1*c217d954SCole Faust /*
2*c217d954SCole Faust * Copyright (c) 2017-2021 Arm Limited.
3*c217d954SCole Faust *
4*c217d954SCole Faust * SPDX-License-Identifier: MIT
5*c217d954SCole Faust *
6*c217d954SCole Faust * Permission is hereby granted, free of charge, to any person obtaining a copy
7*c217d954SCole Faust * of this software and associated documentation files (the "Software"), to
8*c217d954SCole Faust * deal in the Software without restriction, including without limitation the
9*c217d954SCole Faust * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10*c217d954SCole Faust * sell copies of the Software, and to permit persons to whom the Software is
11*c217d954SCole Faust * furnished to do so, subject to the following conditions:
12*c217d954SCole Faust *
13*c217d954SCole Faust * The above copyright notice and this permission notice shall be included in all
14*c217d954SCole Faust * copies or substantial portions of the Software.
15*c217d954SCole Faust *
16*c217d954SCole Faust * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17*c217d954SCole Faust * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18*c217d954SCole Faust * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19*c217d954SCole Faust * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20*c217d954SCole Faust * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21*c217d954SCole Faust * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22*c217d954SCole Faust * SOFTWARE.
23*c217d954SCole Faust */
24*c217d954SCole Faust #include "arm_compute/graph.h"
25*c217d954SCole Faust #include "support/ToolchainSupport.h"
26*c217d954SCole Faust #include "utils/CommonGraphOptions.h"
27*c217d954SCole Faust #include "utils/GraphUtils.h"
28*c217d954SCole Faust #include "utils/Utils.h"
29*c217d954SCole Faust
30*c217d954SCole Faust using namespace arm_compute::utils;
31*c217d954SCole Faust using namespace arm_compute::graph::frontend;
32*c217d954SCole Faust using namespace arm_compute::graph_utils;
33*c217d954SCole Faust /** Example demonstrating how to implement VGG19's network using the Compute Library's graph API */
34*c217d954SCole Faust class GraphVGG19Example : public Example
35*c217d954SCole Faust {
36*c217d954SCole Faust public:
GraphVGG19Example()37*c217d954SCole Faust GraphVGG19Example()
38*c217d954SCole Faust : cmd_parser(), common_opts(cmd_parser), common_params(), graph(0, "VGG19")
39*c217d954SCole Faust {
40*c217d954SCole Faust }
do_setup(int argc,char ** argv)41*c217d954SCole Faust bool do_setup(int argc, char **argv) override
42*c217d954SCole Faust {
43*c217d954SCole Faust // Parse arguments
44*c217d954SCole Faust cmd_parser.parse(argc, argv);
45*c217d954SCole Faust cmd_parser.validate();
46*c217d954SCole Faust
47*c217d954SCole Faust // Consume common parameters
48*c217d954SCole Faust common_params = consume_common_graph_parameters(common_opts);
49*c217d954SCole Faust
50*c217d954SCole Faust // Return when help menu is requested
51*c217d954SCole Faust if(common_params.help)
52*c217d954SCole Faust {
53*c217d954SCole Faust cmd_parser.print_help(argv[0]);
54*c217d954SCole Faust return false;
55*c217d954SCole Faust }
56*c217d954SCole Faust
57*c217d954SCole Faust // Print parameter values
58*c217d954SCole Faust std::cout << common_params << std::endl;
59*c217d954SCole Faust
60*c217d954SCole Faust // Get trainable parameters data path
61*c217d954SCole Faust std::string data_path = common_params.data_path;
62*c217d954SCole Faust
63*c217d954SCole Faust // Create a preprocessor object
64*c217d954SCole Faust const std::array<float, 3> mean_rgb{ { 123.68f, 116.779f, 103.939f } };
65*c217d954SCole Faust std::unique_ptr<IPreprocessor> preprocessor = std::make_unique<CaffePreproccessor>(mean_rgb);
66*c217d954SCole Faust
67*c217d954SCole Faust // Create input descriptor
68*c217d954SCole Faust const auto operation_layout = common_params.data_layout;
69*c217d954SCole Faust const TensorShape tensor_shape = permute_shape(TensorShape(224U, 224U, 3U, common_params.batches), DataLayout::NCHW, operation_layout);
70*c217d954SCole Faust TensorDescriptor input_descriptor = TensorDescriptor(tensor_shape, common_params.data_type).set_layout(operation_layout);
71*c217d954SCole Faust
72*c217d954SCole Faust // Set weights trained layout
73*c217d954SCole Faust const DataLayout weights_layout = DataLayout::NCHW;
74*c217d954SCole Faust
75*c217d954SCole Faust graph << common_params.target
76*c217d954SCole Faust << common_params.fast_math_hint
77*c217d954SCole Faust << InputLayer(input_descriptor, get_input_accessor(common_params, std::move(preprocessor)))
78*c217d954SCole Faust // Layer 1
79*c217d954SCole Faust << ConvolutionLayer(
80*c217d954SCole Faust 3U, 3U, 64U,
81*c217d954SCole Faust get_weights_accessor(data_path, "/cnn_data/vgg19_model/conv1_1_w.npy", weights_layout),
82*c217d954SCole Faust get_weights_accessor(data_path, "/cnn_data/vgg19_model/conv1_1_b.npy"),
83*c217d954SCole Faust PadStrideInfo(1, 1, 1, 1))
84*c217d954SCole Faust .set_name("conv1_1")
85*c217d954SCole Faust << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("conv1_1/Relu")
86*c217d954SCole Faust << ConvolutionLayer(
87*c217d954SCole Faust 3U, 3U, 64U,
88*c217d954SCole Faust get_weights_accessor(data_path, "/cnn_data/vgg19_model/conv1_2_w.npy", weights_layout),
89*c217d954SCole Faust get_weights_accessor(data_path, "/cnn_data/vgg19_model/conv1_2_b.npy"),
90*c217d954SCole Faust PadStrideInfo(1, 1, 1, 1))
91*c217d954SCole Faust .set_name("conv1_2")
92*c217d954SCole Faust << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("conv1_2/Relu")
93*c217d954SCole Faust << PoolingLayer(PoolingLayerInfo(PoolingType::MAX, 2, operation_layout, PadStrideInfo(2, 2, 0, 0))).set_name("pool1")
94*c217d954SCole Faust // Layer 2
95*c217d954SCole Faust << ConvolutionLayer(
96*c217d954SCole Faust 3U, 3U, 128U,
97*c217d954SCole Faust get_weights_accessor(data_path, "/cnn_data/vgg19_model/conv2_1_w.npy", weights_layout),
98*c217d954SCole Faust get_weights_accessor(data_path, "/cnn_data/vgg19_model/conv2_1_b.npy"),
99*c217d954SCole Faust PadStrideInfo(1, 1, 1, 1))
100*c217d954SCole Faust .set_name("conv2_1")
101*c217d954SCole Faust << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("conv2_1/Relu")
102*c217d954SCole Faust << ConvolutionLayer(
103*c217d954SCole Faust 3U, 3U, 128U,
104*c217d954SCole Faust get_weights_accessor(data_path, "/cnn_data/vgg19_model/conv2_2_w.npy", weights_layout),
105*c217d954SCole Faust get_weights_accessor(data_path, "/cnn_data/vgg19_model/conv2_2_b.npy"),
106*c217d954SCole Faust PadStrideInfo(1, 1, 1, 1))
107*c217d954SCole Faust .set_name("conv2_2")
108*c217d954SCole Faust << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("conv2_2/Relu")
109*c217d954SCole Faust << PoolingLayer(PoolingLayerInfo(PoolingType::MAX, 2, operation_layout, PadStrideInfo(2, 2, 0, 0))).set_name("pool2")
110*c217d954SCole Faust // Layer 3
111*c217d954SCole Faust << ConvolutionLayer(
112*c217d954SCole Faust 3U, 3U, 256U,
113*c217d954SCole Faust get_weights_accessor(data_path, "/cnn_data/vgg19_model/conv3_1_w.npy", weights_layout),
114*c217d954SCole Faust get_weights_accessor(data_path, "/cnn_data/vgg19_model/conv3_1_b.npy"),
115*c217d954SCole Faust PadStrideInfo(1, 1, 1, 1))
116*c217d954SCole Faust .set_name("conv3_1")
117*c217d954SCole Faust << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("conv3_1/Relu")
118*c217d954SCole Faust << ConvolutionLayer(
119*c217d954SCole Faust 3U, 3U, 256U,
120*c217d954SCole Faust get_weights_accessor(data_path, "/cnn_data/vgg19_model/conv3_2_w.npy", weights_layout),
121*c217d954SCole Faust get_weights_accessor(data_path, "/cnn_data/vgg19_model/conv3_2_b.npy"),
122*c217d954SCole Faust PadStrideInfo(1, 1, 1, 1))
123*c217d954SCole Faust .set_name("conv3_2")
124*c217d954SCole Faust << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("conv3_2/Relu")
125*c217d954SCole Faust << ConvolutionLayer(
126*c217d954SCole Faust 3U, 3U, 256U,
127*c217d954SCole Faust get_weights_accessor(data_path, "/cnn_data/vgg19_model/conv3_3_w.npy", weights_layout),
128*c217d954SCole Faust get_weights_accessor(data_path, "/cnn_data/vgg19_model/conv3_3_b.npy"),
129*c217d954SCole Faust PadStrideInfo(1, 1, 1, 1))
130*c217d954SCole Faust .set_name("conv3_3")
131*c217d954SCole Faust << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("conv3_3/Relu")
132*c217d954SCole Faust << ConvolutionLayer(
133*c217d954SCole Faust 3U, 3U, 256U,
134*c217d954SCole Faust get_weights_accessor(data_path, "/cnn_data/vgg19_model/conv3_4_w.npy", weights_layout),
135*c217d954SCole Faust get_weights_accessor(data_path, "/cnn_data/vgg19_model/conv3_4_b.npy"),
136*c217d954SCole Faust PadStrideInfo(1, 1, 1, 1))
137*c217d954SCole Faust .set_name("conv3_4")
138*c217d954SCole Faust << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("conv3_4/Relu")
139*c217d954SCole Faust << PoolingLayer(PoolingLayerInfo(PoolingType::MAX, 2, operation_layout, PadStrideInfo(2, 2, 0, 0))).set_name("pool3")
140*c217d954SCole Faust // Layer 4
141*c217d954SCole Faust << ConvolutionLayer(
142*c217d954SCole Faust 3U, 3U, 512U,
143*c217d954SCole Faust get_weights_accessor(data_path, "/cnn_data/vgg19_model/conv4_1_w.npy", weights_layout),
144*c217d954SCole Faust get_weights_accessor(data_path, "/cnn_data/vgg19_model/conv4_1_b.npy"),
145*c217d954SCole Faust PadStrideInfo(1, 1, 1, 1))
146*c217d954SCole Faust .set_name("conv4_1")
147*c217d954SCole Faust << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("conv4_1/Relu")
148*c217d954SCole Faust << ConvolutionLayer(
149*c217d954SCole Faust 3U, 3U, 512U,
150*c217d954SCole Faust get_weights_accessor(data_path, "/cnn_data/vgg19_model/conv4_2_w.npy", weights_layout),
151*c217d954SCole Faust get_weights_accessor(data_path, "/cnn_data/vgg19_model/conv4_2_b.npy"),
152*c217d954SCole Faust PadStrideInfo(1, 1, 1, 1))
153*c217d954SCole Faust .set_name("conv4_2")
154*c217d954SCole Faust << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("conv4_2/Relu")
155*c217d954SCole Faust << ConvolutionLayer(
156*c217d954SCole Faust 3U, 3U, 512U,
157*c217d954SCole Faust get_weights_accessor(data_path, "/cnn_data/vgg19_model/conv4_3_w.npy", weights_layout),
158*c217d954SCole Faust get_weights_accessor(data_path, "/cnn_data/vgg19_model/conv4_3_b.npy"),
159*c217d954SCole Faust PadStrideInfo(1, 1, 1, 1))
160*c217d954SCole Faust .set_name("conv4_3")
161*c217d954SCole Faust << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("conv4_3/Relu")
162*c217d954SCole Faust << ConvolutionLayer(
163*c217d954SCole Faust 3U, 3U, 512U,
164*c217d954SCole Faust get_weights_accessor(data_path, "/cnn_data/vgg19_model/conv4_4_w.npy", weights_layout),
165*c217d954SCole Faust get_weights_accessor(data_path, "/cnn_data/vgg19_model/conv4_4_b.npy"),
166*c217d954SCole Faust PadStrideInfo(1, 1, 1, 1))
167*c217d954SCole Faust .set_name("conv4_4")
168*c217d954SCole Faust << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("conv4_4/Relu")
169*c217d954SCole Faust << PoolingLayer(PoolingLayerInfo(PoolingType::MAX, 2, operation_layout, PadStrideInfo(2, 2, 0, 0))).set_name("pool4")
170*c217d954SCole Faust // Layer 5
171*c217d954SCole Faust << ConvolutionLayer(
172*c217d954SCole Faust 3U, 3U, 512U,
173*c217d954SCole Faust get_weights_accessor(data_path, "/cnn_data/vgg19_model/conv5_1_w.npy", weights_layout),
174*c217d954SCole Faust get_weights_accessor(data_path, "/cnn_data/vgg19_model/conv5_1_b.npy"),
175*c217d954SCole Faust PadStrideInfo(1, 1, 1, 1))
176*c217d954SCole Faust .set_name("conv5_1")
177*c217d954SCole Faust << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("conv5_1/Relu")
178*c217d954SCole Faust << ConvolutionLayer(
179*c217d954SCole Faust 3U, 3U, 512U,
180*c217d954SCole Faust get_weights_accessor(data_path, "/cnn_data/vgg19_model/conv5_2_w.npy", weights_layout),
181*c217d954SCole Faust get_weights_accessor(data_path, "/cnn_data/vgg19_model/conv5_2_b.npy"),
182*c217d954SCole Faust PadStrideInfo(1, 1, 1, 1))
183*c217d954SCole Faust .set_name("conv5_2")
184*c217d954SCole Faust << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("conv5_2/Relu")
185*c217d954SCole Faust << ConvolutionLayer(
186*c217d954SCole Faust 3U, 3U, 512U,
187*c217d954SCole Faust get_weights_accessor(data_path, "/cnn_data/vgg19_model/conv5_3_w.npy", weights_layout),
188*c217d954SCole Faust get_weights_accessor(data_path, "/cnn_data/vgg19_model/conv5_3_b.npy"),
189*c217d954SCole Faust PadStrideInfo(1, 1, 1, 1))
190*c217d954SCole Faust .set_name("conv5_3")
191*c217d954SCole Faust << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("conv5_3/Relu")
192*c217d954SCole Faust << ConvolutionLayer(
193*c217d954SCole Faust 3U, 3U, 512U,
194*c217d954SCole Faust get_weights_accessor(data_path, "/cnn_data/vgg19_model/conv5_4_w.npy", weights_layout),
195*c217d954SCole Faust get_weights_accessor(data_path, "/cnn_data/vgg19_model/conv5_4_b.npy"),
196*c217d954SCole Faust PadStrideInfo(1, 1, 1, 1))
197*c217d954SCole Faust .set_name("conv5_4")
198*c217d954SCole Faust << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("conv5_4/Relu")
199*c217d954SCole Faust << PoolingLayer(PoolingLayerInfo(PoolingType::MAX, 2, operation_layout, PadStrideInfo(2, 2, 0, 0))).set_name("pool5")
200*c217d954SCole Faust // Layer 6
201*c217d954SCole Faust << FullyConnectedLayer(
202*c217d954SCole Faust 4096U,
203*c217d954SCole Faust get_weights_accessor(data_path, "/cnn_data/vgg19_model/fc6_w.npy", weights_layout),
204*c217d954SCole Faust get_weights_accessor(data_path, "/cnn_data/vgg19_model/fc6_b.npy"))
205*c217d954SCole Faust .set_name("fc6")
206*c217d954SCole Faust << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("Relu")
207*c217d954SCole Faust // Layer 7
208*c217d954SCole Faust << FullyConnectedLayer(
209*c217d954SCole Faust 4096U,
210*c217d954SCole Faust get_weights_accessor(data_path, "/cnn_data/vgg19_model/fc7_w.npy", weights_layout),
211*c217d954SCole Faust get_weights_accessor(data_path, "/cnn_data/vgg19_model/fc7_b.npy"))
212*c217d954SCole Faust .set_name("fc7")
213*c217d954SCole Faust << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("Relu_1")
214*c217d954SCole Faust // Layer 8
215*c217d954SCole Faust << FullyConnectedLayer(
216*c217d954SCole Faust 1000U,
217*c217d954SCole Faust get_weights_accessor(data_path, "/cnn_data/vgg19_model/fc8_w.npy", weights_layout),
218*c217d954SCole Faust get_weights_accessor(data_path, "/cnn_data/vgg19_model/fc8_b.npy"))
219*c217d954SCole Faust .set_name("fc8")
220*c217d954SCole Faust // Softmax
221*c217d954SCole Faust << SoftmaxLayer().set_name("prob")
222*c217d954SCole Faust << OutputLayer(get_output_accessor(common_params, 5));
223*c217d954SCole Faust
224*c217d954SCole Faust // Finalize graph
225*c217d954SCole Faust GraphConfig config;
226*c217d954SCole Faust config.num_threads = common_params.threads;
227*c217d954SCole Faust config.use_tuner = common_params.enable_tuner;
228*c217d954SCole Faust config.tuner_mode = common_params.tuner_mode;
229*c217d954SCole Faust config.tuner_file = common_params.tuner_file;
230*c217d954SCole Faust config.mlgo_file = common_params.mlgo_file;
231*c217d954SCole Faust config.use_synthetic_type = arm_compute::is_data_type_quantized(common_params.data_type);
232*c217d954SCole Faust config.synthetic_type = common_params.data_type;
233*c217d954SCole Faust
234*c217d954SCole Faust graph.finalize(common_params.target, config);
235*c217d954SCole Faust
236*c217d954SCole Faust return true;
237*c217d954SCole Faust }
do_run()238*c217d954SCole Faust void do_run() override
239*c217d954SCole Faust {
240*c217d954SCole Faust // Run graph
241*c217d954SCole Faust graph.run();
242*c217d954SCole Faust }
243*c217d954SCole Faust
244*c217d954SCole Faust private:
245*c217d954SCole Faust CommandLineParser cmd_parser;
246*c217d954SCole Faust CommonGraphOptions common_opts;
247*c217d954SCole Faust CommonGraphParams common_params;
248*c217d954SCole Faust Stream graph;
249*c217d954SCole Faust };
250*c217d954SCole Faust
251*c217d954SCole Faust /** Main program for VGG19
252*c217d954SCole Faust *
253*c217d954SCole Faust * Model is based on:
254*c217d954SCole Faust * https://arxiv.org/abs/1409.1556
255*c217d954SCole Faust * "Very Deep Convolutional Networks for Large-Scale Image Recognition"
256*c217d954SCole Faust * Karen Simonyan, Andrew Zisserman
257*c217d954SCole Faust *
258*c217d954SCole Faust * Provenance: www.robots.ox.ac.uk/~vgg/software/very_deep/caffe/VGG_ILSVRC_19_layers.caffemodel
259*c217d954SCole Faust *
260*c217d954SCole Faust * @note To list all the possible arguments execute the binary appended with the --help option
261*c217d954SCole Faust *
262*c217d954SCole Faust * @param[in] argc Number of arguments
263*c217d954SCole Faust * @param[in] argv Arguments
264*c217d954SCole Faust */
main(int argc,char ** argv)265*c217d954SCole Faust int main(int argc, char **argv)
266*c217d954SCole Faust {
267*c217d954SCole Faust return arm_compute::utils::run_example<GraphVGG19Example>(argc, argv);
268*c217d954SCole Faust }
269