xref: /aosp_15_r20/external/ComputeLibrary/examples/graph_vgg16.cpp (revision c217d954acce2dbc11938adb493fc0abd69584f3)
1*c217d954SCole Faust /*
2*c217d954SCole Faust  * Copyright (c) 2017-2021 Arm Limited.
3*c217d954SCole Faust  *
4*c217d954SCole Faust  * SPDX-License-Identifier: MIT
5*c217d954SCole Faust  *
6*c217d954SCole Faust  * Permission is hereby granted, free of charge, to any person obtaining a copy
7*c217d954SCole Faust  * of this software and associated documentation files (the "Software"), to
8*c217d954SCole Faust  * deal in the Software without restriction, including without limitation the
9*c217d954SCole Faust  * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10*c217d954SCole Faust  * sell copies of the Software, and to permit persons to whom the Software is
11*c217d954SCole Faust  * furnished to do so, subject to the following conditions:
12*c217d954SCole Faust  *
13*c217d954SCole Faust  * The above copyright notice and this permission notice shall be included in all
14*c217d954SCole Faust  * copies or substantial portions of the Software.
15*c217d954SCole Faust  *
16*c217d954SCole Faust  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17*c217d954SCole Faust  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18*c217d954SCole Faust  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19*c217d954SCole Faust  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20*c217d954SCole Faust  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21*c217d954SCole Faust  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22*c217d954SCole Faust  * SOFTWARE.
23*c217d954SCole Faust  */
24*c217d954SCole Faust #include "arm_compute/graph.h"
25*c217d954SCole Faust #include "support/ToolchainSupport.h"
26*c217d954SCole Faust #include "utils/CommonGraphOptions.h"
27*c217d954SCole Faust #include "utils/GraphUtils.h"
28*c217d954SCole Faust #include "utils/Utils.h"
29*c217d954SCole Faust 
30*c217d954SCole Faust using namespace arm_compute::utils;
31*c217d954SCole Faust using namespace arm_compute::graph::frontend;
32*c217d954SCole Faust using namespace arm_compute::graph_utils;
33*c217d954SCole Faust 
34*c217d954SCole Faust /** Example demonstrating how to implement VGG16's network using the Compute Library's graph API */
35*c217d954SCole Faust class GraphVGG16Example : public Example
36*c217d954SCole Faust {
37*c217d954SCole Faust public:
GraphVGG16Example()38*c217d954SCole Faust     GraphVGG16Example()
39*c217d954SCole Faust         : cmd_parser(), common_opts(cmd_parser), common_params(), graph(0, "VGG16")
40*c217d954SCole Faust     {
41*c217d954SCole Faust     }
do_setup(int argc,char ** argv)42*c217d954SCole Faust     bool do_setup(int argc, char **argv) override
43*c217d954SCole Faust     {
44*c217d954SCole Faust         // Parse arguments
45*c217d954SCole Faust         cmd_parser.parse(argc, argv);
46*c217d954SCole Faust         cmd_parser.validate();
47*c217d954SCole Faust 
48*c217d954SCole Faust         // Consume common parameters
49*c217d954SCole Faust         common_params = consume_common_graph_parameters(common_opts);
50*c217d954SCole Faust 
51*c217d954SCole Faust         // Return when help menu is requested
52*c217d954SCole Faust         if(common_params.help)
53*c217d954SCole Faust         {
54*c217d954SCole Faust             cmd_parser.print_help(argv[0]);
55*c217d954SCole Faust             return false;
56*c217d954SCole Faust         }
57*c217d954SCole Faust 
58*c217d954SCole Faust         // Print parameter values
59*c217d954SCole Faust         std::cout << common_params << std::endl;
60*c217d954SCole Faust 
61*c217d954SCole Faust         // Get trainable parameters data path
62*c217d954SCole Faust         std::string data_path = common_params.data_path;
63*c217d954SCole Faust 
64*c217d954SCole Faust         // Create a preprocessor object
65*c217d954SCole Faust         const std::array<float, 3> mean_rgb{ { 123.68f, 116.779f, 103.939f } };
66*c217d954SCole Faust         std::unique_ptr<IPreprocessor> preprocessor = std::make_unique<CaffePreproccessor>(mean_rgb);
67*c217d954SCole Faust 
68*c217d954SCole Faust         // Create input descriptor
69*c217d954SCole Faust         const auto        operation_layout = common_params.data_layout;
70*c217d954SCole Faust         const TensorShape tensor_shape     = permute_shape(TensorShape(224U, 224U, 3U, common_params.batches), DataLayout::NCHW, operation_layout);
71*c217d954SCole Faust         TensorDescriptor  input_descriptor = TensorDescriptor(tensor_shape, common_params.data_type).set_layout(operation_layout);
72*c217d954SCole Faust 
73*c217d954SCole Faust         // Set weights trained layout
74*c217d954SCole Faust         const DataLayout weights_layout = DataLayout::NCHW;
75*c217d954SCole Faust 
76*c217d954SCole Faust         // Create graph
77*c217d954SCole Faust         graph << common_params.target
78*c217d954SCole Faust               << common_params.fast_math_hint
79*c217d954SCole Faust               << InputLayer(input_descriptor, get_input_accessor(common_params, std::move(preprocessor)))
80*c217d954SCole Faust               // Layer 1
81*c217d954SCole Faust               << ConvolutionLayer(
82*c217d954SCole Faust                   3U, 3U, 64U,
83*c217d954SCole Faust                   get_weights_accessor(data_path, "/cnn_data/vgg16_model/conv1_1_w.npy", weights_layout),
84*c217d954SCole Faust                   get_weights_accessor(data_path, "/cnn_data/vgg16_model/conv1_1_b.npy"),
85*c217d954SCole Faust                   PadStrideInfo(1, 1, 1, 1))
86*c217d954SCole Faust               .set_name("conv1_1")
87*c217d954SCole Faust               << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("conv1_1/Relu")
88*c217d954SCole Faust               // Layer 2
89*c217d954SCole Faust               << ConvolutionLayer(
90*c217d954SCole Faust                   3U, 3U, 64U,
91*c217d954SCole Faust                   get_weights_accessor(data_path, "/cnn_data/vgg16_model/conv1_2_w.npy", weights_layout),
92*c217d954SCole Faust                   get_weights_accessor(data_path, "/cnn_data/vgg16_model/conv1_2_b.npy"),
93*c217d954SCole Faust                   PadStrideInfo(1, 1, 1, 1))
94*c217d954SCole Faust               .set_name("conv1_2")
95*c217d954SCole Faust               << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("conv1_2/Relu")
96*c217d954SCole Faust               << PoolingLayer(PoolingLayerInfo(PoolingType::MAX, 2, operation_layout, PadStrideInfo(2, 2, 0, 0))).set_name("pool1")
97*c217d954SCole Faust               // Layer 3
98*c217d954SCole Faust               << ConvolutionLayer(
99*c217d954SCole Faust                   3U, 3U, 128U,
100*c217d954SCole Faust                   get_weights_accessor(data_path, "/cnn_data/vgg16_model/conv2_1_w.npy", weights_layout),
101*c217d954SCole Faust                   get_weights_accessor(data_path, "/cnn_data/vgg16_model/conv2_1_b.npy"),
102*c217d954SCole Faust                   PadStrideInfo(1, 1, 1, 1))
103*c217d954SCole Faust               .set_name("conv2_1")
104*c217d954SCole Faust               << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("conv2_1/Relu")
105*c217d954SCole Faust               // Layer 4
106*c217d954SCole Faust               << ConvolutionLayer(
107*c217d954SCole Faust                   3U, 3U, 128U,
108*c217d954SCole Faust                   get_weights_accessor(data_path, "/cnn_data/vgg16_model/conv2_2_w.npy", weights_layout),
109*c217d954SCole Faust                   get_weights_accessor(data_path, "/cnn_data/vgg16_model/conv2_2_b.npy"),
110*c217d954SCole Faust                   PadStrideInfo(1, 1, 1, 1))
111*c217d954SCole Faust               .set_name("conv2_2")
112*c217d954SCole Faust               << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("conv2_2/Relu")
113*c217d954SCole Faust               << PoolingLayer(PoolingLayerInfo(PoolingType::MAX, 2, operation_layout, PadStrideInfo(2, 2, 0, 0))).set_name("pool2")
114*c217d954SCole Faust               // Layer 5
115*c217d954SCole Faust               << ConvolutionLayer(
116*c217d954SCole Faust                   3U, 3U, 256U,
117*c217d954SCole Faust                   get_weights_accessor(data_path, "/cnn_data/vgg16_model/conv3_1_w.npy", weights_layout),
118*c217d954SCole Faust                   get_weights_accessor(data_path, "/cnn_data/vgg16_model/conv3_1_b.npy"),
119*c217d954SCole Faust                   PadStrideInfo(1, 1, 1, 1))
120*c217d954SCole Faust               .set_name("conv3_1")
121*c217d954SCole Faust               << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("conv3_1/Relu")
122*c217d954SCole Faust               // Layer 6
123*c217d954SCole Faust               << ConvolutionLayer(
124*c217d954SCole Faust                   3U, 3U, 256U,
125*c217d954SCole Faust                   get_weights_accessor(data_path, "/cnn_data/vgg16_model/conv3_2_w.npy", weights_layout),
126*c217d954SCole Faust                   get_weights_accessor(data_path, "/cnn_data/vgg16_model/conv3_2_b.npy"),
127*c217d954SCole Faust                   PadStrideInfo(1, 1, 1, 1))
128*c217d954SCole Faust               .set_name("conv3_2")
129*c217d954SCole Faust               << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("conv3_2/Relu")
130*c217d954SCole Faust               // Layer 7
131*c217d954SCole Faust               << ConvolutionLayer(
132*c217d954SCole Faust                   3U, 3U, 256U,
133*c217d954SCole Faust                   get_weights_accessor(data_path, "/cnn_data/vgg16_model/conv3_3_w.npy", weights_layout),
134*c217d954SCole Faust                   get_weights_accessor(data_path, "/cnn_data/vgg16_model/conv3_3_b.npy"),
135*c217d954SCole Faust                   PadStrideInfo(1, 1, 1, 1))
136*c217d954SCole Faust               .set_name("conv3_3")
137*c217d954SCole Faust               << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("conv3_3/Relu")
138*c217d954SCole Faust               << PoolingLayer(PoolingLayerInfo(PoolingType::MAX, 2, operation_layout, PadStrideInfo(2, 2, 0, 0))).set_name("pool3")
139*c217d954SCole Faust               // Layer 8
140*c217d954SCole Faust               << ConvolutionLayer(
141*c217d954SCole Faust                   3U, 3U, 512U,
142*c217d954SCole Faust                   get_weights_accessor(data_path, "/cnn_data/vgg16_model/conv4_1_w.npy", weights_layout),
143*c217d954SCole Faust                   get_weights_accessor(data_path, "/cnn_data/vgg16_model/conv4_1_b.npy"),
144*c217d954SCole Faust                   PadStrideInfo(1, 1, 1, 1))
145*c217d954SCole Faust               .set_name("conv4_1")
146*c217d954SCole Faust               << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("conv4_1/Relu")
147*c217d954SCole Faust               // Layer 9
148*c217d954SCole Faust               << ConvolutionLayer(
149*c217d954SCole Faust                   3U, 3U, 512U,
150*c217d954SCole Faust                   get_weights_accessor(data_path, "/cnn_data/vgg16_model/conv4_2_w.npy", weights_layout),
151*c217d954SCole Faust                   get_weights_accessor(data_path, "/cnn_data/vgg16_model/conv4_2_b.npy"),
152*c217d954SCole Faust                   PadStrideInfo(1, 1, 1, 1))
153*c217d954SCole Faust               .set_name("conv4_2")
154*c217d954SCole Faust               << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("conv4_2/Relu")
155*c217d954SCole Faust               // Layer 10
156*c217d954SCole Faust               << ConvolutionLayer(
157*c217d954SCole Faust                   3U, 3U, 512U,
158*c217d954SCole Faust                   get_weights_accessor(data_path, "/cnn_data/vgg16_model/conv4_3_w.npy", weights_layout),
159*c217d954SCole Faust                   get_weights_accessor(data_path, "/cnn_data/vgg16_model/conv4_3_b.npy"),
160*c217d954SCole Faust                   PadStrideInfo(1, 1, 1, 1))
161*c217d954SCole Faust               .set_name("conv4_3")
162*c217d954SCole Faust               << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("conv4_3/Relu")
163*c217d954SCole Faust               << PoolingLayer(PoolingLayerInfo(PoolingType::MAX, 2, operation_layout, PadStrideInfo(2, 2, 0, 0))).set_name("pool4")
164*c217d954SCole Faust               // Layer 11
165*c217d954SCole Faust               << ConvolutionLayer(
166*c217d954SCole Faust                   3U, 3U, 512U,
167*c217d954SCole Faust                   get_weights_accessor(data_path, "/cnn_data/vgg16_model/conv5_1_w.npy", weights_layout),
168*c217d954SCole Faust                   get_weights_accessor(data_path, "/cnn_data/vgg16_model/conv5_1_b.npy"),
169*c217d954SCole Faust                   PadStrideInfo(1, 1, 1, 1))
170*c217d954SCole Faust               .set_name("conv5_1")
171*c217d954SCole Faust               << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("conv5_1/Relu")
172*c217d954SCole Faust               // Layer 12
173*c217d954SCole Faust               << ConvolutionLayer(
174*c217d954SCole Faust                   3U, 3U, 512U,
175*c217d954SCole Faust                   get_weights_accessor(data_path, "/cnn_data/vgg16_model/conv5_2_w.npy", weights_layout),
176*c217d954SCole Faust                   get_weights_accessor(data_path, "/cnn_data/vgg16_model/conv5_2_b.npy"),
177*c217d954SCole Faust                   PadStrideInfo(1, 1, 1, 1))
178*c217d954SCole Faust               .set_name("conv5_2")
179*c217d954SCole Faust               << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("conv5_2/Relu")
180*c217d954SCole Faust               // Layer 13
181*c217d954SCole Faust               << ConvolutionLayer(
182*c217d954SCole Faust                   3U, 3U, 512U,
183*c217d954SCole Faust                   get_weights_accessor(data_path, "/cnn_data/vgg16_model/conv5_3_w.npy", weights_layout),
184*c217d954SCole Faust                   get_weights_accessor(data_path, "/cnn_data/vgg16_model/conv5_3_b.npy"),
185*c217d954SCole Faust                   PadStrideInfo(1, 1, 1, 1))
186*c217d954SCole Faust               .set_name("conv5_3")
187*c217d954SCole Faust               << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("conv5_3/Relu")
188*c217d954SCole Faust               << PoolingLayer(PoolingLayerInfo(PoolingType::MAX, 2, operation_layout, PadStrideInfo(2, 2, 0, 0))).set_name("pool5")
189*c217d954SCole Faust               // Layer 14
190*c217d954SCole Faust               << FullyConnectedLayer(
191*c217d954SCole Faust                   4096U,
192*c217d954SCole Faust                   get_weights_accessor(data_path, "/cnn_data/vgg16_model/fc6_w.npy", weights_layout),
193*c217d954SCole Faust                   get_weights_accessor(data_path, "/cnn_data/vgg16_model/fc6_b.npy"))
194*c217d954SCole Faust               .set_name("fc6")
195*c217d954SCole Faust               << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("Relu")
196*c217d954SCole Faust               // Layer 15
197*c217d954SCole Faust               << FullyConnectedLayer(
198*c217d954SCole Faust                   4096U,
199*c217d954SCole Faust                   get_weights_accessor(data_path, "/cnn_data/vgg16_model/fc7_w.npy", weights_layout),
200*c217d954SCole Faust                   get_weights_accessor(data_path, "/cnn_data/vgg16_model/fc7_b.npy"))
201*c217d954SCole Faust               .set_name("fc7")
202*c217d954SCole Faust               << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("Relu_1")
203*c217d954SCole Faust               // Layer 16
204*c217d954SCole Faust               << FullyConnectedLayer(
205*c217d954SCole Faust                   1000U,
206*c217d954SCole Faust                   get_weights_accessor(data_path, "/cnn_data/vgg16_model/fc8_w.npy", weights_layout),
207*c217d954SCole Faust                   get_weights_accessor(data_path, "/cnn_data/vgg16_model/fc8_b.npy"))
208*c217d954SCole Faust               .set_name("fc8")
209*c217d954SCole Faust               // Softmax
210*c217d954SCole Faust               << SoftmaxLayer().set_name("prob")
211*c217d954SCole Faust               << OutputLayer(get_output_accessor(common_params, 5));
212*c217d954SCole Faust 
213*c217d954SCole Faust         // Finalize graph
214*c217d954SCole Faust         GraphConfig config;
215*c217d954SCole Faust         config.num_threads        = common_params.threads;
216*c217d954SCole Faust         config.use_tuner          = common_params.enable_tuner;
217*c217d954SCole Faust         config.tuner_mode         = common_params.tuner_mode;
218*c217d954SCole Faust         config.tuner_file         = common_params.tuner_file;
219*c217d954SCole Faust         config.mlgo_file          = common_params.mlgo_file;
220*c217d954SCole Faust         config.use_synthetic_type = arm_compute::is_data_type_quantized(common_params.data_type);
221*c217d954SCole Faust         config.synthetic_type     = common_params.data_type;
222*c217d954SCole Faust 
223*c217d954SCole Faust         graph.finalize(common_params.target, config);
224*c217d954SCole Faust 
225*c217d954SCole Faust         return true;
226*c217d954SCole Faust     }
do_run()227*c217d954SCole Faust     void do_run() override
228*c217d954SCole Faust     {
229*c217d954SCole Faust         // Run graph
230*c217d954SCole Faust         graph.run();
231*c217d954SCole Faust     }
232*c217d954SCole Faust 
233*c217d954SCole Faust private:
234*c217d954SCole Faust     CommandLineParser  cmd_parser;
235*c217d954SCole Faust     CommonGraphOptions common_opts;
236*c217d954SCole Faust     CommonGraphParams  common_params;
237*c217d954SCole Faust     Stream             graph;
238*c217d954SCole Faust };
239*c217d954SCole Faust 
240*c217d954SCole Faust /** Main program for VGG16
241*c217d954SCole Faust  *
242*c217d954SCole Faust  * Model is based on:
243*c217d954SCole Faust  *      https://arxiv.org/abs/1409.1556
244*c217d954SCole Faust  *      "Very Deep Convolutional Networks for Large-Scale Image Recognition"
245*c217d954SCole Faust  *      Karen Simonyan, Andrew Zisserman
246*c217d954SCole Faust  *
247*c217d954SCole Faust  * Provenance: www.robots.ox.ac.uk/~vgg/software/very_deep/caffe/VGG_ILSVRC_16_layers.caffemodel
248*c217d954SCole Faust  *
249*c217d954SCole Faust  * @note To list all the possible arguments execute the binary appended with the --help option
250*c217d954SCole Faust  *
251*c217d954SCole Faust  * @param[in] argc Number of arguments
252*c217d954SCole Faust  * @param[in] argv Arguments
253*c217d954SCole Faust  */
main(int argc,char ** argv)254*c217d954SCole Faust int main(int argc, char **argv)
255*c217d954SCole Faust {
256*c217d954SCole Faust     return arm_compute::utils::run_example<GraphVGG16Example>(argc, argv);
257*c217d954SCole Faust }
258