xref: /aosp_15_r20/external/ComputeLibrary/examples/graph_resnet12.cpp (revision c217d954acce2dbc11938adb493fc0abd69584f3)
1*c217d954SCole Faust /*
2*c217d954SCole Faust  * Copyright (c) 2018-2021 Arm Limited.
3*c217d954SCole Faust  *
4*c217d954SCole Faust  * SPDX-License-Identifier: MIT
5*c217d954SCole Faust  *
6*c217d954SCole Faust  * Permission is hereby granted, free of charge, to any person obtaining a copy
7*c217d954SCole Faust  * of this software and associated documentation files (the "Software"), to
8*c217d954SCole Faust  * deal in the Software without restriction, including without limitation the
9*c217d954SCole Faust  * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10*c217d954SCole Faust  * sell copies of the Software, and to permit persons to whom the Software is
11*c217d954SCole Faust  * furnished to do so, subject to the following conditions:
12*c217d954SCole Faust  *
13*c217d954SCole Faust  * The above copyright notice and this permission notice shall be included in all
14*c217d954SCole Faust  * copies or substantial portions of the Software.
15*c217d954SCole Faust  *
16*c217d954SCole Faust  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17*c217d954SCole Faust  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18*c217d954SCole Faust  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19*c217d954SCole Faust  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20*c217d954SCole Faust  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21*c217d954SCole Faust  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22*c217d954SCole Faust  * SOFTWARE.
23*c217d954SCole Faust  */
24*c217d954SCole Faust #include "arm_compute/graph.h"
25*c217d954SCole Faust #include "support/ToolchainSupport.h"
26*c217d954SCole Faust #include "utils/CommonGraphOptions.h"
27*c217d954SCole Faust #include "utils/GraphUtils.h"
28*c217d954SCole Faust #include "utils/Utils.h"
29*c217d954SCole Faust 
30*c217d954SCole Faust using namespace arm_compute::utils;
31*c217d954SCole Faust using namespace arm_compute::graph::frontend;
32*c217d954SCole Faust using namespace arm_compute::graph_utils;
33*c217d954SCole Faust 
34*c217d954SCole Faust /** Example demonstrating how to implement ResNet12 network using the Compute Library's graph API */
35*c217d954SCole Faust class GraphResNet12Example : public Example
36*c217d954SCole Faust {
37*c217d954SCole Faust public:
GraphResNet12Example()38*c217d954SCole Faust     GraphResNet12Example()
39*c217d954SCole Faust         : cmd_parser(), common_opts(cmd_parser), model_input_width(nullptr), model_input_height(nullptr), common_params(), graph(0, "ResNet12")
40*c217d954SCole Faust     {
41*c217d954SCole Faust         model_input_width  = cmd_parser.add_option<SimpleOption<unsigned int>>("image-width", 192);
42*c217d954SCole Faust         model_input_height = cmd_parser.add_option<SimpleOption<unsigned int>>("image-height", 128);
43*c217d954SCole Faust 
44*c217d954SCole Faust         // Add model id option
45*c217d954SCole Faust         model_input_width->set_help("Input image width.");
46*c217d954SCole Faust         model_input_height->set_help("Input image height.");
47*c217d954SCole Faust     }
48*c217d954SCole Faust     GraphResNet12Example(const GraphResNet12Example &) = delete;
49*c217d954SCole Faust     GraphResNet12Example &operator=(const GraphResNet12Example &) = delete;
50*c217d954SCole Faust     ~GraphResNet12Example() override                              = default;
do_setup(int argc,char ** argv)51*c217d954SCole Faust     bool do_setup(int argc, char **argv) override
52*c217d954SCole Faust     {
53*c217d954SCole Faust         // Parse arguments
54*c217d954SCole Faust         cmd_parser.parse(argc, argv);
55*c217d954SCole Faust         cmd_parser.validate();
56*c217d954SCole Faust 
57*c217d954SCole Faust         // Consume common parameters
58*c217d954SCole Faust         common_params = consume_common_graph_parameters(common_opts);
59*c217d954SCole Faust 
60*c217d954SCole Faust         // Return when help menu is requested
61*c217d954SCole Faust         if(common_params.help)
62*c217d954SCole Faust         {
63*c217d954SCole Faust             cmd_parser.print_help(argv[0]);
64*c217d954SCole Faust             return false;
65*c217d954SCole Faust         }
66*c217d954SCole Faust 
67*c217d954SCole Faust         // Get input image width and height
68*c217d954SCole Faust         const unsigned int image_width  = model_input_width->value();
69*c217d954SCole Faust         const unsigned int image_height = model_input_height->value();
70*c217d954SCole Faust 
71*c217d954SCole Faust         // Checks
72*c217d954SCole Faust         ARM_COMPUTE_EXIT_ON_MSG(arm_compute::is_data_type_quantized_asymmetric(common_params.data_type), "QASYMM8 not supported for this graph");
73*c217d954SCole Faust 
74*c217d954SCole Faust         // Print parameter values
75*c217d954SCole Faust         std::cout << common_params << std::endl;
76*c217d954SCole Faust         std::cout << "Image width: " << image_width << std::endl;
77*c217d954SCole Faust         std::cout << "Image height: " << image_height << std::endl;
78*c217d954SCole Faust 
79*c217d954SCole Faust         // Get trainable parameters data path
80*c217d954SCole Faust         const std::string data_path  = common_params.data_path;
81*c217d954SCole Faust         const std::string model_path = "/cnn_data/resnet12_model/";
82*c217d954SCole Faust 
83*c217d954SCole Faust         // Create a preprocessor object
84*c217d954SCole Faust         std::unique_ptr<IPreprocessor> preprocessor = std::make_unique<TFPreproccessor>();
85*c217d954SCole Faust 
86*c217d954SCole Faust         // Create input descriptor
87*c217d954SCole Faust         const TensorShape tensor_shape     = permute_shape(TensorShape(image_width, image_height, 3U, common_params.batches), DataLayout::NCHW, common_params.data_layout);
88*c217d954SCole Faust         TensorDescriptor  input_descriptor = TensorDescriptor(tensor_shape, common_params.data_type).set_layout(common_params.data_layout);
89*c217d954SCole Faust 
90*c217d954SCole Faust         // Set weights trained layout
91*c217d954SCole Faust         const DataLayout weights_layout = DataLayout::NCHW;
92*c217d954SCole Faust 
93*c217d954SCole Faust         graph << common_params.target
94*c217d954SCole Faust               << common_params.fast_math_hint
95*c217d954SCole Faust               << InputLayer(input_descriptor, get_input_accessor(common_params, std::move(preprocessor), false /* Do not convert to BGR */))
96*c217d954SCole Faust               << ConvolutionLayer(
97*c217d954SCole Faust                   9U, 9U, 64U,
98*c217d954SCole Faust                   get_weights_accessor(data_path, "conv1_weights.npy", weights_layout),
99*c217d954SCole Faust                   get_weights_accessor(data_path, "conv1_biases.npy", weights_layout),
100*c217d954SCole Faust                   PadStrideInfo(1, 1, 4, 4))
101*c217d954SCole Faust               .set_name("conv1/convolution")
102*c217d954SCole Faust               << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("conv1/Relu");
103*c217d954SCole Faust 
104*c217d954SCole Faust         add_residual_block(data_path, "block1", weights_layout);
105*c217d954SCole Faust         add_residual_block(data_path, "block2", weights_layout);
106*c217d954SCole Faust         add_residual_block(data_path, "block3", weights_layout);
107*c217d954SCole Faust         add_residual_block(data_path, "block4", weights_layout);
108*c217d954SCole Faust 
109*c217d954SCole Faust         graph << ConvolutionLayer(
110*c217d954SCole Faust                   3U, 3U, 64U,
111*c217d954SCole Faust                   get_weights_accessor(data_path, "conv10_weights.npy", weights_layout),
112*c217d954SCole Faust                   get_weights_accessor(data_path, "conv10_biases.npy"),
113*c217d954SCole Faust                   PadStrideInfo(1, 1, 1, 1))
114*c217d954SCole Faust               .set_name("conv10/convolution")
115*c217d954SCole Faust               << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("conv10/Relu")
116*c217d954SCole Faust               << ConvolutionLayer(
117*c217d954SCole Faust                   3U, 3U, 64U,
118*c217d954SCole Faust                   get_weights_accessor(data_path, "conv11_weights.npy", weights_layout),
119*c217d954SCole Faust                   get_weights_accessor(data_path, "conv11_biases.npy"),
120*c217d954SCole Faust                   PadStrideInfo(1, 1, 1, 1))
121*c217d954SCole Faust               .set_name("conv11/convolution")
122*c217d954SCole Faust               << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("conv11/Relu")
123*c217d954SCole Faust               << ConvolutionLayer(
124*c217d954SCole Faust                   9U, 9U, 3U,
125*c217d954SCole Faust                   get_weights_accessor(data_path, "conv12_weights.npy", weights_layout),
126*c217d954SCole Faust                   get_weights_accessor(data_path, "conv12_biases.npy"),
127*c217d954SCole Faust                   PadStrideInfo(1, 1, 4, 4))
128*c217d954SCole Faust               .set_name("conv12/convolution")
129*c217d954SCole Faust               << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::TANH)).set_name("conv12/Tanh")
130*c217d954SCole Faust               << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::LINEAR, 0.58f, 0.5f)).set_name("conv12/Linear")
131*c217d954SCole Faust               << OutputLayer(std::make_unique<DummyAccessor>(0));
132*c217d954SCole Faust 
133*c217d954SCole Faust         // Finalize graph
134*c217d954SCole Faust         GraphConfig config;
135*c217d954SCole Faust         config.num_threads = common_params.threads;
136*c217d954SCole Faust         config.use_tuner   = common_params.enable_tuner;
137*c217d954SCole Faust         config.tuner_mode  = common_params.tuner_mode;
138*c217d954SCole Faust         config.tuner_file  = common_params.tuner_file;
139*c217d954SCole Faust         config.mlgo_file   = common_params.mlgo_file;
140*c217d954SCole Faust 
141*c217d954SCole Faust         graph.finalize(common_params.target, config);
142*c217d954SCole Faust 
143*c217d954SCole Faust         return true;
144*c217d954SCole Faust     }
145*c217d954SCole Faust 
do_run()146*c217d954SCole Faust     void do_run() override
147*c217d954SCole Faust     {
148*c217d954SCole Faust         // Run graph
149*c217d954SCole Faust         graph.run();
150*c217d954SCole Faust     }
151*c217d954SCole Faust 
152*c217d954SCole Faust private:
153*c217d954SCole Faust     CommandLineParser           cmd_parser;
154*c217d954SCole Faust     CommonGraphOptions          common_opts;
155*c217d954SCole Faust     SimpleOption<unsigned int> *model_input_width{ nullptr };
156*c217d954SCole Faust     SimpleOption<unsigned int> *model_input_height{ nullptr };
157*c217d954SCole Faust     CommonGraphParams           common_params;
158*c217d954SCole Faust     Stream                      graph;
159*c217d954SCole Faust 
add_residual_block(const std::string & data_path,const std::string & name,DataLayout weights_layout)160*c217d954SCole Faust     void add_residual_block(const std::string &data_path, const std::string &name, DataLayout weights_layout)
161*c217d954SCole Faust     {
162*c217d954SCole Faust         std::stringstream unit_path_ss;
163*c217d954SCole Faust         unit_path_ss << data_path << name << "_";
164*c217d954SCole Faust         std::stringstream unit_name_ss;
165*c217d954SCole Faust         unit_name_ss << name << "/";
166*c217d954SCole Faust 
167*c217d954SCole Faust         std::string unit_path = unit_path_ss.str();
168*c217d954SCole Faust         std::string unit_name = unit_name_ss.str();
169*c217d954SCole Faust 
170*c217d954SCole Faust         SubStream left(graph);
171*c217d954SCole Faust         SubStream right(graph);
172*c217d954SCole Faust 
173*c217d954SCole Faust         right << ConvolutionLayer(
174*c217d954SCole Faust                   3U, 3U, 64U,
175*c217d954SCole Faust                   get_weights_accessor(data_path, unit_path + "conv1_weights.npy", weights_layout),
176*c217d954SCole Faust                   get_weights_accessor(data_path, unit_path + "conv1_biases.npy", weights_layout),
177*c217d954SCole Faust                   PadStrideInfo(1, 1, 1, 1))
178*c217d954SCole Faust               .set_name(unit_name + "conv1/convolution")
179*c217d954SCole Faust               << BatchNormalizationLayer(
180*c217d954SCole Faust                   get_weights_accessor(data_path, unit_path + "conv1_BatchNorm_moving_mean.npy"),
181*c217d954SCole Faust                   get_weights_accessor(data_path, unit_path + "conv1_BatchNorm_moving_variance.npy"),
182*c217d954SCole Faust                   get_weights_accessor(data_path, unit_path + "conv1_BatchNorm_gamma.npy"),
183*c217d954SCole Faust                   get_weights_accessor(data_path, unit_path + "conv1_BatchNorm_beta.npy"),
184*c217d954SCole Faust                   0.0000100099996416f)
185*c217d954SCole Faust               .set_name(unit_name + "conv1/BatchNorm")
186*c217d954SCole Faust               << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name(unit_name + "conv1/Relu")
187*c217d954SCole Faust 
188*c217d954SCole Faust               << ConvolutionLayer(
189*c217d954SCole Faust                   3U, 3U, 64U,
190*c217d954SCole Faust                   get_weights_accessor(data_path, unit_path + "conv2_weights.npy", weights_layout),
191*c217d954SCole Faust                   get_weights_accessor(data_path, unit_path + "conv2_biases.npy", weights_layout),
192*c217d954SCole Faust                   PadStrideInfo(1, 1, 1, 1))
193*c217d954SCole Faust               .set_name(unit_name + "conv2/convolution")
194*c217d954SCole Faust               << BatchNormalizationLayer(
195*c217d954SCole Faust                   get_weights_accessor(data_path, unit_path + "conv2_BatchNorm_moving_mean.npy"),
196*c217d954SCole Faust                   get_weights_accessor(data_path, unit_path + "conv2_BatchNorm_moving_variance.npy"),
197*c217d954SCole Faust                   get_weights_accessor(data_path, unit_path + "conv2_BatchNorm_gamma.npy"),
198*c217d954SCole Faust                   get_weights_accessor(data_path, unit_path + "conv2_BatchNorm_beta.npy"),
199*c217d954SCole Faust                   0.0000100099996416f)
200*c217d954SCole Faust               .set_name(unit_name + "conv2/BatchNorm")
201*c217d954SCole Faust               << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name(unit_name + "conv2/Relu");
202*c217d954SCole Faust 
203*c217d954SCole Faust         graph << EltwiseLayer(std::move(left), std::move(right), EltwiseOperation::Add).set_name(unit_name + "add");
204*c217d954SCole Faust     }
205*c217d954SCole Faust };
206*c217d954SCole Faust 
207*c217d954SCole Faust /** Main program for ResNet12
208*c217d954SCole Faust  *
209*c217d954SCole Faust  * Model is based on:
210*c217d954SCole Faust  *      https://arxiv.org/pdf/1709.01118.pdf
211*c217d954SCole Faust  *      "WESPE: Weakly Supervised Photo Enhancer for Digital Cameras"
212*c217d954SCole Faust  *      Andrey Ignatov, Nikolay Kobyshev, Kenneth Vanhoey, Radu Timofte, Luc Van Gool
213*c217d954SCole Faust  *
214*c217d954SCole Faust  * @note To list all the possible arguments execute the binary appended with the --help option
215*c217d954SCole Faust  *
216*c217d954SCole Faust  * @param[in] argc Number of arguments
217*c217d954SCole Faust  * @param[in] argv Arguments
218*c217d954SCole Faust  */
main(int argc,char ** argv)219*c217d954SCole Faust int main(int argc, char **argv)
220*c217d954SCole Faust {
221*c217d954SCole Faust     return arm_compute::utils::run_example<GraphResNet12Example>(argc, argv);
222*c217d954SCole Faust }
223