xref: /aosp_15_r20/external/ComputeLibrary/src/cpu/kernels/CpuConcatenateBatchKernel.cpp (revision c217d954acce2dbc11938adb493fc0abd69584f3)
1 /*
2  * Copyright (c) 2019-2021 Arm Limited.
3  *
4  * SPDX-License-Identifier: MIT
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to
8  * deal in the Software without restriction, including without limitation the
9  * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10  * sell copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in all
14  * copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22  * SOFTWARE.
23  */
24 #include "src/cpu/kernels/CpuConcatenateBatchKernel.h"
25 
26 #include "arm_compute/core/Error.h"
27 #include "arm_compute/core/Helpers.h"
28 #include "arm_compute/core/ITensor.h"
29 #include "arm_compute/core/TensorInfo.h"
30 #include "arm_compute/core/Utils.h"
31 #include "arm_compute/core/Validate.h"
32 #include "arm_compute/core/Window.h"
33 #include "src/core/NEON/NEAsymm.h"
34 #include "src/core/NEON/wrapper/wrapper.h"
35 #include "src/core/helpers/AutoConfiguration.h"
36 #include "src/core/helpers/WindowHelpers.h"
37 
38 namespace arm_compute
39 {
40 namespace cpu
41 {
42 namespace kernels
43 {
44 namespace
45 {
46 template <typename T>
batch_concat(const ITensor * src,ITensor * dst,unsigned int batch_offset,const Window & window)47 void batch_concat(const ITensor *src, ITensor *dst, unsigned int batch_offset, const Window &window)
48 {
49     // Offset src
50     uint8_t *src_ptr = src->buffer() + src->info()->offset_first_element_in_bytes();
51 
52     // Offset dst
53     uint8_t *dst_ptr = dst->buffer() + dst->info()->offset_first_element_in_bytes() + batch_offset * dst->info()->strides_in_bytes()[3];
54 
55     const auto window_start_x = static_cast<int>(window.x().start());
56     const auto window_end_x   = static_cast<int>(window.x().end());
57     const int  window_step_x  = 16 / dst->info()->element_size();
58 
59     Window win{ window };
60     win.set(Window::DimX, Window::Dimension(0, 1, 1));
61     win.set(3, Window::Dimension(0, src->info()->tensor_shape()[3], 1));
62 
63     Iterator src_it(src, win);
64     Iterator dst_it(dst, win);
65 
66     const DataType                dt        = src->info()->data_type();
67     const UniformQuantizationInfo src_qinfo = src->info()->quantization_info().uniform();
68     const UniformQuantizationInfo dst_qinfo = dst->info()->quantization_info().uniform();
69     if(dt == DataType::QASYMM8 && src_qinfo != dst_qinfo)
70     {
71         execute_window_loop(win, [&](const Coordinates &)
72         {
73             const auto in_ptr  = reinterpret_cast<const uint8_t *>(src_ptr + src_it.offset());
74             const auto out_ptr = reinterpret_cast<uint8_t *>(dst_ptr + dst_it.offset());
75 
76             int x = window_start_x;
77             for(; x <= (window_end_x - window_step_x); x += window_step_x)
78             {
79                 wrapper::vstore(out_ptr, vquantize(vdequantize(wrapper::vloadq(in_ptr), src_qinfo), dst_qinfo));
80             }
81 
82             // Compute left-over elements
83             for(; x < window_end_x; ++x)
84             {
85                 *(out_ptr + x) = quantize_qasymm8(dequantize_qasymm8(*(in_ptr + x), src_qinfo), dst_qinfo);
86             }
87         },
88         src_it, dst_it);
89     }
90     else if(dt == DataType::QASYMM8_SIGNED && src_qinfo != dst_qinfo)
91     {
92         execute_window_loop(win, [&](const Coordinates &)
93         {
94             const auto in_ptr  = reinterpret_cast<const int8_t *>(src_ptr + src_it.offset());
95             const auto out_ptr = reinterpret_cast<int8_t *>(dst_ptr + dst_it.offset());
96             int        x       = window_start_x;
97             for(; x <= (window_end_x - window_step_x); x += window_step_x)
98             {
99                 wrapper::vstore(out_ptr, vquantize_signed(vdequantize(wrapper::vloadq(in_ptr), src_qinfo), dst_qinfo));
100             }
101             // Compute left-over elements
102             for(; x < window_end_x; ++x)
103             {
104                 *(out_ptr + x) = quantize_qasymm8_signed(dequantize_qasymm8_signed(*(in_ptr + x), src_qinfo), dst_qinfo);
105             }
106         },
107         src_it, dst_it);
108     }
109     else
110     {
111         execute_window_loop(win, [&](const Coordinates &)
112         {
113             const auto in_ptr  = reinterpret_cast<const T *>(src_ptr + src_it.offset());
114             const auto out_ptr = reinterpret_cast<T *>(dst_ptr + dst_it.offset());
115 
116             int x = window_start_x;
117             for(; x <= (window_end_x - window_step_x); x += window_step_x)
118             {
119                 wrapper::vstore(out_ptr + x, wrapper::vloadq(in_ptr + x));
120             }
121 
122             // Compute left-over elements
123             for(; x < window_end_x; ++x)
124             {
125                 *(out_ptr + x) = *(in_ptr + x);
126             }
127         },
128         src_it, dst_it);
129     }
130 }
131 
validate_arguments(const ITensorInfo * src,unsigned int batch_offset,const ITensorInfo * dst)132 Status validate_arguments(const ITensorInfo *src, unsigned int batch_offset, const ITensorInfo *dst)
133 {
134     ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(src, dst);
135     //Note: ARM_COMPUTE_RETURN_ERROR_ON_CPU_F16_UNSUPPORTED(src) is not needed here as this kernel doesn't use CPU FP16 instructions.
136     ARM_COMPUTE_RETURN_ERROR_ON(src->data_type() == DataType::UNKNOWN);
137     ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(src, dst);
138 
139     ARM_COMPUTE_RETURN_ERROR_ON(src->dimension(Window::DimX) != dst->dimension(Window::DimX));
140     ARM_COMPUTE_RETURN_ERROR_ON(src->dimension(Window::DimY) != dst->dimension(Window::DimY));
141     ARM_COMPUTE_RETURN_ERROR_ON(src->dimension(Window::DimZ) != dst->dimension(Window::DimZ));
142     ARM_COMPUTE_RETURN_ERROR_ON(src->dimension(3) + batch_offset > dst->dimension(3));
143     ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(4, src, dst);
144 
145     return Status{};
146 }
147 } // namespace
148 
configure(const ITensorInfo * src,unsigned int batch_offset,ITensorInfo * dst)149 void CpuConcatenateBatchKernel::configure(const ITensorInfo *src, unsigned int batch_offset, ITensorInfo *dst)
150 {
151     ARM_COMPUTE_ERROR_ON_NULLPTR(src, dst);
152     ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(src, batch_offset, dst));
153 
154     _func         = nullptr;
155     _batch_offset = batch_offset;
156 
157     switch(src->data_type())
158     {
159         case DataType::S8:
160         case DataType::U8:
161         case DataType::QASYMM8:
162         case DataType::QASYMM8_SIGNED:
163             _func = &batch_concat<uint8_t>;
164             break;
165         case DataType::S16:
166         case DataType::U16:
167         case DataType::F16:
168             _func = &batch_concat<uint16_t>;
169             break;
170         case DataType::S32:
171         case DataType::U32:
172         case DataType::F32:
173             _func = &batch_concat<uint32_t>;
174             break;
175         default:
176             ARM_COMPUTE_ERROR("Unsupported data type.");
177     }
178 
179     // Configure kernel window
180     Window win = calculate_max_window(*dst, Steps());
181     ICpuKernel::configure(win);
182 }
183 
validate(const arm_compute::ITensorInfo * src,unsigned int batch_offset,const arm_compute::ITensorInfo * dst)184 Status CpuConcatenateBatchKernel::validate(const arm_compute::ITensorInfo *src,
185                                            unsigned int                    batch_offset,
186                                            const arm_compute::ITensorInfo *dst)
187 {
188     ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(src, batch_offset, dst));
189     return Status{};
190 }
191 
run_op(ITensorPack & tensors,const Window & window,const ThreadInfo & info)192 void CpuConcatenateBatchKernel::run_op(ITensorPack &tensors, const Window &window, const ThreadInfo &info)
193 {
194     ARM_COMPUTE_UNUSED(info);
195     ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
196     ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(ICpuKernel::window(), window);
197     ARM_COMPUTE_ERROR_ON(_func == nullptr);
198 
199     (*_func)(tensors.get_const_tensor(TensorType::ACL_SRC),
200              tensors.get_tensor(TensorType::ACL_DST),
201              _batch_offset,
202              window);
203 }
204 
name() const205 const char *CpuConcatenateBatchKernel::name() const
206 {
207     return "CpuConcatenateBatchKernel";
208 }
209 } // namespace kernels
210 } // namespace cpu
211 } // namespace arm_compute
212