1*c217d954SCole Faust /*
2*c217d954SCole Faust * Copyright (c) 2018-2021 Arm Limited.
3*c217d954SCole Faust *
4*c217d954SCole Faust * SPDX-License-Identifier: MIT
5*c217d954SCole Faust *
6*c217d954SCole Faust * Permission is hereby granted, free of charge, to any person obtaining a copy
7*c217d954SCole Faust * of this software and associated documentation files (the "Software"), to
8*c217d954SCole Faust * deal in the Software without restriction, including without limitation the
9*c217d954SCole Faust * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10*c217d954SCole Faust * sell copies of the Software, and to permit persons to whom the Software is
11*c217d954SCole Faust * furnished to do so, subject to the following conditions:
12*c217d954SCole Faust *
13*c217d954SCole Faust * The above copyright notice and this permission notice shall be included in all
14*c217d954SCole Faust * copies or substantial portions of the Software.
15*c217d954SCole Faust *
16*c217d954SCole Faust * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17*c217d954SCole Faust * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18*c217d954SCole Faust * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19*c217d954SCole Faust * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20*c217d954SCole Faust * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21*c217d954SCole Faust * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22*c217d954SCole Faust * SOFTWARE.
23*c217d954SCole Faust */
24*c217d954SCole Faust #include "arm_compute/graph.h"
25*c217d954SCole Faust #include "support/ToolchainSupport.h"
26*c217d954SCole Faust #include "utils/CommonGraphOptions.h"
27*c217d954SCole Faust #include "utils/GraphUtils.h"
28*c217d954SCole Faust #include "utils/Utils.h"
29*c217d954SCole Faust
30*c217d954SCole Faust using namespace arm_compute::utils;
31*c217d954SCole Faust using namespace arm_compute::graph::frontend;
32*c217d954SCole Faust using namespace arm_compute::graph_utils;
33*c217d954SCole Faust
34*c217d954SCole Faust /** Example demonstrating how to implement ResNeXt50 network using the Compute Library's graph API */
35*c217d954SCole Faust class GraphResNeXt50Example : public Example
36*c217d954SCole Faust {
37*c217d954SCole Faust public:
GraphResNeXt50Example()38*c217d954SCole Faust GraphResNeXt50Example()
39*c217d954SCole Faust : cmd_parser(), common_opts(cmd_parser), common_params(), graph(0, "ResNeXt50")
40*c217d954SCole Faust {
41*c217d954SCole Faust }
do_setup(int argc,char ** argv)42*c217d954SCole Faust bool do_setup(int argc, char **argv) override
43*c217d954SCole Faust {
44*c217d954SCole Faust // Parse arguments
45*c217d954SCole Faust cmd_parser.parse(argc, argv);
46*c217d954SCole Faust cmd_parser.validate();
47*c217d954SCole Faust
48*c217d954SCole Faust // Consume common parameters
49*c217d954SCole Faust common_params = consume_common_graph_parameters(common_opts);
50*c217d954SCole Faust
51*c217d954SCole Faust // Return when help menu is requested
52*c217d954SCole Faust if(common_params.help)
53*c217d954SCole Faust {
54*c217d954SCole Faust cmd_parser.print_help(argv[0]);
55*c217d954SCole Faust return false;
56*c217d954SCole Faust }
57*c217d954SCole Faust
58*c217d954SCole Faust // Checks
59*c217d954SCole Faust ARM_COMPUTE_EXIT_ON_MSG(arm_compute::is_data_type_quantized_asymmetric(common_params.data_type), "QASYMM8 not supported for this graph");
60*c217d954SCole Faust
61*c217d954SCole Faust // Print parameter values
62*c217d954SCole Faust std::cout << common_params << std::endl;
63*c217d954SCole Faust
64*c217d954SCole Faust // Get trainable parameters data path
65*c217d954SCole Faust std::string data_path = common_params.data_path;
66*c217d954SCole Faust
67*c217d954SCole Faust // Create input descriptor
68*c217d954SCole Faust const auto operation_layout = common_params.data_layout;
69*c217d954SCole Faust const TensorShape tensor_shape = permute_shape(TensorShape(224U, 224U, 3U, common_params.batches), DataLayout::NCHW, operation_layout);
70*c217d954SCole Faust TensorDescriptor input_descriptor = TensorDescriptor(tensor_shape, common_params.data_type).set_layout(operation_layout);
71*c217d954SCole Faust
72*c217d954SCole Faust // Set weights trained layout
73*c217d954SCole Faust const DataLayout weights_layout = DataLayout::NCHW;
74*c217d954SCole Faust
75*c217d954SCole Faust graph << common_params.target
76*c217d954SCole Faust << common_params.fast_math_hint
77*c217d954SCole Faust << InputLayer(input_descriptor, get_input_accessor(common_params))
78*c217d954SCole Faust << ScaleLayer(get_weights_accessor(data_path, "/cnn_data/resnext50_model/bn_data_mul.npy"),
79*c217d954SCole Faust get_weights_accessor(data_path, "/cnn_data/resnext50_model/bn_data_add.npy"))
80*c217d954SCole Faust .set_name("bn_data/Scale")
81*c217d954SCole Faust << ConvolutionLayer(
82*c217d954SCole Faust 7U, 7U, 64U,
83*c217d954SCole Faust get_weights_accessor(data_path, "/cnn_data/resnext50_model/conv0_weights.npy", weights_layout),
84*c217d954SCole Faust get_weights_accessor(data_path, "/cnn_data/resnext50_model/conv0_biases.npy"),
85*c217d954SCole Faust PadStrideInfo(2, 2, 2, 3, 2, 3, DimensionRoundingType::FLOOR))
86*c217d954SCole Faust .set_name("conv0/Convolution")
87*c217d954SCole Faust << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("conv0/Relu")
88*c217d954SCole Faust << PoolingLayer(PoolingLayerInfo(PoolingType::MAX, 3, operation_layout, PadStrideInfo(2, 2, 0, 1, 0, 1, DimensionRoundingType::FLOOR))).set_name("pool0");
89*c217d954SCole Faust
90*c217d954SCole Faust add_residual_block(data_path, weights_layout, /*ofm*/ 256, /*stage*/ 1, /*num_unit*/ 3, /*stride_conv_unit1*/ 1);
91*c217d954SCole Faust add_residual_block(data_path, weights_layout, 512, 2, 4, 2);
92*c217d954SCole Faust add_residual_block(data_path, weights_layout, 1024, 3, 6, 2);
93*c217d954SCole Faust add_residual_block(data_path, weights_layout, 2048, 4, 3, 2);
94*c217d954SCole Faust
95*c217d954SCole Faust graph << PoolingLayer(PoolingLayerInfo(PoolingType::AVG, operation_layout)).set_name("pool1")
96*c217d954SCole Faust << FlattenLayer().set_name("predictions/Reshape")
97*c217d954SCole Faust << OutputLayer(get_npy_output_accessor(common_params.labels, TensorShape(2048U), DataType::F32));
98*c217d954SCole Faust
99*c217d954SCole Faust // Finalize graph
100*c217d954SCole Faust GraphConfig config;
101*c217d954SCole Faust config.num_threads = common_params.threads;
102*c217d954SCole Faust config.use_tuner = common_params.enable_tuner;
103*c217d954SCole Faust config.tuner_mode = common_params.tuner_mode;
104*c217d954SCole Faust config.tuner_file = common_params.tuner_file;
105*c217d954SCole Faust config.mlgo_file = common_params.mlgo_file;
106*c217d954SCole Faust
107*c217d954SCole Faust graph.finalize(common_params.target, config);
108*c217d954SCole Faust
109*c217d954SCole Faust return true;
110*c217d954SCole Faust }
111*c217d954SCole Faust
do_run()112*c217d954SCole Faust void do_run() override
113*c217d954SCole Faust {
114*c217d954SCole Faust // Run graph
115*c217d954SCole Faust graph.run();
116*c217d954SCole Faust }
117*c217d954SCole Faust
118*c217d954SCole Faust private:
119*c217d954SCole Faust CommandLineParser cmd_parser;
120*c217d954SCole Faust CommonGraphOptions common_opts;
121*c217d954SCole Faust CommonGraphParams common_params;
122*c217d954SCole Faust Stream graph;
123*c217d954SCole Faust
add_residual_block(const std::string & data_path,DataLayout weights_layout,unsigned int base_depth,unsigned int stage,unsigned int num_units,unsigned int stride_conv_unit1)124*c217d954SCole Faust void add_residual_block(const std::string &data_path, DataLayout weights_layout,
125*c217d954SCole Faust unsigned int base_depth, unsigned int stage, unsigned int num_units, unsigned int stride_conv_unit1)
126*c217d954SCole Faust {
127*c217d954SCole Faust for(unsigned int i = 0; i < num_units; ++i)
128*c217d954SCole Faust {
129*c217d954SCole Faust std::stringstream unit_path_ss;
130*c217d954SCole Faust unit_path_ss << "/cnn_data/resnext50_model/stage" << stage << "_unit" << (i + 1) << "_";
131*c217d954SCole Faust std::string unit_path = unit_path_ss.str();
132*c217d954SCole Faust
133*c217d954SCole Faust std::stringstream unit_name_ss;
134*c217d954SCole Faust unit_name_ss << "stage" << stage << "/unit" << (i + 1) << "/";
135*c217d954SCole Faust std::string unit_name = unit_name_ss.str();
136*c217d954SCole Faust
137*c217d954SCole Faust PadStrideInfo pad_grouped_conv(1, 1, 1, 1);
138*c217d954SCole Faust if(i == 0)
139*c217d954SCole Faust {
140*c217d954SCole Faust pad_grouped_conv = (stage == 1) ? PadStrideInfo(stride_conv_unit1, stride_conv_unit1, 1, 1) : PadStrideInfo(stride_conv_unit1, stride_conv_unit1, 0, 1, 0, 1, DimensionRoundingType::FLOOR);
141*c217d954SCole Faust }
142*c217d954SCole Faust
143*c217d954SCole Faust SubStream right(graph);
144*c217d954SCole Faust right << ConvolutionLayer(
145*c217d954SCole Faust 1U, 1U, base_depth / 2,
146*c217d954SCole Faust get_weights_accessor(data_path, unit_path + "conv1_weights.npy", weights_layout),
147*c217d954SCole Faust get_weights_accessor(data_path, unit_path + "conv1_biases.npy"),
148*c217d954SCole Faust PadStrideInfo(1, 1, 0, 0))
149*c217d954SCole Faust .set_name(unit_name + "conv1/convolution")
150*c217d954SCole Faust << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name(unit_name + "conv1/Relu")
151*c217d954SCole Faust
152*c217d954SCole Faust << ConvolutionLayer(
153*c217d954SCole Faust 3U, 3U, base_depth / 2,
154*c217d954SCole Faust get_weights_accessor(data_path, unit_path + "conv2_weights.npy", weights_layout),
155*c217d954SCole Faust std::unique_ptr<arm_compute::graph::ITensorAccessor>(nullptr),
156*c217d954SCole Faust pad_grouped_conv, 32)
157*c217d954SCole Faust .set_name(unit_name + "conv2/convolution")
158*c217d954SCole Faust << ScaleLayer(get_weights_accessor(data_path, unit_path + "bn2_mul.npy"),
159*c217d954SCole Faust get_weights_accessor(data_path, unit_path + "bn2_add.npy"))
160*c217d954SCole Faust .set_name(unit_name + "conv1/Scale")
161*c217d954SCole Faust << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name(unit_name + "conv2/Relu")
162*c217d954SCole Faust
163*c217d954SCole Faust << ConvolutionLayer(
164*c217d954SCole Faust 1U, 1U, base_depth,
165*c217d954SCole Faust get_weights_accessor(data_path, unit_path + "conv3_weights.npy", weights_layout),
166*c217d954SCole Faust get_weights_accessor(data_path, unit_path + "conv3_biases.npy"),
167*c217d954SCole Faust PadStrideInfo(1, 1, 0, 0))
168*c217d954SCole Faust .set_name(unit_name + "conv3/convolution");
169*c217d954SCole Faust
170*c217d954SCole Faust SubStream left(graph);
171*c217d954SCole Faust if(i == 0)
172*c217d954SCole Faust {
173*c217d954SCole Faust left << ConvolutionLayer(
174*c217d954SCole Faust 1U, 1U, base_depth,
175*c217d954SCole Faust get_weights_accessor(data_path, unit_path + "sc_weights.npy", weights_layout),
176*c217d954SCole Faust std::unique_ptr<arm_compute::graph::ITensorAccessor>(nullptr),
177*c217d954SCole Faust PadStrideInfo(stride_conv_unit1, stride_conv_unit1, 0, 0))
178*c217d954SCole Faust .set_name(unit_name + "sc/convolution")
179*c217d954SCole Faust << ScaleLayer(get_weights_accessor(data_path, unit_path + "sc_bn_mul.npy"),
180*c217d954SCole Faust get_weights_accessor(data_path, unit_path + "sc_bn_add.npy"))
181*c217d954SCole Faust .set_name(unit_name + "sc/scale");
182*c217d954SCole Faust }
183*c217d954SCole Faust
184*c217d954SCole Faust graph << EltwiseLayer(std::move(left), std::move(right), EltwiseOperation::Add).set_name(unit_name + "add");
185*c217d954SCole Faust graph << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name(unit_name + "Relu");
186*c217d954SCole Faust }
187*c217d954SCole Faust }
188*c217d954SCole Faust };
189*c217d954SCole Faust
190*c217d954SCole Faust /** Main program for ResNeXt50
191*c217d954SCole Faust *
192*c217d954SCole Faust * Model is based on:
193*c217d954SCole Faust * https://arxiv.org/abs/1611.05431
194*c217d954SCole Faust * "Aggregated Residual Transformations for Deep Neural Networks"
195*c217d954SCole Faust * Saining Xie, Ross Girshick, Piotr Dollar, Zhuowen Tu, Kaiming He.
196*c217d954SCole Faust *
197*c217d954SCole Faust * @note To list all the possible arguments execute the binary appended with the --help option
198*c217d954SCole Faust *
199*c217d954SCole Faust * @param[in] argc Number of arguments
200*c217d954SCole Faust * @param[in] argv Arguments
201*c217d954SCole Faust */
main(int argc,char ** argv)202*c217d954SCole Faust int main(int argc, char **argv)
203*c217d954SCole Faust {
204*c217d954SCole Faust return arm_compute::utils::run_example<GraphResNeXt50Example>(argc, argv);
205*c217d954SCole Faust }
206