xref: /aosp_15_r20/external/ComputeLibrary/src/cpu/kernels/CpuDepthwiseConv2dNativeKernel.cpp (revision c217d954acce2dbc11938adb493fc0abd69584f3)
1 /*
2  * Copyright (c) 2019-2022 Arm Limited.
3  *
4  * SPDX-License-Identifier: MIT
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to
8  * deal in the Software without restriction, including without limitation the
9  * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10  * sell copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in all
14  * copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22  * SOFTWARE.
23  */
24 #include "src/cpu/kernels/CpuDepthwiseConv2dNativeKernel.h"
25 
26 #include "arm_compute/core/ITensor.h"
27 #include "arm_compute/core/ITensorInfo.h"
28 #include "arm_compute/core/utils/misc/ShapeCalculator.h"
29 #include "src/core/CPP/Validate.h"
30 #include "src/core/NEON/wrapper/traits.h"
31 #include "src/core/common/Registrars.h"
32 #include "src/core/helpers/AutoConfiguration.h"
33 #include "src/core/helpers/WindowHelpers.h"
34 #include "src/cpu/kernels/depthwiseconv2d/list.h"
35 #include "support/ToolchainSupport.h"
36 
37 namespace arm_compute
38 {
39 namespace cpu
40 {
41 namespace kernels
42 {
43 namespace
44 {
45 static const std::vector<CpuDepthwiseConv2dNativeKernel::DepthwiseConv2dNativeKernel> available_kernels =
46 {
47     {
48         "neon_qu8_deptwiseconv2dnative",
49         [](const DepthwiseConv2dNativeDataTypeISASelectorData & data)
__anon7a9233130202() 50         {
51             return (data.weights_dt == DataType::QASYMM8);
52         },
53         REGISTER_QASYMM8_NEON(neon_qu8_deptwiseconv2dnative)
54     },
55     {
56         "neon_qs8_deptwiseconv2dnative",
57         [](const DepthwiseConv2dNativeDataTypeISASelectorData & data)
__anon7a9233130302() 58         {
59             return (data.weights_dt == DataType::QASYMM8_SIGNED);
60         },
61         REGISTER_QASYMM8_SIGNED_NEON(neon_qs8_deptwiseconv2dnative)
62     },
63     {
64         "neon_fp16_deptwiseconv2dnative",
65         [](const DepthwiseConv2dNativeDataTypeISASelectorData & data)
__anon7a9233130402() 66         {
67             return (data.weights_dt == DataType::F16 && data.isa.fp16);
68         },
69         REGISTER_FP16_NEON(neon_fp16_deptwiseconv2dnative)
70     },
71     {
72         "neon_fp32_deptwiseconv2dnative",
73         [](const DepthwiseConv2dNativeDataTypeISASelectorData & data)
__anon7a9233130502() 74         {
75             return (data.weights_dt == DataType::F32);
76         },
77         REGISTER_FP32_NEON(neon_fp32_deptwiseconv2dnative)
78     },
79     {
80         "neon_qp8_qu8_deptwiseconv2dnative",
81         [](const DepthwiseConv2dNativeDataTypeISASelectorData & data)
__anon7a9233130602() 82         {
83             return (data.weights_dt == DataType::QSYMM8_PER_CHANNEL && data.source_dt == DataType::QASYMM8);
84         },
85         REGISTER_QASYMM8_NEON(neon_qp8_qu8_deptwiseconv2dnative)
86     },
87     {
88         "neon_qp8_qs8_deptwiseconv2dnative",
89         [](const DepthwiseConv2dNativeDataTypeISASelectorData & data)
__anon7a9233130702() 90         {
91             return (data.weights_dt == DataType::QSYMM8_PER_CHANNEL && data.source_dt != DataType::QASYMM8);
92         },
93         REGISTER_QASYMM8_SIGNED_NEON(neon_qp8_qs8_deptwiseconv2dnative)
94     },
95 };
96 
validate_arguments(const ITensorInfo * src,const ITensorInfo * weights,const ITensorInfo * biases,const ITensorInfo * dst,const ConvolutionInfo & info)97 Status validate_arguments(const ITensorInfo *src, const ITensorInfo *weights, const ITensorInfo *biases, const ITensorInfo *dst, const ConvolutionInfo &info)
98 {
99     ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(src, weights, dst);
100     ARM_COMPUTE_RETURN_ERROR_ON_CPU_F16_UNSUPPORTED(src);
101     ARM_COMPUTE_RETURN_ERROR_ON(src->data_layout() == DataLayout::UNKNOWN);
102     ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(src, 1, DataType::QASYMM8, DataType::QASYMM8_SIGNED, DataType::F16, DataType::F32);
103     ARM_COMPUTE_RETURN_ERROR_ON(info.depth_multiplier == 0);
104     ARM_COMPUTE_RETURN_ERROR_ON(weights->dimension(1) + (weights->dimension(1) - 1) * (info.dilation.x() - 1) > src->dimension(1) + info.pad_stride_info.pad_left() + info.pad_stride_info.pad_right());
105     ARM_COMPUTE_RETURN_ERROR_ON(weights->dimension(2) + (weights->dimension(2) - 1) * (info.dilation.y() - 1) > src->dimension(2) + info.pad_stride_info.pad_top() + info.pad_stride_info.pad_bottom());
106     ARM_COMPUTE_RETURN_ERROR_ON((src->dimension(0) * info.depth_multiplier) != weights->dimension(0));
107     ARM_COMPUTE_RETURN_ERROR_ON((info.dilation.x() < 1) || (info.dilation.y() < 1));
108     ARM_COMPUTE_RETURN_ERROR_ON((info.pad_stride_info.stride().first < 1) || (info.pad_stride_info.stride().second < 1));
109 
110     if(is_data_type_quantized_per_channel(weights->data_type()))
111     {
112         ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(weights, 1, DataType::QSYMM8_PER_CHANNEL);
113         ARM_COMPUTE_RETURN_ERROR_ON(weights->dimension(0) != weights->quantization_info().scale().size());
114     }
115     else
116     {
117         ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(src, weights);
118     }
119 
120     if(biases != nullptr)
121     {
122         ARM_COMPUTE_RETURN_ERROR_ON(biases->num_dimensions() > 1);
123         ARM_COMPUTE_RETURN_ERROR_ON(biases->dimension(0) != weights->dimension(0));
124 
125         if(is_data_type_quantized_asymmetric(src->data_type()))
126         {
127             ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(biases, 1, DataType::S32);
128         }
129         else
130         {
131             ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(weights, biases);
132         }
133     }
134 
135     if(dst->total_size() != 0)
136     {
137         const TensorShape output_shape = misc::shape_calculator::compute_depthwise_convolution_shape(*src, *weights, info);
138         ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DIMENSIONS(dst->tensor_shape(), output_shape);
139         ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(src, dst);
140     }
141 
142     return Status{};
143 }
144 } // namespace
145 
configure(const ITensorInfo * src,const ITensorInfo * weights,const ITensorInfo * biases,ITensorInfo * dst,const ConvolutionInfo & info)146 void CpuDepthwiseConv2dNativeKernel::configure(const ITensorInfo *src, const ITensorInfo *weights, const ITensorInfo *biases, ITensorInfo *dst, const ConvolutionInfo &info)
147 {
148     ARM_COMPUTE_ERROR_ON_NULLPTR(src, weights, dst);
149     ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(src, weights, (biases != nullptr) ? biases : nullptr, dst, info));
150 
151     _has_biases = (biases != nullptr);
152     _conv_info  = info;
153 
154     const auto uk = CpuDepthwiseConv2dNativeKernel::get_implementation(
155                         DepthwiseConv2dNativeDataTypeISASelectorData{ weights->data_type(), src->data_type(), CPUInfo::get().get_isa() });
156     ARM_COMPUTE_ERROR_ON(uk == nullptr || uk->ukernel == nullptr);
157     _func = uk->ukernel;
158 
159     const TensorShape output_shape = misc::shape_calculator::compute_depthwise_convolution_shape(*src, *weights, info);
160     auto_init_if_empty(*dst, src->clone()->set_is_resizable(true).reset_padding().set_tensor_shape(output_shape).set_quantization_info(dst->quantization_info()));
161 
162     Window win = calculate_max_window(*dst, Steps());
163     ICpuKernel::configure(win);
164 }
165 
validate(const ITensorInfo * src,const ITensorInfo * weights,const ITensorInfo * biases,const ITensorInfo * dst,const ConvolutionInfo & info)166 Status CpuDepthwiseConv2dNativeKernel::validate(const ITensorInfo *src, const ITensorInfo *weights, const ITensorInfo *biases, const ITensorInfo *dst, const ConvolutionInfo &info)
167 {
168     ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(src, weights, biases, dst, info));
169     return Status{};
170 }
171 
run_op(ITensorPack & tensors,const Window & window,const ThreadInfo & info)172 void CpuDepthwiseConv2dNativeKernel::run_op(ITensorPack &tensors, const Window &window, const ThreadInfo &info)
173 {
174     ARM_COMPUTE_UNUSED(info);
175     ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
176     ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(ICpuKernel::window(), window);
177     ARM_COMPUTE_ERROR_ON(_func == nullptr);
178 
179     const auto src     = tensors.get_const_tensor(TensorType::ACL_SRC_0);
180     const auto weights = tensors.get_const_tensor(TensorType::ACL_SRC_1);
181     const auto biases  = tensors.get_const_tensor(TensorType::ACL_SRC_2);
182     auto       dst     = tensors.get_tensor(TensorType::ACL_DST);
183     _func(src, weights, biases, dst, window, _has_biases, _conv_info);
184 }
185 
name() const186 const char *CpuDepthwiseConv2dNativeKernel::name() const
187 {
188     return "CpuDepthwiseConv2dNativeKernel";
189 }
190 
get_available_kernels()191 const std::vector<CpuDepthwiseConv2dNativeKernel::DepthwiseConv2dNativeKernel> &CpuDepthwiseConv2dNativeKernel::get_available_kernels()
192 {
193     return available_kernels;
194 }
195 } // namespace kernels
196 } // namespace cpu
197 } // namespace arm_compute
198