h"
30 
31 #include "utils/CommonGraphOptions.h"
32 #include "utils/GraphUtils.h"
33 #include "utils/Utils.h"
34 
35 #include "ValidateExample.h"
36 #include "graph_validate_utils.h"
37 
38 #include <utility>
39 
40 using namespace arm_compute::utils;
41 using namespace arm_compute::graph::frontend;
42 using namespace arm_compute::graph_utils;
43 using namespace arm_compute::graph;
44 using namespace arm_compute;
45 using namespace arm_compute::test;
46 using namespace arm_compute::test::validation;
47 
48 namespace
49 {
50 /** Convolution command line options used to configure the graph examples
51  *
52  * (Similar to common options)
53  * The options in this object get populated when "parse()" is called on the parser used to construct it.
54  * The expected workflow is:
55  *
56  * CommandLineParser parser;
57  * CommonOptions options( parser );
58  * parser.parse(argc, argv);
59  */
60 class ConvolutionOptions final : public CommonGraphValidateOptions
61 {
62 public:
ConvolutionOptions(CommandLineParser & parser)63     explicit ConvolutionOptions(CommandLineParser &parser) noexcept
64         : CommonGraphValidateOptions(parser),
65           width(parser.add_option<SimpleOption<int>>("width", 9)),
66           height(parser.add_option<SimpleOption<int>>("height", 9)),
67           channels(parser.add_option<SimpleOption<int>>("channels", 1)),
68           batch(parser.add_option<SimpleOption<int>>("batch", 1)),
69           weights_width(parser.add_option<SimpleOption<int>>("weights_width", 3)),
70           weights_height(parser.add_option<SimpleOption<int>>("weights_height", 3)),
71           OFM(parser.add_option<SimpleOption<int>>("OFM", 1)),
72           padding_top(parser.add_option<SimpleOption<int>>("padding_top", 0)),
73           padding_left(parser.add_option<SimpleOption<int>>("padding_left", 0)),
74           padding_bottom(parser.add_option<SimpleOption<int>>("padding_bottom", 0)),
75           padding_right(parser.add_option<SimpleOption<int>>("padding_right", 0)),
76           stride_x(parser.add_option<SimpleOption<int>>("stride_x", 1)),
77           stride_y(parser.add_option<SimpleOption<int>>("stride_y", 1)),
78           padding_mode(),
79           conv_mode(),
80           data_layout(),
81           scale(parser.add_option<SimpleOption<float>>("scale", 1.0f)),
82           offset(parser.add_option<SimpleOption<int>>("offset", 0)),
83           weights_scale(parser.add_option<SimpleOption<float>>("weights_scale", 1.0f)),
84           weights_offset(parser.add_option<SimpleOption<int>>("weights_offset", 0)),
85           output_scale(parser.add_option<SimpleOption<float>>("output_scale", 1.0f)),
86           output_offset(parser.add_option<SimpleOption<int>>("output_offset", 0)),
87           input_range_low(parser.add_option<SimpleOption<uint64_t>>("input_range_low")),
88           input_range_high(parser.add_option<SimpleOption<uint64_t>>("input_range_high")),
89           weights_range_low(parser.add_option<SimpleOption<uint64_t>>("weights_range_low")),
90           weights_range_high(parser.add_option<SimpleOption<uint64_t>>("weights_range_high")),
91           input_npy(parser.add_option<SimpleOption<std::string>>("input_image")),
92           output_npy(parser.add_option<SimpleOption<std::string>>("reference_image")),
93           weights_npy(parser.add_option<SimpleOption<std::string>>("weights_npy")),
94           bias_npy(parser.add_option<SimpleOption<std::string>>("bias_image"))
95     {
96         const std::set<ConvolutionPaddingMode> available_padding_modes
97         {
98             ConvolutionPaddingMode::Valid,
99             ConvolutionPaddingMode::Same
100         };
101 
102         const std::set<arm_compute::graph::ConvolutionMethod> supported_convolution_methods
103         {
104             arm_compute::graph::ConvolutionMethod::Default,
105             arm_compute::graph::ConvolutionMethod::GEMM,
106             arm_compute::graph::ConvolutionMethod::Winograd,
107             arm_compute::graph::ConvolutionMethod::Direct
108         };
109 
110         const std::set<DataLayout> supported_data_layouts
111         {
112             DataLayout::NHWC,
113             DataLayout::NCHW,
114         };
115 
116         padding_mode = parser.add_option<EnumOption<ConvolutionPaddingMode>>("padding_mode", available_padding_modes, ConvolutionPaddingMode::Valid);
117         conv_mode    = parser.add_option<EnumOption<arm_compute::graph::ConvolutionMethod>>("convolution_method", supported_convolution_methods, arm_compute::graph::ConvolutionMethod::Default);
118         data_layout  = parser.add_option<EnumOption<DataLayout>>("layout", supported_data_layouts, DataLayout::NHWC);
119 
120         padding_mode->set_help("Set padding mode");
121         help->set_help("Show this help message");
122         width->set_help("Set Input dimension width");
123         height->set_help("Set Input dimension height");
124         channels->set_help("Set Input dimension channels");
125         batch->set_help("Set Input dimension batch");
126         weights_width->set_help("Set weights_dimensions width");
127         weights_height->set_help("Set weights_dimensions height");
128         OFM->set_help("Set OFM");
129         padding_top->set_help("Set padding top");
130         padding_bottom->set_help("Set padding bottom");
131         padding_left->set_help("Set padding left");
132         padding_right->set_help("Set padding right");
133         stride_x->set_help("Set padding stride x");
134         stride_y->set_help("Set padding stride y");
135         conv_mode->set_help("Set convolution method");
136         scale->set_help("Quantization scale from QASYMM8");
137         offset->set_help("Quantization offset from QASYMM8");
138         weights_scale->set_help("Quantization scale from QASYMM8");
139         weights_offset->set_help("Quantization offset from QASYMM8");
140         output_scale->set_help("Quantization scale from QASYMM8");
141         output_offset->set_help("Quantization offset from QASYMM8");
142         input_npy->set_help("Use input .npy instead");
143         output_npy->set_help("Use .npy as a reference");
144         input_range_low->set_help("Lower bound for input randomization range");
145         input_range_high->set_help("Lower bound for input randomization range");
146         weights_range_low->set_help("Lower bound for input randomization range");
147         weights_range_high->set_help("Lower bound for input randomization range");
148     }
149 
150     /** Fill out the supplied parameters with user supplied parameters
151      *
152      * @param[out] os            Output stream.
153      * @param[in]  common_params Example parameters to output
154      *
155      * @return None.
156      */
consume_parameters(ExampleParams & common_params)157     void consume_parameters(ExampleParams &common_params)
158     {
159         common_params.input.width      = width->value();
160         common_params.input.height     = height->value();
161         common_params.input.fm         = channels->value();
162         common_params.input.batch      = batch->value();
163         common_params.input.quant_info = QuantizationInfo(scale->value(), offset->value());
164         common_params.input.npy        = input_npy->value();
165         common_params.input.range_low  = input_range_low->value();
166         common_params.input.range_high = input_range_high->value();
167 
168         common_params.weights.width      = weights_width->value();
169         common_params.weights.height     = weights_height->value();
170         common_params.weights.fm         = OFM->value();
171         common_params.weights.npy        = weights_npy->value();
172         common_params.weights.quant_info = QuantizationInfo(weights_scale->value(), weights_offset->value());
173         common_params.weights.range_low  = weights_range_low->value();
174         common_params.weights.range_high = weights_range_high->value();
175 
176         common_params.bias.npy = bias_npy->value();
177 
178         common_params.output.quant_info = QuantizationInfo(output_scale->value(), output_offset->value());
179         common_params.output.npy        = output_npy->value();
180 
181         common_params.convolution.padding_mode     = padding_mode->value();
182         common_params.convolution.padding_top      = padding_top->value();
183         common_params.convolution.padding_bottom   = padding_bottom->value();
184         common_params.convolution.padding_left     = padding_left->value();
185         common_params.convolution.padding_right    = padding_right->value();
186         common_params.convolution.padding_stride_x = stride_x->value();
187         common_params.convolution.padding_stride_y = stride_y->value();
188 
189         common_params.data_type          = data_type->value();
190         common_params.data_layout        = data_layout->value();
191         common_params.convolution_method = conv_mode->value();
192     }
193 
print_parameters(::std::ostream & os,const ExampleParams & common_params)194     void print_parameters(::std::ostream &os, const ExampleParams &common_params) override
195     {
196         os << "Threads : " << common_params.common_params.threads << std::endl;
197         os << "Target : " << common_params.common_params.target << std::endl;
198         os << "Data type : " << common_params.data_type << std::endl;
199         os << "Input dimensions(X,Y, Channels, Batch) : (" << common_params.input.width << "," << common_params.input.height << "," << common_params.input.fm << "," << common_params.input.batch << ")"
200            << std::endl;
201         os << "Weight dimensions(X,Y, Channels(same as input), OFM) : (" << common_params.weights.width << "," << common_params.weights.height << "," << common_params.input.fm << "," <<
202            common_params.weights.fm << ")" << std::endl;
203         os << "Padding(top, bottom, left, right) (stride x, stride y) : (" << common_params.convolution.padding_top << "," << common_params.convolution.padding_bottom << "," <<
204            common_params.convolution.padding_left << "," << common_params.convolution.padding_right << ") (" << common_params.convolution.padding_stride_x << "," << common_params.convolution.padding_stride_y <<
205            ")" << std::endl;
206         os << "Padding Mode: " << common_params.convolution.padding_mode << std::endl;
207         os << "Convolution Method: " << common_params.convolution_method << std::endl;
208     }
209 
210     /** Prevent instances of this class from being copied (As this class contains pointers) */
211     ConvolutionOptions(const ConvolutionOptions &) = delete;
212     /** Prevent instances of this class from being copied (As this class contains pointers) */
213     ConvolutionOptions &operator=(const ConvolutionOptions &) = delete;
214     /** Allow instances of this class to be moved */
215     ConvolutionOptions(ConvolutionOptions &&) noexcept(true) = default;
216     /** Allow instances of this class to be moved */
217     ConvolutionOptions &operator=(ConvolutionOptions &&) noexcept(true) = default;
218     /** Default destructor */
219     ~ConvolutionOptions() override = default;
220 
221 private:
222     SimpleOption<int>                                 *width;              /**< Input width */
223     SimpleOption<int>                                 *height;             /**< Input height */
224     SimpleOption<int>                                 *channels;           /**< Input channels */
225     SimpleOption<int>                                 *batch;              /**< Input batch */
226     SimpleOption<int>                                 *weights_width;      /**< weights width */
227     SimpleOption<int>                                 *weights_height;     /**< weights height */
228     SimpleOption<int>                                 *OFM;                /**< Output Feature Map */
229     SimpleOption<int>                                 *padding_top;        /**< Padding top */
230     SimpleOption<int>                                 *padding_left;       /**< Padding left */
231     SimpleOption<int>                                 *padding_bottom;     /**< Padding bottom */
232     SimpleOption<int>                                 *padding_right;      /**< Padding right */
233     SimpleOption<int>                                 *stride_x;           /**< Padding stride x */
234     SimpleOption<int>                                 *stride_y;           /**< Padding stride y */
235     EnumOption<ConvolutionPaddingMode>                *padding_mode;       /**< Padding mode */
236     EnumOption<arm_compute::graph::ConvolutionMethod> *conv_mode;          /**< Convolution method */
237     EnumOption<arm_compute::DataLayout>               *data_layout;        /**< Graph data layout */
238     SimpleOption<float>                               *scale;              /**< Input Quantization scale from QASYMM8 */
239     SimpleOption<int>                                 *offset;             /**< Input Quantization offset from QASYMM8 */
240     SimpleOption<float>                               *weights_scale;      /**< Weights Quantization scale from QASYMM8 */
241     SimpleOption<int>                                 *weights_offset;     /**< Weights Quantization offset from QASYMM8 */
242     SimpleOption<float>                               *output_scale;       /**< Output Quantization scale from QASYMM8 */
243     SimpleOption<int>                                 *output_offset;      /**< Output Quantization offset from QASYMM8 */
244     SimpleOption<uint64_t>                            *input_range_low;    /**< Lower bound for input randomization range */
245     SimpleOption<uint64_t>                            *input_range_high;   /**< Upper bound for input randomization range */
246     SimpleOption<uint64_t>                            *weights_range_low;  /**< Lower bound for weights randomization range */
247     SimpleOption<uint64_t>                            *weights_range_high; /**< Upper bound for weights randomization range */
248 
249     SimpleOption<std::string> *input_npy;   /**< Use input .npy image */
250     SimpleOption<std::string> *output_npy;  /**< Use output .npy image to verify*/
251     SimpleOption<std::string> *weights_npy; /**< Use weights .npy image */
252     SimpleOption<std::string> *bias_npy;    /**< Use bias .npy image */
253 };
254 
255 /** ConvolutionLayer Graph example validation accessor class */
256 template <typename D>
257 class ConvolutionVerifyAccessor final : public VerifyAccessor<D>
258 {
259     using BaseClassType = VerifyAccessor<D>;
260     using BaseClassType::BaseClassType;
261     using BaseClassType::_params;
262     using TBias = typename std::conditional<std::is_same<typename std::decay<D>::type, uint8_t>::value, int32_t, D>::type;
263 
reference(SimpleTensor<D> & src,SimpleTensor<D> & weights,SimpleTensor<TBias> & bias,const TensorShape & output_shape)264     SimpleTensor<D> reference(SimpleTensor<D> &src, SimpleTensor<D> &weights, SimpleTensor<TBias> &bias, const TensorShape &output_shape) override
265     {
266         // Calculate padding information
267         const PadStrideInfo padding_info = calculate_convolution_padding(_params);
268 
269         //Calculate reference
270         return reference::convolution_layer<D>(src, weights, bias, output_shape, padding_info, Size2D(1, 1),
271                                                1, _params.output.quant_info);
272     }
273 
relative_tolerance()274     float relative_tolerance() override
275     {
276         const std::map<arm_compute::graph::Target, const std::map<DataType, float>> relative_tolerance
277         {
278             {
279                 arm_compute::graph::Target::CL,
280                 {   { DataType::F16, 0.2f },
281                     { DataType::F32, 0.5f },
282                     { DataType::QASYMM8, 1.0f }
283                 }
284             },
285             {
286                 arm_compute::graph::Target::NEON,
287                 {   { DataType::F16, 0.2f },
288                     { DataType::F32, 0.01f },
289                     { DataType::QASYMM8, 0.0f }
290                 }
291             }
292         };
293 
294         if(_params.convolution_method == arm_compute::graph::ConvolutionMethod::Winograd
295            && _params.data_type == DataType::F32
296            && _params.common_params.target == arm_compute::graph::Target::NEON)
297         {
298             return 0.05f;
299         }
300         else
301         {
302             return relative_tolerance.at(_params.common_params.target).at(_params.data_type);
303         }
304     }
305 
absolute_tolerance()306     float absolute_tolerance() override
307     {
308         const std::map<Target, const std::map<DataType, float>> absolute_tolerance
309         {
310             {
311                 Target::CL,
312                 {   { DataType::F16, 0.0f },
313                     { DataType::F32, 0.0001f },
314                     { DataType::QASYMM8, 0.0f }
315                 }
316             },
317             {
318                 Target::NEON,
319                 {   { DataType::F16, 0.2f },
320                     { DataType::F32, 0.002f },
321                     { DataType::QASYMM8, 0.0f }
322                 }
323             }
324         };
325 
326         return absolute_tolerance.at(_params.common_params.target).at(_params.data_type);
327     }
328 
tolerance_number()329     float tolerance_number() override
330     {
331         const std::map<Target, const std::map<DataType, float>> absolute_tolerance
332         {
333             {
334                 Target::CL,
335                 {   { DataType::F16, 0.07f },
336                     { DataType::F32, 0.07f },
337                     { DataType::QASYMM8, 0.0f }
338                 }
339             },
340             {
341                 Target::NEON,
342                 {   { DataType::F16, 0.07f },
343                     { DataType::F32, 0.0f },
344                     { DataType::QASYMM8, 0.0f }
345                 }
346             }
347         };
348 
349         return absolute_tolerance.at(_params.common_params.target).at(_params.data_type);
350     }
351 };
352 
353 } // namespace
354 
355 class GraphConvolutionValidateExample final : public GraphValidateExample<ConvolutionLayer, ConvolutionOptions, ConvolutionVerifyAccessor>
356 {
357     using GraphValidateExample::graph;
358 
359 public:
GraphConvolutionValidateExample()360     GraphConvolutionValidateExample()
361         : GraphValidateExample("Convolution Graph example")
362     {
363     }
364 
GraphFunctionLayer(ExampleParams & params)365     ConvolutionLayer GraphFunctionLayer(ExampleParams &params) override
366     {
367         const PixelValue lower = PixelValue(params.input.range_low, params.data_type, params.input.quant_info);
368         const PixelValue upper = PixelValue(params.input.range_high, params.data_type, params.input.quant_info);
369 
370         const PixelValue weights_lower = PixelValue(params.weights.range_low, params.data_type, params.weights.quant_info);
371         const PixelValue weights_upper = PixelValue(params.weights.range_high, params.data_type, params.weights.quant_info);
372 
373         // Calculate padding information
374         const PadStrideInfo padding_info = calculate_convolution_padding(params);
375 
376         return ConvolutionLayer(params.weights.width, params.weights.height, params.weights.fm,
377                                 get_accessor(params.weights, weights_lower, weights_upper, 1),
378                                 get_accessor(params.bias, lower, upper, 2),
379                                 padding_info, 1, params.weights.quant_info, params.output.quant_info);
380     }
381 };
382 
383 /** Main program for Graph Convolution test
384  *
385  * @param[in] argc Number of arguments
386  * @param[in] argv Arguments ( Input dimensions [width, height, channels, batch]
387  *                             Weights dimensions [width, height, OFM]
388  *                             Padding [top,bottom,left,right, Stride x, Stride y, mode [Valid / Same / Manual] )
389  *                             Convolution Method[ Auto/GEMM/Winograd/Direct]
390  *                             Verification[tolerance_number,absolute_tolerance,relative_tolerance] )
391  *
392  */
main(int argc,char ** argv)393 int main(int argc, char **argv)
394 {
395     return arm_compute::utils::run_example<GraphConvolutionValidateExample>(argc, argv);
396 }
397