xref: /aosp_15_r20/external/ComputeLibrary/src/gpu/cl/kernels/ClTransposedConvolutionKernel.cpp (revision c217d954acce2dbc11938adb493fc0abd69584f3)
1 /*
2  * Copyright (c) 2022 Arm Limited.
3  *
4  * SPDX-License-Identifier: MIT
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to
8  * deal in the Software without restriction, including without limitation the
9  * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10  * sell copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in all
14  * copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22  * SOFTWARE.
23  */
24 #include "src/gpu/cl/kernels/ClTransposedConvolutionKernel.h"
25 
26 #include "arm_compute/core/CL/ICLTensor.h"
27 #include "arm_compute/core/utils/misc/ShapeCalculator.h"
28 #include "src/core/CL/CLValidate.h"
29 #include "src/core/helpers/AutoConfiguration.h"
30 #include "src/core/helpers/WindowHelpers.h"
31 #include "support/Cast.h"
32 
33 #include "arm_compute/core/utils/quantization/AsymmHelpers.h"
34 
35 namespace arm_compute
36 {
37 namespace opencl
38 {
39 namespace kernels
40 {
41 namespace
42 {
validate_arguments(const ITensorInfo * input,const ITensorInfo * weights,const ITensorInfo * biases,const ITensorInfo * output,const PadStrideInfo & deconv_info)43 Status validate_arguments(const ITensorInfo *input, const ITensorInfo *weights, const ITensorInfo *biases, const ITensorInfo *output,
44                           const PadStrideInfo &deconv_info)
45 {
46     ARM_COMPUTE_RETURN_ERROR_ON_F16_UNSUPPORTED(input);
47     ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::F16, DataType::F32, DataType::QASYMM8_SIGNED, DataType::QASYMM8);
48     ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, weights);
49     ARM_COMPUTE_RETURN_ERROR_ON_DATA_LAYOUT_NOT_IN(input, DataLayout::NHWC);
50     ARM_COMPUTE_RETURN_ERROR_ON_DATA_LAYOUT_NOT_IN(weights, DataLayout::NHWC);
51 
52     constexpr unsigned int channel_idx = 0;
53     constexpr unsigned int width_idx   = 1;
54     constexpr unsigned int height_idx  = 2;
55     constexpr unsigned int batch_idx   = 3;
56 
57     ARM_COMPUTE_RETURN_ERROR_ON_MSG(weights->dimension(channel_idx) != input->dimension(channel_idx), "Weights feature map dimension should match the respective src's one");
58     ARM_COMPUTE_RETURN_ERROR_ON_MSG(weights->num_dimensions() > 4, "Weights can be at most 4 dimensional");
59 
60     if(biases != nullptr)
61     {
62         if(is_data_type_quantized_asymmetric(input->data_type()))
63         {
64             ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(biases, 1, DataType::S32);
65         }
66         else
67         {
68             ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(weights, biases);
69         }
70 
71         ARM_COMPUTE_RETURN_ERROR_ON_MSG(biases->dimension(channel_idx) != weights->dimension(batch_idx),
72                                         "Biases size and number of dst feature maps should match");
73         ARM_COMPUTE_RETURN_ERROR_ON_MSG(biases->num_dimensions() > 1, "Biases should be one dimensional");
74         ARM_COMPUTE_RETURN_ERROR_ON_DATA_LAYOUT_NOT_IN(input, DataLayout::NHWC);
75     }
76 
77     // Checks performed when output is configured
78     if(output->total_size() != 0)
79     {
80         const size_t input_width    = input->dimension(width_idx);
81         const size_t input_height   = input->dimension(height_idx);
82         const size_t weights_width  = weights->dimension(width_idx);
83         const size_t weights_height = weights->dimension(height_idx);
84 
85         auto        out_dims     = deconvolution_output_dimensions(input_width, input_height, weights_width, weights_height, deconv_info);
86         TensorShape output_shape = misc::shape_calculator::compute_deconvolution_output_shape(out_dims, *input, *weights);
87 
88         ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DIMENSIONS(output->tensor_shape(), output_shape);
89         ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, output);
90         ARM_COMPUTE_RETURN_ERROR_ON_DATA_LAYOUT_NOT_IN(output, DataLayout::NHWC);
91     }
92 
93     return Status{};
94 }
95 } // namespace
96 
configure(const CLCompileContext & compile_context,const ITensorInfo * input,const ITensorInfo * weights,const ITensorInfo * biases,ITensorInfo * output,const PadStrideInfo & deconv_info)97 void ClTransposedConvolutionKernel::configure(const CLCompileContext &compile_context, const ITensorInfo *input, const ITensorInfo *weights,
98                                               const ITensorInfo *biases, ITensorInfo *output, const PadStrideInfo &deconv_info)
99 {
100     ARM_COMPUTE_UNUSED(biases, deconv_info);
101     ARM_COMPUTE_ERROR_ON_NULLPTR(input, weights, output);
102 
103     // Perform validation
104     ARM_COMPUTE_ERROR_THROW_ON(validate(input, weights, biases, output, deconv_info));
105 
106     constexpr unsigned int channel_idx = 0;
107     constexpr unsigned int width_idx   = 1;
108     constexpr unsigned int height_idx  = 2;
109 
110     const size_t input_channels  = input->dimension(channel_idx); // same as weight channels
111     const size_t input_width     = input->dimension(width_idx);
112     const size_t input_height    = input->dimension(height_idx);
113     const size_t weights_width   = weights->dimension(width_idx);
114     const size_t weights_height  = weights->dimension(height_idx);
115     const size_t output_width    = output->dimension(width_idx);
116     const size_t output_height   = output->dimension(height_idx);
117     const size_t output_channels = output->dimension(channel_idx);
118 
119     // Calculate output shape
120     auto        out_dims     = deconvolution_output_dimensions(input_width, input_height, weights_width, weights_height, deconv_info);
121     TensorShape output_shape = misc::shape_calculator::compute_deconvolution_output_shape(out_dims, *input, *weights);
122     auto_init_if_empty(*output, output_shape, 1, input->data_type(), input->quantization_info());
123 
124     // Calculate updated paddings
125     // p' = k - p - 1 (k: kernel dimensions)
126     const uint32_t pad_left = weights_width - deconv_info.pad_left() - 1;
127     const uint32_t pad_top  = weights_height - deconv_info.pad_top() - 1;
128 
129     // Configure kernel window
130     Window win;
131     output_shape.collapse(2U, 1U); // Collapse width and height into single dimension
132 
133     const unsigned int n0               = adjust_vec_size(16 / output->element_size(), output_channels);
134     const unsigned int m0               = 1;
135     const unsigned int k0               = adjust_vec_size(16 / input->element_size(), input_channels);
136     const unsigned int partial_store_n0 = output_channels % n0;
137 
138     // Create window and update padding
139     win = calculate_max_window(output_shape, Steps(n0, m0));
140     ICLKernel::configure_internal(win);
141 
142     const std::string kernel_name = "transposed_convolution_nhwc";
143     CLBuildOptions    build_options;
144 
145     const DataType    input_data_type = input->data_type();
146     const PaddingInfo strides         = deconv_info.stride();
147 
148     if(biases != nullptr)
149     {
150         build_options.add_option(std::string("-DHAS_BIAS"));
151         build_options.add_option(std::string("-DBIA_DATA_TYPE=" + get_cl_type_from_data_type(biases->data_type())));
152     }
153 
154     const auto output_data_type = output->data_type();
155 
156     build_options.add_option("-cl-fast-relaxed-math");
157     build_options.add_option("-DSRC_TENSOR_TYPE=BUFFER");
158     build_options.add_option("-DSRC_DATA_TYPE=" + get_cl_type_from_data_type(input_data_type));
159     build_options.add_option("-DSRC_CHANNELS=" + support::cpp11::to_string(input_channels));
160     build_options.add_option("-DSRC_WIDTH=" + support::cpp11::to_string(input_width));
161     build_options.add_option("-DSRC_HEIGHT=" + support::cpp11::to_string(input_height));
162     build_options.add_option("-DDST_CHANNELS=" + support::cpp11::to_string(output_channels));
163     build_options.add_option("-DDST_WIDTH=" + support::cpp11::to_string(output_width));
164     build_options.add_option("-DDST_HEIGHT=" + support::cpp11::to_string(output_height));
165     build_options.add_option("-DDST_TENSOR_TYPE=BUFFER");
166     build_options.add_option("-DDST_DATA_TYPE=" + get_cl_type_from_data_type(output_data_type));
167     build_options.add_option("-DWEI_TENSOR_TYPE=BUFFER");
168     build_options.add_option("-DWEI_WIDTH=" + support::cpp11::to_string(weights_width));
169     build_options.add_option("-DWEI_HEIGHT=" + support::cpp11::to_string(weights_height));
170     build_options.add_option("-DWEI_DATA_TYPE=" + get_cl_type_from_data_type(weights->data_type()));
171     build_options.add_option("-DSTRIDE_X=" + support::cpp11::to_string(strides.first));
172     build_options.add_option("-DSTRIDE_Y=" + support::cpp11::to_string(strides.second));
173     build_options.add_option("-DPAD_LEFT=" + support::cpp11::to_string(pad_left));
174     build_options.add_option("-DPAD_TOP=" + support::cpp11::to_string(pad_top));
175     build_options.add_option("-DN0=" + support::cpp11::to_string(n0));
176     build_options.add_option("-DM0=" + support::cpp11::to_string(m0));
177     build_options.add_option("-DK0=" + support::cpp11::to_string(k0));
178     build_options.add_option("-DPARTIAL_N0=" + support::cpp11::to_string(partial_store_n0));
179     build_options.add_option_if((input_channels % k0) != 0, "-DLEFTOVER_LOOP");
180 
181     if(is_data_type_quantized(output_data_type))
182     {
183         const UniformQuantizationInfo iqinfo = input->quantization_info().uniform();
184         const UniformQuantizationInfo wqinfo = weights->quantization_info().uniform();
185         const UniformQuantizationInfo oqinfo = output->quantization_info().uniform();
186 
187         PixelValue zero_value = PixelValue(0, input->data_type(), input->quantization_info());
188         int        zero_value_s32;
189         zero_value.get(zero_value_s32);
190 
191         float multiplier        = iqinfo.scale * wqinfo.scale / oqinfo.scale;
192         int   output_multiplier = 0;
193         int   output_shift      = 0;
194 
195         quantization::calculate_quantized_multiplier(multiplier, &output_multiplier, &output_shift);
196         build_options.add_option("-DIS_QUANTIZED");
197         build_options.add_option("-DDST_MULTIPLIER=" + support::cpp11::to_string(output_multiplier));
198         build_options.add_option("-DDST_SHIFT=" + support::cpp11::to_string(output_shift));
199         build_options.add_option("-DSRC_OFFSET=" + support::cpp11::to_string(-iqinfo.offset));
200         build_options.add_option("-DWEI_OFFSET=" + support::cpp11::to_string(-wqinfo.offset));
201         build_options.add_option("-DDST_OFFSET=" + support::cpp11::to_string(oqinfo.offset));
202         build_options.add_option("-DZERO_VALUE=" + support::cpp11::to_string(zero_value_s32));
203         build_options.add_option("-DACC_DATA_TYPE=" + get_cl_type_from_data_type(DataType::S32));
204     }
205     else
206     {
207         build_options.add_option("-DACC_DATA_TYPE=" + get_cl_type_from_data_type(input_data_type));
208         build_options.add_option("-DZERO_VALUE=" + support::cpp11::to_string(0));
209     }
210 
211     if(compile_context.get_ddk_version() >= 30)
212     {
213         build_options.add_option("-fregister-allocation=64");
214     }
215 
216     _kernel = create_kernel(compile_context, kernel_name, build_options.options());
217 
218     // Set config_id for enabling LWS tuning
219     _config_id = kernel_name;
220     _config_id += "_";
221     _config_id += lower_string(string_from_data_type(input_data_type));
222     _config_id += "_";
223     _config_id += support::cpp11::to_string(weights_width);
224     _config_id += "_";
225     _config_id += support::cpp11::to_string(strides.first);
226     _config_id += "_";
227     _config_id += support::cpp11::to_string(strides.second);
228     _config_id += "_";
229     _config_id += support::cpp11::to_string(output_width);
230     _config_id += "_";
231     _config_id += support::cpp11::to_string(m0);
232     _config_id += "_";
233     _config_id += support::cpp11::to_string(n0);
234 }
235 
validate(const ITensorInfo * src,const ITensorInfo * weights,const ITensorInfo * biases,const ITensorInfo * dst,const PadStrideInfo & deconv_info)236 Status ClTransposedConvolutionKernel::validate(const ITensorInfo *src, const ITensorInfo *weights, const ITensorInfo *biases,
237                                                const ITensorInfo *dst, const PadStrideInfo &deconv_info)
238 {
239     ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(src, weights, biases, dst, deconv_info));
240     return Status{};
241 }
242 
run_op(ITensorPack & tensors,const Window & window,cl::CommandQueue & queue)243 void ClTransposedConvolutionKernel::run_op(ITensorPack &tensors, const Window &window, cl::CommandQueue &queue)
244 {
245     ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
246     ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(IKernel::window(), window);
247 
248     // Get initial windows
249     Window slice = window.first_slice_window_3D();
250 
251     const auto src     = utils::cast::polymorphic_downcast<const ICLTensor *>(tensors.get_const_tensor(TensorType::ACL_SRC_0));
252     const auto weights = utils::cast::polymorphic_downcast<const ICLTensor *>(tensors.get_const_tensor(TensorType::ACL_SRC_1));
253     const auto biases  = utils::cast::polymorphic_downcast<const ICLTensor *>(tensors.get_const_tensor(TensorType::ACL_SRC_2));
254     auto       dst     = utils::cast::polymorphic_downcast<ICLTensor *>(tensors.get_tensor(TensorType::ACL_DST));
255 
256     unsigned int idx = 0;
257     add_4d_tensor_nhwc_argument(idx, src);
258     add_4d_tensor_nhwc_argument(idx, dst);
259 
260     add_4d_tensor_nhwc_argument(idx, weights);
261     if(biases != nullptr)
262     {
263         add_1D_tensor_argument(idx, biases, slice);
264     }
265 
266     enqueue(queue, *this, slice, lws_hint());
267 }
268 } // namespace kernels
269 } // namespace opencl
270 } // namespace arm_compute
271