xref: /aosp_15_r20/external/ComputeLibrary/examples/graph_shufflenet.cpp (revision c217d954acce2dbc11938adb493fc0abd69584f3)
1*c217d954SCole Faust /*
2*c217d954SCole Faust  * Copyright (c) 2018-2021 Arm Limited.
3*c217d954SCole Faust  *
4*c217d954SCole Faust  * SPDX-License-Identifier: MIT
5*c217d954SCole Faust  *
6*c217d954SCole Faust  * Permission is hereby granted, free of charge, to any person obtaining a copy
7*c217d954SCole Faust  * of this software and associated documentation files (the "Software"), to
8*c217d954SCole Faust  * deal in the Software without restriction, including without limitation the
9*c217d954SCole Faust  * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10*c217d954SCole Faust  * sell copies of the Software, and to permit persons to whom the Software is
11*c217d954SCole Faust  * furnished to do so, subject to the following conditions:
12*c217d954SCole Faust  *
13*c217d954SCole Faust  * The above copyright notice and this permission notice shall be included in all
14*c217d954SCole Faust  * copies or substantial portions of the Software.
15*c217d954SCole Faust  *
16*c217d954SCole Faust  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17*c217d954SCole Faust  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18*c217d954SCole Faust  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19*c217d954SCole Faust  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20*c217d954SCole Faust  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21*c217d954SCole Faust  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22*c217d954SCole Faust  * SOFTWARE.
23*c217d954SCole Faust  */
24*c217d954SCole Faust #include "arm_compute/graph.h"
25*c217d954SCole Faust #include "support/ToolchainSupport.h"
26*c217d954SCole Faust #include "utils/CommonGraphOptions.h"
27*c217d954SCole Faust #include "utils/GraphUtils.h"
28*c217d954SCole Faust #include "utils/Utils.h"
29*c217d954SCole Faust 
30*c217d954SCole Faust using namespace arm_compute::utils;
31*c217d954SCole Faust using namespace arm_compute::graph::frontend;
32*c217d954SCole Faust using namespace arm_compute::graph_utils;
33*c217d954SCole Faust 
34*c217d954SCole Faust /** Example demonstrating how to implement ShuffleNet network using the Compute Library's graph API */
35*c217d954SCole Faust class ShuffleNetExample : public Example
36*c217d954SCole Faust {
37*c217d954SCole Faust public:
ShuffleNetExample()38*c217d954SCole Faust     ShuffleNetExample()
39*c217d954SCole Faust         : cmd_parser(), common_opts(cmd_parser), common_params(), graph(0, "ShuffleNet")
40*c217d954SCole Faust     {
41*c217d954SCole Faust     }
do_setup(int argc,char ** argv)42*c217d954SCole Faust     bool do_setup(int argc, char **argv) override
43*c217d954SCole Faust     {
44*c217d954SCole Faust         // Parse arguments
45*c217d954SCole Faust         cmd_parser.parse(argc, argv);
46*c217d954SCole Faust         cmd_parser.validate();
47*c217d954SCole Faust 
48*c217d954SCole Faust         // Consume common parameters
49*c217d954SCole Faust         common_params = consume_common_graph_parameters(common_opts);
50*c217d954SCole Faust 
51*c217d954SCole Faust         // Return when help menu is requested
52*c217d954SCole Faust         if(common_params.help)
53*c217d954SCole Faust         {
54*c217d954SCole Faust             cmd_parser.print_help(argv[0]);
55*c217d954SCole Faust             return false;
56*c217d954SCole Faust         }
57*c217d954SCole Faust 
58*c217d954SCole Faust         // Set default layout if needed (Single kernel grouped convolution not yet supported int NHWC)
59*c217d954SCole Faust         if(!common_opts.data_layout->is_set())
60*c217d954SCole Faust         {
61*c217d954SCole Faust             common_params.data_layout = DataLayout::NHWC;
62*c217d954SCole Faust         }
63*c217d954SCole Faust 
64*c217d954SCole Faust         // Checks
65*c217d954SCole Faust         ARM_COMPUTE_EXIT_ON_MSG(arm_compute::is_data_type_quantized_asymmetric(common_params.data_type), "QASYMM8 not supported for this graph");
66*c217d954SCole Faust 
67*c217d954SCole Faust         // Print parameter values
68*c217d954SCole Faust         std::cout << common_params << std::endl;
69*c217d954SCole Faust         std::cout << "Model: Shufflenet_1_g4" << std::endl;
70*c217d954SCole Faust 
71*c217d954SCole Faust         // Create model path
72*c217d954SCole Faust         std::string model_path = "/cnn_data/shufflenet_model/";
73*c217d954SCole Faust 
74*c217d954SCole Faust         // Get trainable parameters data path
75*c217d954SCole Faust         std::string data_path = common_params.data_path;
76*c217d954SCole Faust 
77*c217d954SCole Faust         // Add model path to data path
78*c217d954SCole Faust         if(!data_path.empty())
79*c217d954SCole Faust         {
80*c217d954SCole Faust             data_path += model_path;
81*c217d954SCole Faust         }
82*c217d954SCole Faust 
83*c217d954SCole Faust         // Create input descriptor
84*c217d954SCole Faust         const auto        operation_layout = common_params.data_layout;
85*c217d954SCole Faust         const TensorShape tensor_shape     = permute_shape(TensorShape(224U, 224U, 3U, common_params.batches), DataLayout::NCHW, operation_layout);
86*c217d954SCole Faust         TensorDescriptor  input_descriptor = TensorDescriptor(tensor_shape, common_params.data_type).set_layout(operation_layout);
87*c217d954SCole Faust 
88*c217d954SCole Faust         // Set weights trained layout
89*c217d954SCole Faust         const DataLayout weights_layout = DataLayout::NCHW;
90*c217d954SCole Faust 
91*c217d954SCole Faust         // Create preprocessor
92*c217d954SCole Faust         std::unique_ptr<IPreprocessor> preprocessor = std::make_unique<TFPreproccessor>(0);
93*c217d954SCole Faust 
94*c217d954SCole Faust         graph << common_params.target
95*c217d954SCole Faust               << common_params.fast_math_hint
96*c217d954SCole Faust               << InputLayer(input_descriptor, get_input_accessor(common_params, std::move(preprocessor), false /* Do not convert to BGR */))
97*c217d954SCole Faust               << ConvolutionLayer(
98*c217d954SCole Faust                   3U, 3U, 24U,
99*c217d954SCole Faust                   get_weights_accessor(data_path, "conv3_0_w_0.npy", weights_layout),
100*c217d954SCole Faust                   get_weights_accessor(data_path, "conv3_0_b_0.npy", weights_layout),
101*c217d954SCole Faust                   PadStrideInfo(2, 2, 1, 1))
102*c217d954SCole Faust               .set_name("Conv1/convolution")
103*c217d954SCole Faust               << BatchNormalizationLayer(
104*c217d954SCole Faust                   get_weights_accessor(data_path, "conv3_0_bn_rm_0.npy"),
105*c217d954SCole Faust                   get_weights_accessor(data_path, "conv3_0_bn_riv_0.npy"),
106*c217d954SCole Faust                   get_weights_accessor(data_path, "conv3_0_bn_s_0.npy"),
107*c217d954SCole Faust                   get_weights_accessor(data_path, "conv3_0_bn_b_0.npy"),
108*c217d954SCole Faust                   1e-5f)
109*c217d954SCole Faust               .set_name("Conv1/BatchNorm")
110*c217d954SCole Faust               << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("Conv1/Relu")
111*c217d954SCole Faust               << PoolingLayer(PoolingLayerInfo(PoolingType::MAX, 3, operation_layout, PadStrideInfo(2, 2, 1, 1))).set_name("pool1/MaxPool");
112*c217d954SCole Faust 
113*c217d954SCole Faust         // Stage 2
114*c217d954SCole Faust         add_residual_block(data_path, DataLayout::NCHW, 0U /* unit */, 112U /* depth */, 2U /* stride */);
115*c217d954SCole Faust         add_residual_block(data_path, DataLayout::NCHW, 1U /* unit */, 136U /* depth */, 1U /* stride */);
116*c217d954SCole Faust         add_residual_block(data_path, DataLayout::NCHW, 2U /* unit */, 136U /* depth */, 1U /* stride */);
117*c217d954SCole Faust         add_residual_block(data_path, DataLayout::NCHW, 3U /* unit */, 136U /* depth */, 1U /* stride */);
118*c217d954SCole Faust 
119*c217d954SCole Faust         // Stage 3
120*c217d954SCole Faust         add_residual_block(data_path, DataLayout::NCHW, 4U /* unit */, 136U /* depth */, 2U /* stride */);
121*c217d954SCole Faust         add_residual_block(data_path, DataLayout::NCHW, 5U /* unit */, 272U /* depth */, 1U /* stride */);
122*c217d954SCole Faust         add_residual_block(data_path, DataLayout::NCHW, 6U /* unit */, 272U /* depth */, 1U /* stride */);
123*c217d954SCole Faust         add_residual_block(data_path, DataLayout::NCHW, 7U /* unit */, 272U /* depth */, 1U /* stride */);
124*c217d954SCole Faust         add_residual_block(data_path, DataLayout::NCHW, 8U /* unit */, 272U /* depth */, 1U /* stride */);
125*c217d954SCole Faust         add_residual_block(data_path, DataLayout::NCHW, 9U /* unit */, 272U /* depth */, 1U /* stride */);
126*c217d954SCole Faust         add_residual_block(data_path, DataLayout::NCHW, 10U /* unit */, 272U /* depth */, 1U /* stride */);
127*c217d954SCole Faust         add_residual_block(data_path, DataLayout::NCHW, 11U /* unit */, 272U /* depth */, 1U /* stride */);
128*c217d954SCole Faust 
129*c217d954SCole Faust         // Stage 4
130*c217d954SCole Faust         add_residual_block(data_path, DataLayout::NCHW, 12U /* unit */, 272U /* depth */, 2U /* stride */);
131*c217d954SCole Faust         add_residual_block(data_path, DataLayout::NCHW, 13U /* unit */, 544U /* depth */, 1U /* stride */);
132*c217d954SCole Faust         add_residual_block(data_path, DataLayout::NCHW, 14U /* unit */, 544U /* depth */, 1U /* stride */);
133*c217d954SCole Faust         add_residual_block(data_path, DataLayout::NCHW, 15U /* unit */, 544U /* depth */, 1U /* stride */);
134*c217d954SCole Faust 
135*c217d954SCole Faust         graph << PoolingLayer(PoolingLayerInfo(PoolingType::AVG, operation_layout)).set_name("predictions/AvgPool")
136*c217d954SCole Faust               << FlattenLayer().set_name("predictions/Reshape")
137*c217d954SCole Faust               << FullyConnectedLayer(
138*c217d954SCole Faust                   1000U,
139*c217d954SCole Faust                   get_weights_accessor(data_path, "pred_w_0.npy", weights_layout),
140*c217d954SCole Faust                   get_weights_accessor(data_path, "pred_b_0.npy"))
141*c217d954SCole Faust               .set_name("predictions/FC")
142*c217d954SCole Faust               << SoftmaxLayer().set_name("predictions/Softmax")
143*c217d954SCole Faust               << OutputLayer(get_output_accessor(common_params, 5));
144*c217d954SCole Faust 
145*c217d954SCole Faust         // Finalize graph
146*c217d954SCole Faust         GraphConfig config;
147*c217d954SCole Faust         config.num_threads = common_params.threads;
148*c217d954SCole Faust         config.use_tuner   = common_params.enable_tuner;
149*c217d954SCole Faust         config.tuner_mode  = common_params.tuner_mode;
150*c217d954SCole Faust         config.tuner_file  = common_params.tuner_file;
151*c217d954SCole Faust         config.mlgo_file   = common_params.mlgo_file;
152*c217d954SCole Faust 
153*c217d954SCole Faust         graph.finalize(common_params.target, config);
154*c217d954SCole Faust 
155*c217d954SCole Faust         return true;
156*c217d954SCole Faust     }
157*c217d954SCole Faust 
do_run()158*c217d954SCole Faust     void do_run() override
159*c217d954SCole Faust     {
160*c217d954SCole Faust         // Run graph
161*c217d954SCole Faust         graph.run();
162*c217d954SCole Faust     }
163*c217d954SCole Faust 
164*c217d954SCole Faust private:
165*c217d954SCole Faust     CommandLineParser  cmd_parser;
166*c217d954SCole Faust     CommonGraphOptions common_opts;
167*c217d954SCole Faust     CommonGraphParams  common_params;
168*c217d954SCole Faust     Stream             graph;
169*c217d954SCole Faust 
add_residual_block(const std::string & data_path,DataLayout weights_layout,unsigned int unit,unsigned int depth,unsigned int stride)170*c217d954SCole Faust     void add_residual_block(const std::string &data_path, DataLayout weights_layout,
171*c217d954SCole Faust                             unsigned int unit, unsigned int depth, unsigned int stride)
172*c217d954SCole Faust     {
173*c217d954SCole Faust         PadStrideInfo      dwc_info        = PadStrideInfo(1, 1, 1, 1);
174*c217d954SCole Faust         const unsigned int gconv_id        = unit * 2;
175*c217d954SCole Faust         const unsigned int num_groups      = 4;
176*c217d954SCole Faust         const std::string  unit_id_name    = arm_compute::support::cpp11::to_string(unit);
177*c217d954SCole Faust         const std::string  gconv_id_name   = arm_compute::support::cpp11::to_string(gconv_id);
178*c217d954SCole Faust         const std::string  gconv_id_1_name = arm_compute::support::cpp11::to_string(gconv_id + 1);
179*c217d954SCole Faust         const std::string  unit_name       = "unit" + unit_id_name;
180*c217d954SCole Faust 
181*c217d954SCole Faust         SubStream left_ss(graph);
182*c217d954SCole Faust         SubStream right_ss(graph);
183*c217d954SCole Faust 
184*c217d954SCole Faust         if(stride == 2)
185*c217d954SCole Faust         {
186*c217d954SCole Faust             right_ss << PoolingLayer(PoolingLayerInfo(PoolingType::AVG, 3, common_params.data_layout, PadStrideInfo(2, 2, 1, 1))).set_name(unit_name + "/pool_1/AveragePool");
187*c217d954SCole Faust             dwc_info = PadStrideInfo(2, 2, 1, 1);
188*c217d954SCole Faust         }
189*c217d954SCole Faust 
190*c217d954SCole Faust         left_ss << ConvolutionLayer(
191*c217d954SCole Faust                     1U, 1U, depth,
192*c217d954SCole Faust                     get_weights_accessor(data_path, "gconv1_" + gconv_id_name + "_w_0.npy", weights_layout),
193*c217d954SCole Faust                     std::unique_ptr<arm_compute::graph::ITensorAccessor>(nullptr),
194*c217d954SCole Faust                     PadStrideInfo(1, 1, 0, 0), num_groups)
195*c217d954SCole Faust                 .set_name(unit_name + "/gconv1_" + gconv_id_name + "/convolution")
196*c217d954SCole Faust                 << BatchNormalizationLayer(
197*c217d954SCole Faust                     get_weights_accessor(data_path, "gconv1_" + gconv_id_name + "_bn_rm_0.npy"),
198*c217d954SCole Faust                     get_weights_accessor(data_path, "gconv1_" + gconv_id_name + "_bn_riv_0.npy"),
199*c217d954SCole Faust                     get_weights_accessor(data_path, "gconv1_" + gconv_id_name + "_bn_s_0.npy"),
200*c217d954SCole Faust                     get_weights_accessor(data_path, "gconv1_" + gconv_id_name + "_bn_b_0.npy"),
201*c217d954SCole Faust                     1e-5f)
202*c217d954SCole Faust                 .set_name(unit_name + "/gconv1_" + gconv_id_name + "/BatchNorm")
203*c217d954SCole Faust                 << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name(unit_name + "/gconv1_" + gconv_id_name + "/Relu")
204*c217d954SCole Faust                 << ChannelShuffleLayer(num_groups).set_name(unit_name + "/shuffle_0/ChannelShufle")
205*c217d954SCole Faust                 << DepthwiseConvolutionLayer(
206*c217d954SCole Faust                     3U, 3U,
207*c217d954SCole Faust                     get_weights_accessor(data_path, "gconv3_" + unit_id_name + "_w_0.npy", weights_layout),
208*c217d954SCole Faust                     std::unique_ptr<arm_compute::graph::ITensorAccessor>(nullptr),
209*c217d954SCole Faust                     dwc_info)
210*c217d954SCole Faust                 .set_name(unit_name + "/gconv3_" + unit_id_name + "/depthwise")
211*c217d954SCole Faust                 << BatchNormalizationLayer(
212*c217d954SCole Faust                     get_weights_accessor(data_path, "gconv3_" + unit_id_name + "_bn_rm_0.npy"),
213*c217d954SCole Faust                     get_weights_accessor(data_path, "gconv3_" + unit_id_name + "_bn_riv_0.npy"),
214*c217d954SCole Faust                     get_weights_accessor(data_path, "gconv3_" + unit_id_name + "_bn_s_0.npy"),
215*c217d954SCole Faust                     get_weights_accessor(data_path, "gconv3_" + unit_id_name + "_bn_b_0.npy"),
216*c217d954SCole Faust                     1e-5f)
217*c217d954SCole Faust                 .set_name(unit_name + "/gconv3_" + unit_id_name + "/BatchNorm")
218*c217d954SCole Faust                 << ConvolutionLayer(
219*c217d954SCole Faust                     1U, 1U, depth,
220*c217d954SCole Faust                     get_weights_accessor(data_path, "gconv1_" + gconv_id_1_name + "_w_0.npy", weights_layout),
221*c217d954SCole Faust                     std::unique_ptr<arm_compute::graph::ITensorAccessor>(nullptr),
222*c217d954SCole Faust                     PadStrideInfo(1, 1, 0, 0), num_groups)
223*c217d954SCole Faust                 .set_name(unit_name + "/gconv1_" + gconv_id_1_name + "/convolution")
224*c217d954SCole Faust                 << BatchNormalizationLayer(
225*c217d954SCole Faust                     get_weights_accessor(data_path, "gconv1_" + gconv_id_1_name + "_bn_rm_0.npy"),
226*c217d954SCole Faust                     get_weights_accessor(data_path, "gconv1_" + gconv_id_1_name + "_bn_riv_0.npy"),
227*c217d954SCole Faust                     get_weights_accessor(data_path, "gconv1_" + gconv_id_1_name + "_bn_s_0.npy"),
228*c217d954SCole Faust                     get_weights_accessor(data_path, "gconv1_" + gconv_id_1_name + "_bn_b_0.npy"),
229*c217d954SCole Faust                     1e-5f)
230*c217d954SCole Faust                 .set_name(unit_name + "/gconv1_" + gconv_id_1_name + "/BatchNorm");
231*c217d954SCole Faust 
232*c217d954SCole Faust         if(stride == 2)
233*c217d954SCole Faust         {
234*c217d954SCole Faust             graph << ConcatLayer(std::move(left_ss), std::move(right_ss)).set_name(unit_name + "/Concat");
235*c217d954SCole Faust         }
236*c217d954SCole Faust         else
237*c217d954SCole Faust         {
238*c217d954SCole Faust             graph << EltwiseLayer(std::move(left_ss), std::move(right_ss), EltwiseOperation::Add).set_name(unit_name + "/Add");
239*c217d954SCole Faust         }
240*c217d954SCole Faust         graph << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name(unit_name + "/Relu");
241*c217d954SCole Faust     }
242*c217d954SCole Faust };
243*c217d954SCole Faust 
244*c217d954SCole Faust /** Main program for ShuffleNet
245*c217d954SCole Faust  *
246*c217d954SCole Faust  * Model is based on:
247*c217d954SCole Faust  *      https://arxiv.org/abs/1707.01083
248*c217d954SCole Faust  *      "ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile Devices"
249*c217d954SCole Faust  *      Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, Jian Sun
250*c217d954SCole Faust  *
251*c217d954SCole Faust  * Provenance: https://s3.amazonaws.com/download.onnx/models/opset_9/shufflenet.tar.gz
252*c217d954SCole Faust  *
253*c217d954SCole Faust  * @note To list all the possible arguments execute the binary appended with the --help option
254*c217d954SCole Faust  *
255*c217d954SCole Faust  * @param[in] argc Number of arguments
256*c217d954SCole Faust  * @param[in] argv Arguments
257*c217d954SCole Faust  */
main(int argc,char ** argv)258*c217d954SCole Faust int main(int argc, char **argv)
259*c217d954SCole Faust {
260*c217d954SCole Faust     return arm_compute::utils::run_example<ShuffleNetExample>(argc, argv);
261*c217d954SCole Faust }
262