xref: /aosp_15_r20/external/ComputeLibrary/tests/validate_examples/cl_gemm.cpp (revision c217d954acce2dbc11938adb493fc0abd69584f3)
1 /*
2  * Copyright (c) 2017-2022 Arm Limited.
3  *
4  * SPDX-License-Identifier: MIT
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to
8  * deal in the Software without restriction, including without limitation the
9  * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10  * sell copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in all
14  * copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22  * SOFTWARE.
23  */
24 #ifndef ARM_COMPUTE_CL /* Needed by Utils.cpp to handle OpenCL exceptions properly */
25 #error "This example needs to be built with -DARM_COMPUTE_CL"
26 #endif /* ARM_COMPUTE_CL */
27 
28 #include "arm_compute/core/Types.h"
29 #include "arm_compute/core/Utils.h"
30 #include "arm_compute/core/utils/quantization/AsymmHelpers.h"
31 #include "arm_compute/runtime/CL/CLScheduler.h"
32 #include "arm_compute/runtime/CL/functions/CLGEMM.h"
33 #include "arm_compute/runtime/CL/functions/CLGEMMLowpMatrixMultiplyCore.h"
34 #include "arm_compute/runtime/CL/functions/CLGEMMLowpOutputStage.h"
35 #include "src/core/CL/kernels/CLFillBorderKernel.h"
36 #include "src/gpu/cl/kernels/ClCastKernel.h"
37 #include "src/gpu/cl/kernels/ClGemmLowpMatrixMultiplyNativeKernel.h"
38 #include "src/gpu/cl/kernels/ClGemmLowpMatrixMultiplyReshapedOnlyRhsKernel.h"
39 #include "src/gpu/cl/kernels/ClGemmLowpOffsetContributionKernel.h"
40 #include "src/gpu/cl/kernels/ClGemmLowpOffsetContributionOutputStageKernel.h"
41 #include "src/gpu/cl/kernels/ClGemmLowpReductionKernel.h"
42 #include "src/gpu/cl/kernels/ClGemmMatrixMultiplyReshapedKernel.h"
43 #include "src/gpu/cl/kernels/ClGemmMatrixMultiplyReshapedOnlyRhsKernel.h"
44 #include "src/gpu/cl/kernels/ClGemmReshapeLhsMatrixKernel.h"
45 #include "src/gpu/cl/kernels/ClGemmReshapeRhsMatrixKernel.h"
46 #include "src/gpu/cl/kernels/ClIm2ColKernel.h"
47 #include "src/gpu/cl/kernels/ClWeightsReshapeKernel.h"
48 #include "tests/AssetsLibrary.h"
49 #include "tests/CL/CLAccessor.h"
50 #include "tests/Globals.h"
51 #include "tests/IAccessor.h"
52 #include "tests/SimpleTensor.h"
53 #include "tests/validation/Validation.h"
54 #include "tests/validation/reference/GEMM.h"
55 #include "tests/validation/reference/GEMMLowp.h"
56 
57 #include "utils/TypePrinter.h"
58 #include "utils/Utils.h"
59 #include "utils/command_line/CommandLineOptions.h"
60 #include "utils/command_line/CommandLineParser.h"
61 
62 #include "ValidateExample.h"
63 
64 #include <cstdlib>
65 
66 using namespace arm_compute;
67 using namespace utils;
68 using namespace arm_compute::test;
69 using namespace arm_compute::test::validation;
70 
71 constexpr float                     abs_tolerance_f32(0.0001f); /**< F32 Absolute tolerance value for comparing reference's output against implementation's output for
72                                                                * floating point data types in case using relative tolerance fails because of small values */
73 RelativeTolerance<float>            tolerance_f32(0.001f);      /**< F32 Tolerance value for comparing reference's output against implementation's output for floating point data types */
74 RelativeTolerance<half_float::half> tolerance_f16(half(0.2));   /**< F16 Tolerance value for comparing reference's output against implementation's output for floating point data types */
75 constexpr float                     tolerance_num_f16 = 0.02f;  /**< F16 Tolerance number */
76 
77 namespace
78 {
79 class GEMMCommandLineOptions final
80 {
81 public:
GEMMCommandLineOptions(CommandLineParser & parser)82     explicit GEMMCommandLineOptions(CommandLineParser &parser) noexcept
83         : help(parser.add_option<ToggleOption>("help")),
84           add_bias(parser.add_option<ToggleOption>("add_bias")),
85           M(parser.add_option<SimpleOption<int>>("m", 7)),
86           N(parser.add_option<SimpleOption<int>>("n", 3)),
87           K(parser.add_option<SimpleOption<int>>("k", 5)),
88           B(parser.add_option<SimpleOption<int>>("b", 1)),
89           alpha(parser.add_option<SimpleOption<float>>("alpha", 1.f)),
90           beta(parser.add_option<SimpleOption<float>>("beta", 0.f)),
91           offset_src0(parser.add_option<SimpleOption<int>>("offset_i0", 10)),
92           offset_src1(parser.add_option<SimpleOption<int>>("offset_i1", 10)),
93           offset_dst(parser.add_option<SimpleOption<int>>("offset_o", 10)),
94           scale_src0(parser.add_option<SimpleOption<float>>("scale_i0", 1.f / 255)),
95           scale_src1(parser.add_option<SimpleOption<float>>("scale_i1", 1.f / 255)),
96           scale_dst(parser.add_option<SimpleOption<float>>("scale_o", 1.f / 255)),
97           data_type()
98     {
99         // Setup data type
100         const std::set<arm_compute::DataType> supported_data_types
101         {
102             DataType::F16,
103             DataType::F32,
104             DataType::QASYMM8,
105         };
106         data_type = parser.add_option<EnumOption<DataType>>("type", supported_data_types, DataType::F32);
107 
108         // Setup help strings
109         help->set_help("Show this help message");
110         add_bias->set_help("Add bias to the GEMM. Used when running in QASYMM8");
111         M->set_help("M value");
112         N->set_help("N value");
113         K->set_help("K value");
114         B->set_help("B value - number of batches");
115         alpha->set_help("Alpha value");
116         beta->set_help("Beta value");
117         offset_src0->set_help("Offset of first input. Used when running in QASYMM8");
118         offset_src1->set_help("Offset of second input. Used when running in QASYMM8");
119         offset_dst->set_help("Offset of output. Used when running in QASYMM8");
120         scale_src0->set_help("Scale of first input. Used when running in QASYMM8");
121         scale_src1->set_help("Scale of second input. Used when running in QASYMM8");
122         scale_dst->set_help("Scale of output. Used when running in QASYMM8");
123         data_type->set_help("Data type to use");
124     }
125     /** Prevent instances of this class from being copied (As this class contains pointers) */
126     GEMMCommandLineOptions(const GEMMCommandLineOptions &) = delete;
127     /** Prevent instances of this class from being copied (As this class contains pointers) */
128     GEMMCommandLineOptions &operator=(const GEMMCommandLineOptions &) = delete;
129     /** Allow instances of this class to be moved */
130     GEMMCommandLineOptions(GEMMCommandLineOptions &&) noexcept(true) = default;
131     /** Allow instances of this class to be moved */
132     GEMMCommandLineOptions &operator=(GEMMCommandLineOptions &&) noexcept(true) = default;
133     /** Default destructor */
134     ~GEMMCommandLineOptions() = default;
135 
136 public:
137     ToggleOption                      *help;
138     ToggleOption                      *add_bias;
139     SimpleOption<int>                 *M;
140     SimpleOption<int>                 *N;
141     SimpleOption<int>                 *K;
142     SimpleOption<int>                 *B;
143     SimpleOption<float>               *alpha;
144     SimpleOption<float>               *beta;
145     SimpleOption<int>                 *offset_src0;
146     SimpleOption<int>                 *offset_src1;
147     SimpleOption<int>                 *offset_dst;
148     SimpleOption<float>               *scale_src0;
149     SimpleOption<float>               *scale_src1;
150     SimpleOption<float>               *scale_dst;
151     EnumOption<arm_compute::DataType> *data_type;
152 };
153 } // namespace
154 
155 class CLGEMMValidateExample : public ValidateExample
156 {
157 public:
do_setup(int argc,char ** argv)158     bool do_setup(int argc, char **argv) override
159     {
160         CLScheduler::get().default_init();
161 
162         // Parse options
163         CommandLineParser      parser;
164         GEMMCommandLineOptions gemm_options(parser);
165         parser.parse(argc, argv);
166 
167         // Print help
168         const bool print_help = gemm_options.help->is_set() ? gemm_options.help->value() : false;
169         if(print_help)
170         {
171             parser.print_help(argv[0]);
172             return false;
173         }
174 
175         // Consume parameters
176         consume_params(gemm_options);
177         print_parameters_internal();
178 
179         const bool is_quantized = is_data_type_quantized(data_type);
180 
181         // Calculate re-quantization parameters
182         if(is_quantized)
183         {
184             float multiplier = scale_src0 * scale_src1 / scale_dst;
185             quantization::calculate_quantized_multiplier(multiplier, &dst_multiplier, &dst_shift);
186         }
187 
188         // Initialize GEMM inputs/outputs
189         src0.allocator()->init(TensorInfo(TensorShape(K, M, B), 1, data_type));
190         src1.allocator()->init(TensorInfo(TensorShape(N, K, B), 1, data_type));
191         src2.allocator()->init(TensorInfo(TensorShape(N, M, B), 1, data_type));
192         init_sgemm_output(dst, src0, src1, data_type);
193 
194         // Configure function
195         if(is_quantized)
196         {
197             src0.info()->set_quantization_info(QuantizationInfo(scale_src0, offset_src0));
198             src1.info()->set_quantization_info(QuantizationInfo(scale_src1, offset_src1));
199             dst.info()->set_quantization_info(QuantizationInfo(scale_dst, offset_dst));
200             biases.allocator()->init(TensorInfo(TensorShape(N), 1, DataType::S32));
201             init_sgemm_output(tmp_dst, src0, src1, DataType::S32);
202 
203             // Configure GEMMlowp matrix multiply function
204             mm_gemmlowp.configure(&src0, &src1, nullptr, &tmp_dst);
205 
206             // Configure GEMMlowp output stage
207             GEMMLowpOutputStageInfo gemm_info{};
208             gemm_info.gemmlowp_multiplier = dst_multiplier;
209             gemm_info.gemmlowp_shift      = dst_shift;
210             gemm_info.gemmlowp_offset     = offset_dst;
211             mm_gemmlowp_output_stage.configure(&tmp_dst, add_bias ? &biases : nullptr, &dst, gemm_info);
212             tmp_dst.allocator()->allocate();
213             biases.allocator()->allocate();
214             fill(CLAccessor(biases), 3);
215         }
216         else
217         {
218             // Configure matrix multiply function
219             mm_gemm.configure(&src0, &src1, &src2, &dst, alpha, beta);
220         }
221 
222         // Allocate all the tensors
223         src0.allocator()->allocate();
224         src1.allocator()->allocate();
225         dst.allocator()->allocate();
226         src2.allocator()->allocate();
227 
228         fill(CLAccessor(src0), 0);
229         fill(CLAccessor(src1), 1);
230         fill(CLAccessor(src2), 2);
231 
232         return true;
233     }
234 
print_parameters_internal()235     void print_parameters_internal()
236     {
237         std::cout << "Datatype : " << string_from_data_type(data_type) << "\n";
238         std::cout << "M : " << support::cpp11::to_string(M) << "\n";
239         std::cout << "N : " << support::cpp11::to_string(N) << "\n";
240         std::cout << "K : " << support::cpp11::to_string(K) << "\n";
241         std::cout << "B : " << support::cpp11::to_string(B) << "\n";
242         if(data_type == DataType::QASYMM8)
243         {
244             std::cout << "Scale_Src0 : " << support::cpp11::to_string(scale_src0) << "\n";
245             std::cout << "Offset_Src0 : " << support::cpp11::to_string(offset_src0) << "\n";
246             std::cout << "Scale_Scr1 : " << support::cpp11::to_string(scale_src1) << "\n";
247             std::cout << "Offset_Src1 : " << support::cpp11::to_string(offset_src1) << "\n";
248             std::cout << "Scale_Dst : " << support::cpp11::to_string(scale_dst) << "\n";
249             std::cout << "Offset_Dst : " << support::cpp11::to_string(offset_dst) << "\n";
250             std::cout << "Bias : " << support::cpp11::to_string(add_bias) << "\n";
251         }
252         else
253         {
254             std::cout << "Alpha : " << support::cpp11::to_string(alpha) << "\n";
255             std::cout << "Beta : " << support::cpp11::to_string(beta) << "\n";
256         }
257     }
258 
do_validate()259     void do_validate() override
260     {
261         switch(data_type)
262         {
263             case DataType::F16:
264             {
265                 SimpleTensor<half> ref_src0 = { TensorShape(K, M, B), data_type, 1 };
266                 SimpleTensor<half> ref_src1 = { TensorShape(N, K, B), data_type, 1 };
267                 SimpleTensor<half> ref_src2 = { TensorShape(N, M, B), data_type, 1 };
268 
269                 fill(ref_src0, 0);
270                 fill(ref_src1, 1);
271                 fill(ref_src2, 2);
272 
273                 SimpleTensor<half> ref_dst = reference::gemm<half>(ref_src0, ref_src1, ref_src2, alpha, beta);
274                 validate(CLAccessor(dst), ref_dst, tolerance_f16, tolerance_num_f16);
275                 break;
276             }
277             case DataType::F32:
278             {
279                 SimpleTensor<float> ref_src0 = { TensorShape(K, M, B), data_type, 1 };
280                 SimpleTensor<float> ref_src1 = { TensorShape(N, K, B), data_type, 1 };
281                 SimpleTensor<float> ref_src2 = { TensorShape(N, M, B), data_type, 1 };
282 
283                 fill(ref_src0, 0);
284                 fill(ref_src1, 1);
285                 fill(ref_src2, 2);
286 
287                 SimpleTensor<float> ref_dst = reference::gemm<float>(ref_src0, ref_src1, ref_src2, alpha, beta);
288                 validate(CLAccessor(dst), ref_dst, tolerance_f32, 0.f, abs_tolerance_f32);
289                 break;
290             }
291             case DataType::QASYMM8:
292             {
293                 SimpleTensor<uint8_t> ref_src0{ TensorShape(K, M, B), data_type, 1 };
294                 SimpleTensor<uint8_t> ref_src1{ TensorShape(N, K, B), data_type, 1 };
295                 SimpleTensor<uint8_t> ref_dst;
296 
297                 // Fill reference
298                 fill(ref_src0, 0);
299                 fill(ref_src1, 1);
300 
301                 SimpleTensor<int32_t> ref_tmp_dst = reference::gemmlowp_matrix_multiply_core<int32_t, uint8_t>(ref_src0, ref_src1, TensorShape(N, M, B), offset_src0, offset_src1);
302 
303                 const std::vector<int32_t> dst_multiplier_vec = { dst_multiplier };
304                 const std::vector<int32_t> dst_shift_vec      = { dst_shift };
305 
306                 if(add_bias)
307                 {
308                     SimpleTensor<int32_t> biases{ TensorShape(N), DataType::S32, 1 };
309                     // Fill bias
310                     fill(biases, 3);
311                     ref_dst = reference::gemmlowp_quantize_down_scale_by_fixedpoint<int32_t, uint8_t>(ref_tmp_dst, biases, dst_multiplier_vec, dst_shift_vec, offset_dst);
312                 }
313                 else
314                 {
315                     ref_dst = reference::gemmlowp_quantize_down_scale_by_fixedpoint<int32_t, uint8_t>(ref_tmp_dst, dst_multiplier_vec, dst_shift_vec, offset_dst);
316                 }
317                 validate(CLAccessor(dst), ref_dst);
318                 break;
319             }
320             default:
321                 break;
322         }
323     }
do_run()324     void do_run() override
325     {
326         // Execute the function
327         if(data_type == DataType::QASYMM8)
328         {
329             // Run gemmlowp
330             mm_gemmlowp.run();
331             // Run output stage
332             mm_gemmlowp_output_stage.run();
333         }
334         else
335         {
336             // Run gemm
337             mm_gemm.run();
338         }
339 
340         // Make sure all the OpenCL jobs are done executing:
341         CLScheduler::get().sync();
342     }
343 
344 private:
345     template <typename U>
fill(U && tensor,int i)346     void fill(U &&tensor, int i)
347     {
348         switch(tensor.data_type())
349         {
350             case DataType::F16:
351             {
352                 arm_compute::utils::uniform_real_distribution_16bit<half> distribution{ -1.0f, 1.0f };
353                 library->fill(tensor, distribution, i);
354                 break;
355             }
356             case DataType::F32:
357             {
358                 std::uniform_real_distribution<float> distribution(-1.0f, 1.0f);
359                 library->fill(tensor, distribution, i);
360                 break;
361             }
362             case DataType::S32:
363             case DataType::QASYMM8:
364             {
365                 std::uniform_int_distribution<> distribution(-6000, 6000);
366                 library->fill(tensor, distribution, i);
367                 break;
368             }
369             default:
370                 library->fill_tensor_uniform(tensor, i);
371         }
372     }
373 
consume_params(const GEMMCommandLineOptions & opts)374     void consume_params(const GEMMCommandLineOptions &opts)
375     {
376         ARM_COMPUTE_ERROR_ON(opts.M->value() <= 0);
377         ARM_COMPUTE_ERROR_ON(opts.N->value() <= 0);
378         ARM_COMPUTE_ERROR_ON(opts.K->value() <= 0);
379         ARM_COMPUTE_ERROR_ON(opts.B->value() <= 0);
380         M           = opts.M->value();
381         N           = opts.N->value();
382         K           = opts.K->value();
383         B           = opts.B->value();
384         alpha       = opts.alpha->value();
385         beta        = opts.beta->value();
386         offset_src0 = opts.offset_src0->value();
387         offset_src1 = opts.offset_src1->value();
388         offset_dst  = opts.offset_dst->value();
389         scale_src0  = opts.scale_src0->value();
390         scale_src1  = opts.scale_src1->value();
391         scale_dst   = opts.scale_dst->value();
392         add_bias    = opts.add_bias->is_set() ? opts.add_bias->value() : true;
393         data_type   = opts.data_type->value();
394     }
395 
396     CLTensor src0{}, src1{}, src2{}, dst{};
397     CLTensor tmp_dst{}, biases{};
398 
399     CLGEMM                       mm_gemm{};
400     CLGEMMLowpMatrixMultiplyCore mm_gemmlowp{};
401     CLGEMMLowpOutputStage        mm_gemmlowp_output_stage{};
402 
403     size_t   M{ 7 }, N{ 3 }, K{ 5 }, B{ 1 };
404     DataType data_type{ DataType::F32 };
405     float    alpha{ 1.0 }, beta{ 0.0 };
406     int      offset_src0{ 10 }, offset_src1{ 10 }, offset_dst{ 10 };
407     float    scale_src0{ 1.0f / 255 }, scale_src1{ 1.0f / 255 }, scale_dst{ 1.0f / 255 };
408     int32_t  dst_multiplier{ 0 }, dst_shift{ 0 };
409     bool     add_bias{ true };
410 };
411 
412 /** Main program for gemm test
413  *
414  * @param[in] argc Number of arguments
415  * @param[in] argv Arguments
416  *
417  */
main(int argc,char ** argv)418 int main(int argc, char **argv)
419 {
420     return utils::run_example<CLGEMMValidateExample>(argc, argv);
421 }
422