xref: /aosp_15_r20/external/ComputeLibrary/src/runtime/CL/functions/CLLSTMLayerQuantized.cpp (revision c217d954acce2dbc11938adb493fc0abd69584f3)
1 /*
2  * Copyright (c) 2019-2021 Arm Limited.
3  *
4  * SPDX-License-Identifier: MIT
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to
8  * deal in the Software without restriction, including without limitation the
9  * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10  * sell copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in all
14  * copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22  * SOFTWARE.
23  */
24 
25 #include "arm_compute/runtime/CL/functions/CLLSTMLayerQuantized.h"
26 
27 #include "arm_compute/core/Utils.h"
28 #include "arm_compute/core/Validate.h"
29 #include "arm_compute/core/utils/quantization/AsymmHelpers.h"
30 #include "src/core/CL/kernels/CLFillBorderKernel.h"
31 #include "src/core/helpers/AutoConfiguration.h"
32 
33 #include "src/common/utils/Log.h"
34 
35 #include <memory>
36 
37 namespace arm_compute
38 {
39 namespace
40 {
41 // Quantization info structures used in the LSTMQuantize layer
42 const QuantizationInfo qasymm(1.f / 128.f, 128);
43 const QuantizationInfo qsymm_3(8.f / 32768.f, 0);  // qsymm16 with 3 integer bit
44 const QuantizationInfo qsymm_4(16.f / 32768.f, 0); // qsymm16 with 4 integer bit
45 const QuantizationInfo qsymm_0(1.f / 32768.f, 0);  // qsymm16 with 0 integer bit
46 } // namespace
47 
CLLSTMLayerQuantized(std::shared_ptr<IMemoryManager> memory_manager)48 CLLSTMLayerQuantized::CLLSTMLayerQuantized(std::shared_ptr<IMemoryManager> memory_manager)
49     : _memory_group(std::move(memory_manager)), _gemmlowp(), _output_stage(), _transpose_weights(), _concat_input_weights(), _concat_recurrent_weights(), _concat_weights(), _concat_inputs(),
50       _concat_bias(), _sigmoid_forget_gate(), _sigmoid_input_gate(), _sigmoid_output_gate(), _tanh_modulation_gate(), _tanh_output_state(), _add_cell_state_tmps(), _add2(), _mul_forget_gate_cell_state(),
51       _mul_input_gate_input_mod_gate(), _mul_output_state_tmp_output_gate(), _slice_input_tensor(), _slice_forget_tensor(), _slice_cell_tensor(), _slice_output_tensor(), _dequantize(), _quantize(),
52       _input_to_input_weights(nullptr), _input_to_forget_weights(nullptr), _input_to_cell_weights(nullptr), _input_to_output_weights(nullptr), _recurrent_to_input_weights(nullptr),
53       _recurrent_to_forget_weights(nullptr), _recurrent_to_cell_weights(nullptr), _recurrent_to_output_weights(nullptr), _input_gate_bias(nullptr), _forget_gate_bias(nullptr), _cell_bias(nullptr),
54       _output_gate_bias(nullptr), _recurrent_weights(), _input_weights(), _weights(), _input(), _weights_transposed(), _output_highp(), _output_lowp(), _bias(), _forget_gate_input(), _input_gate_input(),
55       _output_gate_input(), _input_modulation_gate_input(), _forget_gate_output(), _input_gate_output(), _output_gate_output(), _input_modulation_gate_output(), _cell_state_tmp1(), _cell_state_tmp2(),
56       _output_state_tmp(), _output_state_out_symm(), _output_state_out_f32(), _is_prepared(false)
57 {
58 }
59 
configure(const ICLTensor * input,const ICLTensor * input_to_input_weights,const ICLTensor * input_to_forget_weights,const ICLTensor * input_to_cell_weights,const ICLTensor * input_to_output_weights,const ICLTensor * recurrent_to_input_weights,const ICLTensor * recurrent_to_forget_weights,const ICLTensor * recurrent_to_cell_weights,const ICLTensor * recurrent_to_output_weights,const ICLTensor * input_gate_bias,const ICLTensor * forget_gate_bias,const ICLTensor * cell_bias,const ICLTensor * output_gate_bias,ICLTensor * cell_state_in,const ICLTensor * output_state_in,ICLTensor * cell_state_out,ICLTensor * output_state_out)60 void CLLSTMLayerQuantized::configure(const ICLTensor *input,
61                                      const ICLTensor *input_to_input_weights, const ICLTensor *input_to_forget_weights, const ICLTensor *input_to_cell_weights, const ICLTensor *input_to_output_weights,
62                                      const ICLTensor *recurrent_to_input_weights, const ICLTensor *recurrent_to_forget_weights, const ICLTensor *recurrent_to_cell_weights, const ICLTensor *recurrent_to_output_weights,
63                                      const ICLTensor *input_gate_bias, const ICLTensor *forget_gate_bias, const ICLTensor *cell_bias, const ICLTensor *output_gate_bias,
64                                      ICLTensor *cell_state_in, const ICLTensor *output_state_in,
65                                      ICLTensor *cell_state_out, ICLTensor *output_state_out)
66 {
67     configure(CLKernelLibrary::get().get_compile_context(), input, input_to_input_weights, input_to_forget_weights, input_to_cell_weights, input_to_output_weights, recurrent_to_input_weights,
68               recurrent_to_forget_weights, recurrent_to_cell_weights, recurrent_to_output_weights, input_gate_bias, forget_gate_bias, cell_bias, output_gate_bias, cell_state_in, output_state_in, cell_state_out,
69               output_state_out);
70 }
71 
configure(const CLCompileContext & compile_context,const ICLTensor * input,const ICLTensor * input_to_input_weights,const ICLTensor * input_to_forget_weights,const ICLTensor * input_to_cell_weights,const ICLTensor * input_to_output_weights,const ICLTensor * recurrent_to_input_weights,const ICLTensor * recurrent_to_forget_weights,const ICLTensor * recurrent_to_cell_weights,const ICLTensor * recurrent_to_output_weights,const ICLTensor * input_gate_bias,const ICLTensor * forget_gate_bias,const ICLTensor * cell_bias,const ICLTensor * output_gate_bias,ICLTensor * cell_state_in,const ICLTensor * output_state_in,ICLTensor * cell_state_out,ICLTensor * output_state_out)72 void CLLSTMLayerQuantized::configure(const CLCompileContext &compile_context, const ICLTensor *input,
73                                      const ICLTensor *input_to_input_weights, const ICLTensor *input_to_forget_weights, const ICLTensor *input_to_cell_weights, const ICLTensor *input_to_output_weights,
74                                      const ICLTensor *recurrent_to_input_weights, const ICLTensor *recurrent_to_forget_weights, const ICLTensor *recurrent_to_cell_weights, const ICLTensor *recurrent_to_output_weights,
75                                      const ICLTensor *input_gate_bias, const ICLTensor *forget_gate_bias, const ICLTensor *cell_bias, const ICLTensor *output_gate_bias,
76                                      ICLTensor *cell_state_in, const ICLTensor *output_state_in,
77                                      ICLTensor *cell_state_out, ICLTensor *output_state_out)
78 {
79     ARM_COMPUTE_ERROR_ON_NULLPTR(input, input_to_input_weights, input_to_forget_weights, input_to_cell_weights, input_to_output_weights,
80                                  recurrent_to_input_weights, recurrent_to_forget_weights, recurrent_to_cell_weights, recurrent_to_output_weights,
81                                  input_gate_bias, forget_gate_bias, cell_bias, output_gate_bias, cell_state_in, output_state_in, cell_state_out, output_state_out);
82 
83     ARM_COMPUTE_LOG_PARAMS(input, input_to_input_weights, input_to_forget_weights, input_to_cell_weights, input_to_output_weights, recurrent_to_input_weights,
84                            recurrent_to_forget_weights, recurrent_to_cell_weights, recurrent_to_output_weights, input_gate_bias, forget_gate_bias, cell_bias, output_gate_bias, cell_state_in, output_state_in, cell_state_out,
85                            output_state_out);
86 
87     ARM_COMPUTE_ERROR_THROW_ON(CLLSTMLayerQuantized::validate(input->info(), input_to_input_weights->info(), input_to_forget_weights->info(), input_to_cell_weights->info(),
88                                                               input_to_output_weights->info(),
89                                                               recurrent_to_input_weights->info(), recurrent_to_forget_weights->info(), recurrent_to_cell_weights->info(), recurrent_to_output_weights->info(),
90                                                               input_gate_bias->info(), forget_gate_bias->info(), cell_bias->info(), output_gate_bias->info(), cell_state_in->info(), output_state_in->info(), cell_state_out->info(), output_state_out->info()));
91 
92     const int input_size  = input->info()->dimension(0);
93     const int batch_size  = input->info()->dimension(1);
94     const int output_size = input_to_input_weights->info()->dimension(1);
95 
96     const QuantizationInfo qweights = input_to_input_weights->info()->quantization_info(); // Weights quantization
97 
98     auto_init_if_empty(*cell_state_out->info(), TensorInfo(TensorShape(batch_size, output_size), 1, DataType::QSYMM16, qsymm_4));
99     auto_init_if_empty(*output_state_out->info(), TensorInfo(TensorShape(batch_size, output_size), 1, DataType::QASYMM8, qasymm));
100 
101     _input_to_input_weights      = input_to_input_weights;
102     _input_to_forget_weights     = input_to_forget_weights;
103     _input_to_cell_weights       = input_to_cell_weights;
104     _input_to_output_weights     = input_to_output_weights;
105     _recurrent_to_input_weights  = recurrent_to_input_weights;
106     _recurrent_to_forget_weights = recurrent_to_forget_weights;
107     _recurrent_to_cell_weights   = recurrent_to_cell_weights;
108     _recurrent_to_output_weights = recurrent_to_output_weights;
109     _input_gate_bias             = input_gate_bias;
110     _forget_gate_bias            = forget_gate_bias;
111     _cell_bias                   = cell_bias;
112     _output_gate_bias            = output_gate_bias;
113 
114     // Weights concatenation
115     std::vector<const ICLTensor *> inputs_weights_vector;
116     inputs_weights_vector.emplace_back(input_to_input_weights);
117     inputs_weights_vector.emplace_back(input_to_forget_weights);
118     inputs_weights_vector.emplace_back(input_to_cell_weights);
119     inputs_weights_vector.emplace_back(input_to_output_weights);
120 
121     std::vector<const ICLTensor *> recurrent_weights_vector;
122     recurrent_weights_vector.emplace_back(recurrent_to_input_weights);
123     recurrent_weights_vector.emplace_back(recurrent_to_forget_weights);
124     recurrent_weights_vector.emplace_back(recurrent_to_cell_weights);
125     recurrent_weights_vector.emplace_back(recurrent_to_output_weights);
126 
127     _input_weights.allocator()->init(TensorInfo(TensorShape(input_size, 4 * output_size), 1, DataType::QASYMM8, qweights));
128     _concat_input_weights.configure(compile_context, inputs_weights_vector, &_input_weights, Window::DimY);
129 
130     _recurrent_weights.allocator()->init(TensorInfo(TensorShape(output_size, 4 * output_size), 1, DataType::QASYMM8, qweights));
131     _concat_recurrent_weights.configure(compile_context, recurrent_weights_vector, &_recurrent_weights, Window::DimY);
132 
133     std::vector<const ICLTensor *> weights_vector;
134     weights_vector.emplace_back(&_recurrent_weights);
135     weights_vector.emplace_back(&_input_weights);
136 
137     _weights.allocator()->init(TensorInfo(TensorShape(output_size + input_size, 4 * output_size), 1, DataType::QASYMM8, qweights));
138     _concat_weights.configure(compile_context, weights_vector, &_weights, Window::DimX);
139     _transpose_weights.configure(compile_context, &_weights, &_weights_transposed);
140 
141     // Input concatenation
142     std::vector<const ICLTensor *> input_vector;
143     input_vector.emplace_back(input);
144     input_vector.emplace_back(output_state_in);
145 
146     _memory_group.manage(&_input);
147     _input.allocator()->init(TensorInfo(TensorShape(output_size + input_size, batch_size), 1, DataType::QASYMM8, qasymm));
148     _concat_inputs.configure(compile_context, input_vector, &_input, Window::DimX);
149 
150     // Bias concatenation
151     std::vector<const ICLTensor *> bias_vector;
152     bias_vector.emplace_back(input_gate_bias);
153     bias_vector.emplace_back(forget_gate_bias);
154     bias_vector.emplace_back(cell_bias);
155     bias_vector.emplace_back(output_gate_bias);
156 
157     _bias.allocator()->init(TensorInfo(TensorShape(4 * output_size), 1, DataType::S32));
158     _concat_bias.configure(compile_context, bias_vector, &_bias, Window::DimX);
159 
160     // Invert the offset for gemmlowp
161     _input.info()->set_quantization_info(QuantizationInfo(qasymm.uniform().scale, -qasymm.uniform().offset));
162     _weights_transposed.info()->set_quantization_info(QuantizationInfo(qweights.uniform().scale, -qweights.uniform().offset));
163 
164     // Run gemmlowp
165     _memory_group.manage(&_output_highp);
166     _output_highp.allocator()->init(TensorInfo(TensorShape(4 * output_size, batch_size), 1, DataType::S32));
167     _gemmlowp.configure(compile_context, &_input, &_weights_transposed, nullptr, &_output_highp);
168     _input.allocator()->allocate();
169 
170     // Set the offset back
171     _input.info()->set_quantization_info(QuantizationInfo(qasymm.uniform().scale, qasymm.uniform().offset));
172     _weights_transposed.info()->set_quantization_info(QuantizationInfo(qweights.uniform().scale, qweights.uniform().offset));
173 
174     // multiplier = (input_scale * weights_scale) / output_scale (2 ^ (-12))
175     _output_lowp.allocator()->init(TensorInfo(_output_highp.info()->tensor_shape(), 1, DataType::QSYMM16, qsymm_3));
176 
177     const float multiplier        = 4096.f * qasymm.uniform().scale * qweights.uniform().scale;
178     int         output_multiplier = 0;
179     int         output_shift      = 0;
180     quantization::calculate_quantized_multiplier(multiplier, &output_multiplier, &output_shift);
181 
182     _memory_group.manage(&_output_lowp);
183 
184     GEMMLowpOutputStageInfo info{};
185     info.type                = GEMMLowpOutputStageType::QUANTIZE_DOWN_FIXEDPOINT;
186     info.gemmlowp_multiplier = output_multiplier;
187     info.gemmlowp_shift      = output_shift;
188     info.output_data_type    = DataType::QSYMM16;
189     _output_stage.configure(compile_context, &_output_highp, &_bias, &_output_lowp, info);
190     _output_highp.allocator()->allocate();
191     _bias.allocator()->allocate();
192 
193     // Get the gate tensors
194     if(batch_size > 1)
195     {
196         _memory_group.manage(&_input_gate_input);
197         _slice_input_tensor.configure(compile_context, &_output_lowp, &_input_gate_input, { 0, 0 }, { output_size, batch_size });
198         _memory_group.manage(&_forget_gate_input);
199         _slice_forget_tensor.configure(compile_context, &_output_lowp, &_forget_gate_input, { output_size, 0 }, { 2 * output_size, batch_size });
200         _memory_group.manage(&_input_modulation_gate_input);
201         _slice_cell_tensor.configure(compile_context, &_output_lowp, &_input_modulation_gate_input, { 2 * output_size, 0 }, { 3 * output_size, batch_size });
202         _memory_group.manage(&_output_gate_input);
203         _slice_output_tensor.configure(compile_context, &_output_lowp, &_output_gate_input, { 3 * output_size, 0 }, { 4 * output_size, batch_size });
204         _output_lowp.allocator()->allocate();
205     }
206     else
207     {
208         _memory_group.manage(&_input_gate_input);
209         _slice_input_tensor.configure(compile_context, &_output_lowp, &_input_gate_input, { 0 }, { output_size });
210         _memory_group.manage(&_forget_gate_input);
211         _slice_forget_tensor.configure(compile_context, &_output_lowp, &_forget_gate_input, { output_size }, { 2 * output_size });
212         _memory_group.manage(&_input_modulation_gate_input);
213         _slice_cell_tensor.configure(compile_context, &_output_lowp, &_input_modulation_gate_input, { 2 * output_size }, { 3 * output_size });
214         _memory_group.manage(&_output_gate_input);
215         _slice_output_tensor.configure(compile_context, &_output_lowp, &_output_gate_input, { 3 * output_size }, { 4 * output_size });
216         _output_lowp.allocator()->allocate();
217     }
218 
219     // Forget gate
220     _memory_group.manage(&_forget_gate_output);
221     _forget_gate_output.allocator()->init(TensorInfo(_forget_gate_input.info()->tensor_shape(), 1, DataType::QSYMM16, qsymm_0));
222     _sigmoid_forget_gate.configure(compile_context, &_forget_gate_input, &_forget_gate_output, ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::LOGISTIC));
223     _forget_gate_input.allocator()->allocate();
224 
225     // Input gate
226     _memory_group.manage(&_input_gate_output);
227     _input_gate_output.allocator()->init(TensorInfo(_input_gate_input.info()->tensor_shape(), 1, DataType::QSYMM16, qsymm_0));
228     _sigmoid_input_gate.configure(compile_context, &_input_gate_input, &_input_gate_output, ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::LOGISTIC));
229     _input_gate_input.allocator()->allocate();
230 
231     // Input modulation gate equation
232     _memory_group.manage(&_input_modulation_gate_output);
233     _input_modulation_gate_output.allocator()->init(TensorInfo(_input_modulation_gate_input.info()->tensor_shape(), 1, DataType::QSYMM16, qsymm_0));
234     _tanh_modulation_gate.configure(compile_context, &_input_modulation_gate_input, &_input_modulation_gate_output, ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::TANH, 1.0f, 1.0f));
235     _input_modulation_gate_input.allocator()->allocate();
236 
237     // Output gate
238     _memory_group.manage(&_output_gate_output);
239     _output_gate_output.allocator()->init(TensorInfo(_output_gate_input.info()->tensor_shape(), 1, DataType::QSYMM16, qsymm_0));
240     _sigmoid_output_gate.configure(compile_context, &_output_gate_input, &_output_gate_output, ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::LOGISTIC));
241     _output_gate_input.allocator()->allocate();
242 
243     // Long term memory
244     _memory_group.manage(&_cell_state_tmp1);
245     _cell_state_tmp1.allocator()->init(TensorInfo(_forget_gate_output.info()->tensor_shape(), 1, DataType::QSYMM16, qsymm_4));
246     _mul_forget_gate_cell_state.configure(compile_context, &_forget_gate_output, cell_state_in, &_cell_state_tmp1, 1, ConvertPolicy::SATURATE, RoundingPolicy::TO_ZERO);
247     _forget_gate_output.allocator()->allocate();
248 
249     _memory_group.manage(&_cell_state_tmp2);
250     _cell_state_tmp2.allocator()->init(TensorInfo(_input_gate_output.info()->tensor_shape(), 1, DataType::QSYMM16, qsymm_4));
251     _mul_input_gate_input_mod_gate.configure(compile_context, &_input_gate_output, &_input_modulation_gate_output, &_cell_state_tmp2, 1, ConvertPolicy::SATURATE, RoundingPolicy::TO_ZERO);
252     _input_modulation_gate_output.allocator()->allocate();
253     _input_gate_output.allocator()->allocate();
254 
255     _add_cell_state_tmps.configure(compile_context, &_cell_state_tmp1, &_cell_state_tmp2, cell_state_out, ConvertPolicy::SATURATE);
256     _cell_state_tmp1.allocator()->allocate();
257     _cell_state_tmp2.allocator()->allocate();
258 
259     // Short term memory
260     _memory_group.manage(&_output_state_tmp);
261     _output_state_tmp.allocator()->init(TensorInfo(cell_state_out->info()->tensor_shape(), 1, DataType::QSYMM16, qsymm_0));
262     _tanh_output_state.configure(compile_context, cell_state_out, &_output_state_tmp, ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::TANH, 1.0f, 1.0f));
263 
264     _memory_group.manage(&_output_state_out_symm);
265     _output_state_out_symm.allocator()->init(TensorInfo(_output_gate_output.info()->tensor_shape(), 1, DataType::QSYMM16, qsymm_0));
266     _mul_output_state_tmp_output_gate.configure(compile_context, &_output_state_tmp, &_output_gate_output, &_output_state_out_symm, 1, ConvertPolicy::SATURATE, RoundingPolicy::TO_ZERO);
267     _output_gate_output.allocator()->allocate();
268     _output_state_tmp.allocator()->allocate();
269 
270     // Requantize the output state from QSYMM16 to QASYMM8
271     _memory_group.manage(&_output_state_out_f32);
272     _output_state_out_f32.allocator()->init(TensorInfo(_output_state_out_symm.info()->tensor_shape(), 1, DataType::F32));
273     _dequantize.configure(compile_context, &_output_state_out_symm, &_output_state_out_f32);
274     _output_state_out_symm.allocator()->allocate();
275 
276     _quantize.configure(compile_context, &_output_state_out_f32, output_state_out);
277     _output_state_out_f32.allocator()->allocate();
278 }
279 
validate(const ITensorInfo * input,const ITensorInfo * input_to_input_weights,const ITensorInfo * input_to_forget_weights,const ITensorInfo * input_to_cell_weights,const ITensorInfo * input_to_output_weights,const ITensorInfo * recurrent_to_input_weights,const ITensorInfo * recurrent_to_forget_weights,const ITensorInfo * recurrent_to_cell_weights,const ITensorInfo * recurrent_to_output_weights,const ITensorInfo * input_gate_bias,const ITensorInfo * forget_gate_bias,const ITensorInfo * cell_bias,const ITensorInfo * output_gate_bias,const ITensorInfo * cell_state_in,const ITensorInfo * output_state_in,const ITensorInfo * cell_state_out,const ITensorInfo * output_state_out)280 Status CLLSTMLayerQuantized::validate(const ITensorInfo *input,
281                                       const ITensorInfo *input_to_input_weights, const ITensorInfo *input_to_forget_weights, const ITensorInfo *input_to_cell_weights, const ITensorInfo *input_to_output_weights,
282                                       const ITensorInfo *recurrent_to_input_weights, const ITensorInfo *recurrent_to_forget_weights, const ITensorInfo *recurrent_to_cell_weights, const ITensorInfo *recurrent_to_output_weights,
283                                       const ITensorInfo *input_gate_bias, const ITensorInfo *forget_gate_bias, const ITensorInfo *cell_bias, const ITensorInfo *output_gate_bias,
284                                       const ITensorInfo *cell_state_in, const ITensorInfo *output_state_in,
285                                       const ITensorInfo *cell_state_out, const ITensorInfo *output_state_out)
286 {
287     ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(input, input_to_input_weights, input_to_forget_weights, input_to_cell_weights, input_to_output_weights, recurrent_to_input_weights,
288                                         recurrent_to_forget_weights, recurrent_to_cell_weights, recurrent_to_output_weights, input_gate_bias, forget_gate_bias, cell_bias, output_gate_bias, cell_state_in,
289                                         output_state_in, cell_state_out, output_state_out);
290     ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_NOT_IN(input, DataType::QASYMM8);
291 
292     const int input_size  = input->dimension(0);
293     const int batch_size  = input->dimension(1);
294     const int output_size = input_to_input_weights->dimension(1);
295 
296     // Dimensionality checks
297     ARM_COMPUTE_RETURN_ERROR_ON(input->num_dimensions() > 2);
298     ARM_COMPUTE_RETURN_ERROR_ON(input_to_input_weights->num_dimensions() > 2);
299     ARM_COMPUTE_RETURN_ERROR_ON(input_gate_bias->num_dimensions() > 1);
300     ARM_COMPUTE_RETURN_ERROR_ON(output_state_in->num_dimensions() > 2);
301 
302     TensorInfo input_weights_info(input_to_input_weights->clone()->set_tensor_shape(TensorShape(input_size, output_size)).set_data_type(DataType::QASYMM8));
303     TensorInfo recurrent_weights_info(input_to_input_weights->clone()->set_tensor_shape(TensorShape(output_size, output_size)).set_data_type(DataType::QASYMM8));
304     TensorInfo bias_info(input_gate_bias->clone()->set_tensor_shape(TensorShape(output_size)).set_data_type(DataType::S32));
305     TensorInfo output_state_info(cell_state_in->clone()->set_tensor_shape(TensorShape(output_size, batch_size)).set_data_type(DataType::QASYMM8).set_quantization_info(qasymm));
306     TensorInfo cell_state_info(cell_state_in->clone()->set_tensor_shape(TensorShape(output_size, batch_size)).set_data_type(DataType::QSYMM16).set_quantization_info(qsymm_4));
307 
308     // Shape checks
309     ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(&input_weights_info, input_to_input_weights, input_to_forget_weights, input_to_cell_weights, input_to_output_weights);
310     ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(&recurrent_weights_info, recurrent_to_input_weights, recurrent_to_forget_weights, recurrent_to_cell_weights, recurrent_to_output_weights);
311     ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(&bias_info, input_gate_bias, forget_gate_bias, cell_bias, output_gate_bias);
312     ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(&cell_state_info, cell_state_in);
313     ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(&output_state_info, output_state_in);
314 
315     // Data type checks
316     ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(&input_weights_info, input, input_to_input_weights, input_to_forget_weights, input_to_cell_weights, input_to_output_weights);
317     ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(&recurrent_weights_info, recurrent_to_input_weights, recurrent_to_forget_weights, recurrent_to_cell_weights, recurrent_to_output_weights);
318     ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(&bias_info, input_gate_bias, forget_gate_bias, cell_bias, output_gate_bias);
319     ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(&cell_state_info, cell_state_in);
320     ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(&output_state_info, output_state_in);
321 
322     // Quantization checks
323     ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_QUANTIZATION_INFO(input_to_input_weights, input_to_forget_weights, input_to_cell_weights, input_to_output_weights);
324     ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_QUANTIZATION_INFO(recurrent_to_input_weights, recurrent_to_forget_weights, recurrent_to_cell_weights, recurrent_to_output_weights);
325     ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_QUANTIZATION_INFO(&cell_state_info, cell_state_in);
326     ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_QUANTIZATION_INFO(&output_state_info, output_state_in);
327 
328     // Validate internal functions
329     // _concat_input_weights
330     std::vector<const ITensorInfo *> inputs_weights_vector;
331     inputs_weights_vector.emplace_back(input_to_input_weights);
332     inputs_weights_vector.emplace_back(input_to_forget_weights);
333     inputs_weights_vector.emplace_back(input_to_cell_weights);
334     inputs_weights_vector.emplace_back(input_to_output_weights);
335     const QuantizationInfo qweights = input_to_input_weights->quantization_info(); // Weights quantization
336     const TensorInfo       input_weights(TensorShape(input_size, 4 * output_size), 1, DataType::QASYMM8, qweights);
337     ARM_COMPUTE_RETURN_ON_ERROR(CLConcatenateLayer::validate(inputs_weights_vector, &input_weights, Window::DimY));
338 
339     // _concat_recurrent_weights
340     std::vector<const ITensorInfo *> recurrent_weights_vector;
341     recurrent_weights_vector.emplace_back(recurrent_to_input_weights);
342     recurrent_weights_vector.emplace_back(recurrent_to_forget_weights);
343     recurrent_weights_vector.emplace_back(recurrent_to_cell_weights);
344     recurrent_weights_vector.emplace_back(recurrent_to_output_weights);
345     const TensorInfo recurrent_weights(TensorShape(output_size, 4 * output_size), 1, DataType::QASYMM8, qweights);
346     ARM_COMPUTE_RETURN_ON_ERROR(CLConcatenateLayer::validate(recurrent_weights_vector, &recurrent_weights, Window::DimY));
347 
348     // _concat_weights
349     std::vector<const ITensorInfo *> weights_vector;
350     weights_vector.emplace_back(&recurrent_weights);
351     weights_vector.emplace_back(&input_weights);
352     const TensorInfo weights(TensorShape(input_size + output_size, 4 * output_size), 1, DataType::QASYMM8, qweights);
353     ARM_COMPUTE_RETURN_ON_ERROR(CLConcatenateLayer::validate(weights_vector, &weights, Window::DimX));
354     // _transpose_weights
355     const TensorShape weights_transposed_shape(weights.tensor_shape()[1], weights.tensor_shape()[0]);
356     TensorInfo        weights_transposed = weights.clone()->set_is_resizable(true).set_tensor_shape(weights_transposed_shape);
357     ARM_COMPUTE_RETURN_ON_ERROR(CLTranspose::validate(&weights, &weights_transposed));
358 
359     // _concat_inputs
360     std::vector<const ITensorInfo *> input_vector;
361     input_vector.emplace_back(input);
362     input_vector.emplace_back(output_state_in);
363     TensorInfo input_concatenated(TensorShape(output_size + input_size, batch_size), 1, DataType::QASYMM8, qasymm);
364     ARM_COMPUTE_RETURN_ON_ERROR(CLConcatenateLayer::validate(input_vector, &input_concatenated, Window::DimX));
365 
366     // _concat_bias
367     std::vector<const ITensorInfo *> bias_vector;
368     bias_vector.emplace_back(input_gate_bias);
369     bias_vector.emplace_back(forget_gate_bias);
370     bias_vector.emplace_back(cell_bias);
371     bias_vector.emplace_back(output_gate_bias);
372 
373     const TensorInfo bias_concatenated(TensorShape(4 * output_size), 1, DataType::S32);
374     ARM_COMPUTE_RETURN_ON_ERROR(CLConcatenateLayer::validate(bias_vector, &bias_concatenated, Window::DimX));
375 
376     // Invert the offset for gemmlowp
377     input_concatenated.set_quantization_info(QuantizationInfo(qasymm.uniform().scale, -qasymm.uniform().offset));
378     weights_transposed.set_quantization_info(QuantizationInfo(qweights.uniform().scale, -qweights.uniform().offset));
379 
380     // _gemmlowp
381     const TensorInfo output_highp(TensorShape(4 * output_size, batch_size), 1, DataType::S32);
382     ARM_COMPUTE_RETURN_ON_ERROR(CLGEMMLowpMatrixMultiplyCore::validate(&input_concatenated, &weights_transposed, nullptr, &output_highp));
383 
384     // Set the offset back
385     input_concatenated.set_quantization_info(QuantizationInfo(qasymm.uniform().scale, qasymm.uniform().offset));
386     weights_transposed.set_quantization_info(QuantizationInfo(qweights.uniform().scale, qweights.uniform().offset));
387 
388     const TensorInfo output_lowp(output_highp.tensor_shape(), 1, DataType::QSYMM16, qsymm_3);
389 
390     const float multiplier        = 4096.f * qasymm.uniform().scale * qweights.uniform().scale;
391     int         output_multiplier = 0;
392     int         output_shift      = 0;
393     ARM_COMPUTE_RETURN_ON_ERROR(quantization::calculate_quantized_multiplier(multiplier, &output_multiplier, &output_shift));
394 
395     // _output_stage
396     GEMMLowpOutputStageInfo info{};
397     info.type                = GEMMLowpOutputStageType::QUANTIZE_DOWN_FIXEDPOINT;
398     info.gemmlowp_multiplier = output_multiplier;
399     info.gemmlowp_shift      = output_shift;
400     info.output_data_type    = DataType::QSYMM16;
401     ARM_COMPUTE_RETURN_ON_ERROR(CLGEMMLowpOutputStage::validate(&output_highp, &bias_concatenated, &output_lowp, info));
402 
403     TensorInfo input_gate_input;
404     TensorInfo forget_gate_input;
405     TensorInfo input_modulation_gate_input;
406     TensorInfo output_gate_input;
407 
408     if(batch_size > 1)
409     {
410         // _slice_input_tensor
411         input_gate_input = TensorInfo(TensorShape(output_size, batch_size), 1, DataType::QSYMM16, qsymm_3);
412         ARM_COMPUTE_RETURN_ON_ERROR(CLSlice::validate(&output_lowp, &input_gate_input, { 0, 0 }, { output_size, batch_size }));
413         // _slice_forget_tensor
414         forget_gate_input = TensorInfo(TensorShape(output_size, batch_size), 1, DataType::QSYMM16, qsymm_3);
415         ARM_COMPUTE_RETURN_ON_ERROR(CLSlice::validate(&output_lowp, &forget_gate_input, { output_size, 0 }, { 2 * output_size, batch_size }));
416         // _slice_cell_tensor
417         input_modulation_gate_input = TensorInfo(TensorShape(output_size, batch_size), 1, DataType::QSYMM16, qsymm_3);
418         ARM_COMPUTE_RETURN_ON_ERROR(CLSlice::validate(&output_lowp, &input_modulation_gate_input, { 2 * output_size, 0 }, { 3 * output_size, batch_size }));
419         // _slice_output_tensor
420         output_gate_input = TensorInfo(TensorShape(output_size, batch_size), 1, DataType::QSYMM16, qsymm_3);
421         ARM_COMPUTE_RETURN_ON_ERROR(CLSlice::validate(&output_lowp, &output_gate_input, { 3 * output_size, 0 }, { 4 * output_size, batch_size }));
422     }
423     else
424     {
425         // _slice_input_tensor
426         input_gate_input = TensorInfo(TensorShape(output_size), 1, DataType::QSYMM16, qsymm_3);
427         ARM_COMPUTE_RETURN_ON_ERROR(CLSlice::validate(&output_lowp, &input_gate_input, { 0 }, { output_size }));
428         // _slice_forget_tensor
429         forget_gate_input = TensorInfo(TensorShape(output_size), 1, DataType::QSYMM16, qsymm_3);
430         ARM_COMPUTE_RETURN_ON_ERROR(CLSlice::validate(&output_lowp, &forget_gate_input, { output_size }, { 2 * output_size }));
431         // _slice_cell_tensor
432         input_modulation_gate_input = TensorInfo(TensorShape(output_size), 1, DataType::QSYMM16, qsymm_3);
433         ARM_COMPUTE_RETURN_ON_ERROR(CLSlice::validate(&output_lowp, &input_modulation_gate_input, { 2 * output_size }, { 3 * output_size }));
434         // _slice_output_tensor
435         output_gate_input = TensorInfo(TensorShape(output_size), 1, DataType::QSYMM16, qsymm_3);
436         ARM_COMPUTE_RETURN_ON_ERROR(CLSlice::validate(&output_lowp, &output_gate_input, { 3 * output_size }, { 4 * output_size }));
437     }
438 
439     // _sigmoid_forget_gate
440     const TensorInfo forget_gate_output(forget_gate_input.tensor_shape(), 1, DataType::QSYMM16, qsymm_0);
441     ARM_COMPUTE_RETURN_ON_ERROR(CLActivationLayer::validate(&forget_gate_input, &forget_gate_output, ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::LOGISTIC)));
442     // _sigmoid_input_gate
443     const TensorInfo input_gate_output(input_gate_input.tensor_shape(), 1, DataType::QSYMM16, qsymm_0);
444     ARM_COMPUTE_RETURN_ON_ERROR(CLActivationLayer::validate(&input_gate_input, &input_gate_output, ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::LOGISTIC)));
445     // _tanh_modulation_gate
446     const TensorInfo input_modulation_gate_output(input_modulation_gate_input.tensor_shape(), 1, DataType::QSYMM16, qsymm_0);
447     ARM_COMPUTE_RETURN_ON_ERROR(CLActivationLayer::validate(&input_modulation_gate_input, &input_modulation_gate_output, ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::TANH, 1.0f, 1.0f)));
448     // _sigmoid_output_gate
449     const TensorInfo output_gate_output(output_gate_input.tensor_shape(), 1, DataType::QSYMM16, qsymm_0);
450     ARM_COMPUTE_RETURN_ON_ERROR(CLActivationLayer::validate(&output_gate_input, &output_gate_output, ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::LOGISTIC)));
451 
452     // _mul_forget_gate_cell_state
453     const TensorInfo cell_state_tmp1(forget_gate_output.tensor_shape(), 1, DataType::QSYMM16, qsymm_4);
454     ARM_COMPUTE_RETURN_ON_ERROR(CLPixelWiseMultiplication::validate(&forget_gate_output, cell_state_in, &cell_state_tmp1, 1, ConvertPolicy::SATURATE, RoundingPolicy::TO_ZERO));
455 
456     // _mul_input_gate_input_mod_gate
457     const TensorInfo cell_state_tmp2(input_gate_output.tensor_shape(), 1, DataType::QSYMM16, qsymm_4);
458     ARM_COMPUTE_RETURN_ON_ERROR(CLPixelWiseMultiplication::validate(&input_gate_output, &input_modulation_gate_output, &cell_state_tmp2, 1, ConvertPolicy::SATURATE, RoundingPolicy::TO_ZERO));
459 
460     // _add_cell_state_tmps
461     ARM_COMPUTE_RETURN_ON_ERROR(CLArithmeticAddition::validate(&cell_state_tmp1, &cell_state_tmp2, cell_state_out, ConvertPolicy::SATURATE));
462 
463     // _tanh_modulation_gate
464     const TensorInfo output_state_tmp(cell_state_out->tensor_shape(), 1, DataType::QSYMM16, qsymm_0);
465     ARM_COMPUTE_RETURN_ON_ERROR(CLActivationLayer::validate(cell_state_out, &output_state_tmp, ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::TANH, 1.0f, 1.0f)));
466 
467     // _mul_output_state_tmp_output_gate
468     const TensorInfo output_state_out_symm(output_gate_output.tensor_shape(), 1, DataType::QSYMM16, qsymm_0);
469     ARM_COMPUTE_RETURN_ON_ERROR(CLPixelWiseMultiplication::validate(&output_state_tmp, &output_gate_output, &output_state_out_symm, 1, ConvertPolicy::SATURATE, RoundingPolicy::TO_ZERO));
470 
471     // _dequantize
472     const TensorInfo output_state_out_f32(output_state_out_symm.tensor_shape(), 1, DataType::F32);
473     ARM_COMPUTE_RETURN_ON_ERROR(CLDequantizationLayer::validate(&output_state_out_symm, &output_state_out_f32));
474 
475     // _quantize
476     ARM_COMPUTE_RETURN_ON_ERROR(CLQuantizationLayer::validate(&output_state_out_f32, output_state_out));
477 
478     if(cell_state_out->total_size() != 0)
479     {
480         ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(&cell_state_info, cell_state_out);
481         ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(&cell_state_info, cell_state_out);
482         ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_QUANTIZATION_INFO(&cell_state_info, cell_state_out);
483     }
484 
485     if(output_state_out->total_size() != 0)
486     {
487         ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(&output_state_info, output_state_out);
488         ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(&output_state_info, output_state_out);
489         ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_QUANTIZATION_INFO(&output_state_info, output_state_out);
490     }
491 
492     return Status{};
493 }
494 
run()495 void CLLSTMLayerQuantized::run()
496 {
497     prepare();
498 
499     // Acquire all the temporaries
500     MemoryGroupResourceScope scope_mg(_memory_group);
501 
502     // Concat and transpose the input
503     _concat_inputs.run();
504 
505     // Run gemmlowp
506     _gemmlowp.run();
507     _output_stage.run();
508 
509     // Slice the results
510     _slice_input_tensor.run();
511     _slice_forget_tensor.run();
512     _slice_cell_tensor.run();
513     _slice_output_tensor.run();
514 
515     // Gates
516     // Forget gate
517     _sigmoid_forget_gate.run();
518 
519     // Input gate
520     _sigmoid_input_gate.run();
521 
522     // Input modulation gate
523     _tanh_modulation_gate.run();
524 
525     // Output gate
526     _sigmoid_output_gate.run();
527 
528     // Cell state (long term memory)
529     _mul_forget_gate_cell_state.run();
530     _mul_input_gate_input_mod_gate.run();
531     _add_cell_state_tmps.run();
532 
533     // Output state (short term memory)
534     _tanh_output_state.run();
535     _mul_output_state_tmp_output_gate.run();
536 
537     // Requantize output state from QSYMM16 to QASYMM8
538     _dequantize.run();
539     _quantize.run();
540 }
541 
prepare()542 void CLLSTMLayerQuantized::prepare()
543 {
544     if(!_is_prepared)
545     {
546         _input_weights.allocator()->allocate();
547         _concat_input_weights.run();
548 
549         _input_to_input_weights->mark_as_unused();
550         _input_to_forget_weights->mark_as_unused();
551         _input_to_cell_weights->mark_as_unused();
552         _input_to_output_weights->mark_as_unused();
553 
554         _recurrent_weights.allocator()->allocate();
555         _concat_recurrent_weights.run();
556         _recurrent_to_input_weights->mark_as_unused();
557         _recurrent_to_forget_weights->mark_as_unused();
558         _recurrent_to_cell_weights->mark_as_unused();
559         _recurrent_to_output_weights->mark_as_unused();
560 
561         _weights.allocator()->allocate();
562         _concat_weights.run();
563 
564         _input_weights.mark_as_unused();
565         _input_weights.allocator()->free();
566         _recurrent_weights.mark_as_unused();
567         _recurrent_weights.allocator()->free();
568 
569         _weights_transposed.allocator()->allocate();
570         _transpose_weights.run();
571 
572         _weights.mark_as_unused();
573         _weights.allocator()->free();
574 
575         _bias.allocator()->allocate();
576         _concat_bias.run();
577         _input_gate_bias->mark_as_unused();
578         _forget_gate_bias->mark_as_unused();
579         _cell_bias->mark_as_unused();
580         _output_gate_bias->mark_as_unused();
581 
582         _is_prepared = true;
583     }
584 }
585 
586 } // namespace arm_compute
587