1*c217d954SCole Faust /*
2*c217d954SCole Faust * Copyright (c) 2018-2021 Arm Limited.
3*c217d954SCole Faust *
4*c217d954SCole Faust * SPDX-License-Identifier: MIT
5*c217d954SCole Faust *
6*c217d954SCole Faust * Permission is hereby granted, free of charge, to any person obtaining a copy
7*c217d954SCole Faust * of this software and associated documentation files (the "Software"), to
8*c217d954SCole Faust * deal in the Software without restriction, including without limitation the
9*c217d954SCole Faust * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10*c217d954SCole Faust * sell copies of the Software, and to permit persons to whom the Software is
11*c217d954SCole Faust * furnished to do so, subject to the following conditions:
12*c217d954SCole Faust *
13*c217d954SCole Faust * The above copyright notice and this permission notice shall be included in all
14*c217d954SCole Faust * copies or substantial portions of the Software.
15*c217d954SCole Faust *
16*c217d954SCole Faust * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17*c217d954SCole Faust * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18*c217d954SCole Faust * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19*c217d954SCole Faust * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20*c217d954SCole Faust * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21*c217d954SCole Faust * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22*c217d954SCole Faust * SOFTWARE.
23*c217d954SCole Faust */
24*c217d954SCole Faust #include "arm_compute/graph.h"
25*c217d954SCole Faust #include "support/ToolchainSupport.h"
26*c217d954SCole Faust #include "utils/CommonGraphOptions.h"
27*c217d954SCole Faust #include "utils/GraphUtils.h"
28*c217d954SCole Faust #include "utils/Utils.h"
29*c217d954SCole Faust
30*c217d954SCole Faust using namespace arm_compute;
31*c217d954SCole Faust using namespace arm_compute::utils;
32*c217d954SCole Faust using namespace arm_compute::graph::frontend;
33*c217d954SCole Faust using namespace arm_compute::graph_utils;
34*c217d954SCole Faust
35*c217d954SCole Faust /** Example demonstrating how to implement MobileNetV2's network using the Compute Library's graph API */
36*c217d954SCole Faust class GraphMobilenetV2Example : public Example
37*c217d954SCole Faust {
38*c217d954SCole Faust public:
GraphMobilenetV2Example()39*c217d954SCole Faust GraphMobilenetV2Example()
40*c217d954SCole Faust : cmd_parser(), common_opts(cmd_parser), common_params(), graph(0, "MobileNetV2")
41*c217d954SCole Faust {
42*c217d954SCole Faust }
43*c217d954SCole Faust GraphMobilenetV2Example(const GraphMobilenetV2Example &) = delete;
44*c217d954SCole Faust GraphMobilenetV2Example &operator=(const GraphMobilenetV2Example &) = delete;
45*c217d954SCole Faust ~GraphMobilenetV2Example() override = default;
46*c217d954SCole Faust
do_setup(int argc,char ** argv)47*c217d954SCole Faust bool do_setup(int argc, char **argv) override
48*c217d954SCole Faust {
49*c217d954SCole Faust // Parse arguments
50*c217d954SCole Faust cmd_parser.parse(argc, argv);
51*c217d954SCole Faust cmd_parser.validate();
52*c217d954SCole Faust
53*c217d954SCole Faust // Consume common parameters
54*c217d954SCole Faust common_params = consume_common_graph_parameters(common_opts);
55*c217d954SCole Faust
56*c217d954SCole Faust // Return when help menu is requested
57*c217d954SCole Faust if(common_params.help)
58*c217d954SCole Faust {
59*c217d954SCole Faust cmd_parser.print_help(argv[0]);
60*c217d954SCole Faust return false;
61*c217d954SCole Faust }
62*c217d954SCole Faust
63*c217d954SCole Faust // Print parameter values
64*c217d954SCole Faust std::cout << common_params << std::endl;
65*c217d954SCole Faust
66*c217d954SCole Faust // Create input descriptor
67*c217d954SCole Faust const TensorShape tensor_shape = permute_shape(TensorShape(224U, 224U, 3U, common_params.batches), DataLayout::NCHW, common_params.data_layout);
68*c217d954SCole Faust TensorDescriptor input_descriptor = TensorDescriptor(tensor_shape, common_params.data_type).set_layout(common_params.data_layout);
69*c217d954SCole Faust
70*c217d954SCole Faust // Set graph hints
71*c217d954SCole Faust graph << common_params.target
72*c217d954SCole Faust << common_params.fast_math_hint;
73*c217d954SCole Faust
74*c217d954SCole Faust // Create core graph
75*c217d954SCole Faust if(arm_compute::is_data_type_float(common_params.data_type))
76*c217d954SCole Faust {
77*c217d954SCole Faust create_graph_float(input_descriptor);
78*c217d954SCole Faust }
79*c217d954SCole Faust else
80*c217d954SCole Faust {
81*c217d954SCole Faust create_graph_qasymm8(input_descriptor);
82*c217d954SCole Faust }
83*c217d954SCole Faust // Create common tail
84*c217d954SCole Faust graph << ReshapeLayer(TensorShape(1001U)).set_name("Predictions/Reshape")
85*c217d954SCole Faust << SoftmaxLayer().set_name("Predictions/Softmax")
86*c217d954SCole Faust << OutputLayer(get_output_accessor(common_params, 5));
87*c217d954SCole Faust
88*c217d954SCole Faust // Finalize graph
89*c217d954SCole Faust GraphConfig config;
90*c217d954SCole Faust config.num_threads = common_params.threads;
91*c217d954SCole Faust config.use_tuner = common_params.enable_tuner;
92*c217d954SCole Faust config.tuner_mode = common_params.tuner_mode;
93*c217d954SCole Faust config.tuner_file = common_params.tuner_file;
94*c217d954SCole Faust config.mlgo_file = common_params.mlgo_file;
95*c217d954SCole Faust
96*c217d954SCole Faust graph.finalize(common_params.target, config);
97*c217d954SCole Faust
98*c217d954SCole Faust return true;
99*c217d954SCole Faust }
100*c217d954SCole Faust
do_run()101*c217d954SCole Faust void do_run() override
102*c217d954SCole Faust {
103*c217d954SCole Faust // Run graph
104*c217d954SCole Faust graph.run();
105*c217d954SCole Faust }
106*c217d954SCole Faust
107*c217d954SCole Faust private:
108*c217d954SCole Faust CommandLineParser cmd_parser;
109*c217d954SCole Faust CommonGraphOptions common_opts;
110*c217d954SCole Faust CommonGraphParams common_params;
111*c217d954SCole Faust Stream graph;
112*c217d954SCole Faust
113*c217d954SCole Faust private:
114*c217d954SCole Faust enum class IsResidual
115*c217d954SCole Faust {
116*c217d954SCole Faust Yes,
117*c217d954SCole Faust No
118*c217d954SCole Faust };
119*c217d954SCole Faust
120*c217d954SCole Faust enum class HasExpand
121*c217d954SCole Faust {
122*c217d954SCole Faust Yes,
123*c217d954SCole Faust No
124*c217d954SCole Faust };
125*c217d954SCole Faust
126*c217d954SCole Faust private:
create_graph_float(TensorDescriptor & input_descriptor)127*c217d954SCole Faust void create_graph_float(TensorDescriptor &input_descriptor)
128*c217d954SCole Faust {
129*c217d954SCole Faust // Create model path
130*c217d954SCole Faust const std::string model_path = "/cnn_data/mobilenet_v2_1.0_224_model/";
131*c217d954SCole Faust
132*c217d954SCole Faust // Create a preprocessor object
133*c217d954SCole Faust std::unique_ptr<IPreprocessor> preprocessor = std::make_unique<TFPreproccessor>();
134*c217d954SCole Faust
135*c217d954SCole Faust // Get trainable parameters data path
136*c217d954SCole Faust std::string data_path = common_params.data_path;
137*c217d954SCole Faust
138*c217d954SCole Faust // Add model path to data path
139*c217d954SCole Faust if(!data_path.empty())
140*c217d954SCole Faust {
141*c217d954SCole Faust data_path += model_path;
142*c217d954SCole Faust }
143*c217d954SCole Faust
144*c217d954SCole Faust graph << InputLayer(input_descriptor, get_input_accessor(common_params, std::move(preprocessor), false))
145*c217d954SCole Faust << ConvolutionLayer(3U, 3U, 32U,
146*c217d954SCole Faust get_weights_accessor(data_path, "Conv_weights.npy", DataLayout::NCHW),
147*c217d954SCole Faust std::unique_ptr<arm_compute::graph::ITensorAccessor>(nullptr),
148*c217d954SCole Faust PadStrideInfo(2, 2, 0, 1, 0, 1, DimensionRoundingType::CEIL))
149*c217d954SCole Faust .set_name("Conv")
150*c217d954SCole Faust << BatchNormalizationLayer(get_weights_accessor(data_path, "Conv_BatchNorm_moving_mean.npy"),
151*c217d954SCole Faust get_weights_accessor(data_path, "Conv_BatchNorm_moving_variance.npy"),
152*c217d954SCole Faust get_weights_accessor(data_path, "Conv_BatchNorm_gamma.npy"),
153*c217d954SCole Faust get_weights_accessor(data_path, "Conv_BatchNorm_beta.npy"),
154*c217d954SCole Faust 0.0010000000474974513f)
155*c217d954SCole Faust .set_name("Conv/BatchNorm")
156*c217d954SCole Faust << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::BOUNDED_RELU, 6.f))
157*c217d954SCole Faust .set_name("Conv/Relu6");
158*c217d954SCole Faust
159*c217d954SCole Faust get_expanded_conv_float(data_path, "expanded_conv", 32U, 16U, PadStrideInfo(1, 1, 1, 1));
160*c217d954SCole Faust get_expanded_conv_float(data_path, "expanded_conv_1", 16U, 24U, PadStrideInfo(2, 2, 0, 1, 0, 1, DimensionRoundingType::CEIL), HasExpand::Yes);
161*c217d954SCole Faust get_expanded_conv_float(data_path, "expanded_conv_2", 24U, 24U, PadStrideInfo(1, 1, 1, 1), HasExpand::Yes, IsResidual::Yes);
162*c217d954SCole Faust get_expanded_conv_float(data_path, "expanded_conv_3", 24U, 32U, PadStrideInfo(2, 2, 0, 1, 0, 1, DimensionRoundingType::CEIL), HasExpand::Yes);
163*c217d954SCole Faust get_expanded_conv_float(data_path, "expanded_conv_4", 32U, 32U, PadStrideInfo(1, 1, 1, 1), HasExpand::Yes, IsResidual::Yes);
164*c217d954SCole Faust get_expanded_conv_float(data_path, "expanded_conv_5", 32U, 32U, PadStrideInfo(1, 1, 1, 1), HasExpand::Yes, IsResidual::Yes);
165*c217d954SCole Faust get_expanded_conv_float(data_path, "expanded_conv_6", 32U, 64U, PadStrideInfo(2, 2, 0, 1, 0, 1, DimensionRoundingType::CEIL), HasExpand::Yes);
166*c217d954SCole Faust get_expanded_conv_float(data_path, "expanded_conv_7", 64U, 64U, PadStrideInfo(1, 1, 1, 1), HasExpand::Yes, IsResidual::Yes);
167*c217d954SCole Faust get_expanded_conv_float(data_path, "expanded_conv_8", 64U, 64U, PadStrideInfo(1, 1, 1, 1), HasExpand::Yes, IsResidual::Yes);
168*c217d954SCole Faust get_expanded_conv_float(data_path, "expanded_conv_9", 64U, 64U, PadStrideInfo(1, 1, 1, 1), HasExpand::Yes, IsResidual::Yes);
169*c217d954SCole Faust get_expanded_conv_float(data_path, "expanded_conv_10", 64U, 96U, PadStrideInfo(1, 1, 1, 1), HasExpand::Yes);
170*c217d954SCole Faust get_expanded_conv_float(data_path, "expanded_conv_11", 96U, 96U, PadStrideInfo(1, 1, 1, 1), HasExpand::Yes, IsResidual::Yes);
171*c217d954SCole Faust get_expanded_conv_float(data_path, "expanded_conv_12", 96U, 96U, PadStrideInfo(1, 1, 1, 1), HasExpand::Yes, IsResidual::Yes);
172*c217d954SCole Faust get_expanded_conv_float(data_path, "expanded_conv_13", 96U, 160U, PadStrideInfo(2, 2, 0, 1, 0, 1, DimensionRoundingType::CEIL), HasExpand::Yes);
173*c217d954SCole Faust get_expanded_conv_float(data_path, "expanded_conv_14", 160U, 160U, PadStrideInfo(1, 1, 1, 1), HasExpand::Yes, IsResidual::Yes);
174*c217d954SCole Faust get_expanded_conv_float(data_path, "expanded_conv_15", 160U, 160U, PadStrideInfo(1, 1, 1, 1), HasExpand::Yes, IsResidual::Yes);
175*c217d954SCole Faust get_expanded_conv_float(data_path, "expanded_conv_16", 160U, 320U, PadStrideInfo(1, 1, 1, 1), HasExpand::Yes);
176*c217d954SCole Faust
177*c217d954SCole Faust graph << ConvolutionLayer(1U, 1U, 1280U,
178*c217d954SCole Faust get_weights_accessor(data_path, "Conv_1_weights.npy", DataLayout::NCHW),
179*c217d954SCole Faust std::unique_ptr<arm_compute::graph::ITensorAccessor>(nullptr),
180*c217d954SCole Faust PadStrideInfo(1, 1, 0, 0))
181*c217d954SCole Faust .set_name("Conv_1")
182*c217d954SCole Faust << BatchNormalizationLayer(get_weights_accessor(data_path, "Conv_1_BatchNorm_moving_mean.npy"),
183*c217d954SCole Faust get_weights_accessor(data_path, "Conv_1_BatchNorm_moving_variance.npy"),
184*c217d954SCole Faust get_weights_accessor(data_path, "Conv_1_BatchNorm_gamma.npy"),
185*c217d954SCole Faust get_weights_accessor(data_path, "Conv_1_BatchNorm_beta.npy"),
186*c217d954SCole Faust 0.0010000000474974513f)
187*c217d954SCole Faust .set_name("Conv_1/BatchNorm")
188*c217d954SCole Faust << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::BOUNDED_RELU, 6.f))
189*c217d954SCole Faust .set_name("Conv_1/Relu6")
190*c217d954SCole Faust << PoolingLayer(PoolingLayerInfo(PoolingType::AVG, common_params.data_layout)).set_name("Logits/AvgPool")
191*c217d954SCole Faust << ConvolutionLayer(1U, 1U, 1001U,
192*c217d954SCole Faust get_weights_accessor(data_path, "Logits_Conv2d_1c_1x1_weights.npy", DataLayout::NCHW),
193*c217d954SCole Faust get_weights_accessor(data_path, "Logits_Conv2d_1c_1x1_biases.npy"),
194*c217d954SCole Faust PadStrideInfo(1, 1, 0, 0))
195*c217d954SCole Faust .set_name("Logits/Conv2d_1c_1x1");
196*c217d954SCole Faust }
197*c217d954SCole Faust
get_expanded_conv_float(const std::string & data_path,std::string && param_path,unsigned int input_channels,unsigned int output_channels,PadStrideInfo dwc_pad_stride_info,HasExpand has_expand=HasExpand::No,IsResidual is_residual=IsResidual::No,unsigned int expansion_size=6)198*c217d954SCole Faust void get_expanded_conv_float(const std::string &data_path, std::string &¶m_path,
199*c217d954SCole Faust unsigned int input_channels, unsigned int output_channels,
200*c217d954SCole Faust PadStrideInfo dwc_pad_stride_info,
201*c217d954SCole Faust HasExpand has_expand = HasExpand::No, IsResidual is_residual = IsResidual::No,
202*c217d954SCole Faust unsigned int expansion_size = 6)
203*c217d954SCole Faust {
204*c217d954SCole Faust std::string total_path = param_path + "_";
205*c217d954SCole Faust SubStream left(graph);
206*c217d954SCole Faust
207*c217d954SCole Faust // Add expand node
208*c217d954SCole Faust if(has_expand == HasExpand::Yes)
209*c217d954SCole Faust {
210*c217d954SCole Faust left << ConvolutionLayer(1U, 1U, input_channels * expansion_size,
211*c217d954SCole Faust get_weights_accessor(data_path, total_path + "expand_weights.npy", DataLayout::NCHW),
212*c217d954SCole Faust std::unique_ptr<arm_compute::graph::ITensorAccessor>(nullptr), PadStrideInfo(1, 1, 0, 0))
213*c217d954SCole Faust .set_name(param_path + "/expand/Conv2D")
214*c217d954SCole Faust << BatchNormalizationLayer(get_weights_accessor(data_path, total_path + "expand_BatchNorm_moving_mean.npy"),
215*c217d954SCole Faust get_weights_accessor(data_path, total_path + "expand_BatchNorm_moving_variance.npy"),
216*c217d954SCole Faust get_weights_accessor(data_path, total_path + "expand_BatchNorm_gamma.npy"),
217*c217d954SCole Faust get_weights_accessor(data_path, total_path + "expand_BatchNorm_beta.npy"),
218*c217d954SCole Faust 0.0010000000474974513f)
219*c217d954SCole Faust .set_name(param_path + "/expand/BatchNorm")
220*c217d954SCole Faust << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::BOUNDED_RELU, 6.f))
221*c217d954SCole Faust .set_name(param_path + "/expand/Relu6");
222*c217d954SCole Faust }
223*c217d954SCole Faust
224*c217d954SCole Faust // Add depthwise node
225*c217d954SCole Faust left << DepthwiseConvolutionLayer(3U, 3U,
226*c217d954SCole Faust get_weights_accessor(data_path, total_path + "depthwise_depthwise_weights.npy", DataLayout::NCHW),
227*c217d954SCole Faust std::unique_ptr<arm_compute::graph::ITensorAccessor>(nullptr),
228*c217d954SCole Faust dwc_pad_stride_info)
229*c217d954SCole Faust .set_name(param_path + "/depthwise/depthwise")
230*c217d954SCole Faust << BatchNormalizationLayer(get_weights_accessor(data_path, total_path + "depthwise_BatchNorm_moving_mean.npy"),
231*c217d954SCole Faust get_weights_accessor(data_path, total_path + "depthwise_BatchNorm_moving_variance.npy"),
232*c217d954SCole Faust get_weights_accessor(data_path, total_path + "depthwise_BatchNorm_gamma.npy"),
233*c217d954SCole Faust get_weights_accessor(data_path, total_path + "depthwise_BatchNorm_beta.npy"),
234*c217d954SCole Faust 0.0010000000474974513f)
235*c217d954SCole Faust .set_name(param_path + "/depthwise/BatchNorm")
236*c217d954SCole Faust << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::BOUNDED_RELU, 6.f))
237*c217d954SCole Faust .set_name(param_path + "/depthwise/Relu6");
238*c217d954SCole Faust
239*c217d954SCole Faust // Add project node
240*c217d954SCole Faust left << ConvolutionLayer(1U, 1U, output_channels,
241*c217d954SCole Faust get_weights_accessor(data_path, total_path + "project_weights.npy", DataLayout::NCHW),
242*c217d954SCole Faust std::unique_ptr<arm_compute::graph::ITensorAccessor>(nullptr), PadStrideInfo(1, 1, 0, 0))
243*c217d954SCole Faust .set_name(param_path + "/project/Conv2D")
244*c217d954SCole Faust << BatchNormalizationLayer(get_weights_accessor(data_path, total_path + "project_BatchNorm_moving_mean.npy"),
245*c217d954SCole Faust get_weights_accessor(data_path, total_path + "project_BatchNorm_moving_variance.npy"),
246*c217d954SCole Faust get_weights_accessor(data_path, total_path + "project_BatchNorm_gamma.npy"),
247*c217d954SCole Faust get_weights_accessor(data_path, total_path + "project_BatchNorm_beta.npy"),
248*c217d954SCole Faust 0.0010000000474974513)
249*c217d954SCole Faust .set_name(param_path + "/project/BatchNorm");
250*c217d954SCole Faust
251*c217d954SCole Faust if(is_residual == IsResidual::Yes)
252*c217d954SCole Faust {
253*c217d954SCole Faust // Add residual node
254*c217d954SCole Faust SubStream right(graph);
255*c217d954SCole Faust graph << EltwiseLayer(std::move(left), std::move(right), EltwiseOperation::Add).set_name(param_path + "/add");
256*c217d954SCole Faust }
257*c217d954SCole Faust else
258*c217d954SCole Faust {
259*c217d954SCole Faust graph.forward_tail(left.tail_node());
260*c217d954SCole Faust }
261*c217d954SCole Faust }
262*c217d954SCole Faust
create_graph_qasymm8(TensorDescriptor & input_descriptor)263*c217d954SCole Faust void create_graph_qasymm8(TensorDescriptor &input_descriptor)
264*c217d954SCole Faust {
265*c217d954SCole Faust // Create model path
266*c217d954SCole Faust const std::string model_path = "/cnn_data/mobilenet_v2_1.0_224_quantized_model/";
267*c217d954SCole Faust
268*c217d954SCole Faust // Get trainable parameters data path
269*c217d954SCole Faust std::string data_path = common_params.data_path;
270*c217d954SCole Faust
271*c217d954SCole Faust // Add model path to data path
272*c217d954SCole Faust if(!data_path.empty())
273*c217d954SCole Faust {
274*c217d954SCole Faust data_path += model_path;
275*c217d954SCole Faust }
276*c217d954SCole Faust
277*c217d954SCole Faust const QuantizationInfo in_quant_info = QuantizationInfo(0.0078125f, 128);
278*c217d954SCole Faust const QuantizationInfo mid_quant_info = QuantizationInfo(0.023528477177023888f, 128);
279*c217d954SCole Faust
280*c217d954SCole Faust const std::vector<QuantizationInfo> conv_weights_quant_info =
281*c217d954SCole Faust {
282*c217d954SCole Faust QuantizationInfo(0.03396892547607422f, 122), // Conv
283*c217d954SCole Faust QuantizationInfo(0.005167067516595125f, 125), // Conv1
284*c217d954SCole Faust QuantizationInfo(0.0016910821432247758f, 113) // Conv2d_1c_1x1
285*c217d954SCole Faust };
286*c217d954SCole Faust
287*c217d954SCole Faust // Pointwise expand convolution quantization info
288*c217d954SCole Faust const std::vector<QuantizationInfo> pwc_q =
289*c217d954SCole Faust {
290*c217d954SCole Faust QuantizationInfo(0.254282623529f, 129), // expand_0 (Dummy)
291*c217d954SCole Faust QuantizationInfo(0.009758507832884789f, 127), // expand_1
292*c217d954SCole Faust QuantizationInfo(0.0036556976847350597f, 144), // expand_2
293*c217d954SCole Faust QuantizationInfo(0.0029988749884068966f, 104), // expand_3
294*c217d954SCole Faust QuantizationInfo(0.0019244228024035692f, 128), // expand_4
295*c217d954SCole Faust QuantizationInfo(0.0013649158645421267f, 135), // expand_5
296*c217d954SCole Faust QuantizationInfo(0.0019170437008142471f, 127), // expand_6
297*c217d954SCole Faust QuantizationInfo(0.0015538912266492844f, 125), // expand_7
298*c217d954SCole Faust QuantizationInfo(0.0014702979242429137f, 134), // expand_8
299*c217d954SCole Faust QuantizationInfo(0.0013733493397012353f, 127), // expand_9
300*c217d954SCole Faust QuantizationInfo(0.0016282502328976989f, 131), // expand_10
301*c217d954SCole Faust QuantizationInfo(0.0016309921629726887f, 134), // expand_11
302*c217d954SCole Faust QuantizationInfo(0.0018258779309689999f, 138), // expand_12
303*c217d954SCole Faust QuantizationInfo(0.0013828007504343987f, 123), // expand_13
304*c217d954SCole Faust QuantizationInfo(0.0020222084131091833f, 135), // expand_14
305*c217d954SCole Faust QuantizationInfo(0.04281935095787048f, 102), // expand_15
306*c217d954SCole Faust QuantizationInfo(0.002046825597062707f, 135) // expand_16
307*c217d954SCole Faust };
308*c217d954SCole Faust // Depthwise expand convolution quantization info
309*c217d954SCole Faust const std::vector<QuantizationInfo> dwc_q =
310*c217d954SCole Faust {
311*c217d954SCole Faust QuantizationInfo(0.3436955213546753f, 165), // expand_0
312*c217d954SCole Faust QuantizationInfo(0.020969120785593987f, 109), // expand_1
313*c217d954SCole Faust QuantizationInfo(0.16981913149356842f, 52), // expand_2
314*c217d954SCole Faust QuantizationInfo(0.017202870920300484f, 143), // expand_3
315*c217d954SCole Faust QuantizationInfo(0.06525065749883652f, 118), // expand_4
316*c217d954SCole Faust QuantizationInfo(0.07909784466028214f, 95), // expand_5
317*c217d954SCole Faust QuantizationInfo(0.010087885893881321f, 127), // expand_6
318*c217d954SCole Faust QuantizationInfo(0.06092711538076401f, 110), // expand_7
319*c217d954SCole Faust QuantizationInfo(0.052407849580049515f, 133), // expand_8
320*c217d954SCole Faust QuantizationInfo(0.04077887907624245f, 155), // expand_9
321*c217d954SCole Faust QuantizationInfo(0.031107846647500992f, 143), // expand_10
322*c217d954SCole Faust QuantizationInfo(0.07080810517072678f, 66), // expand_11
323*c217d954SCole Faust QuantizationInfo(0.07448793947696686f, 159), // expand_12
324*c217d954SCole Faust QuantizationInfo(0.01525793131440878f, 92), // expand_13
325*c217d954SCole Faust QuantizationInfo(0.04166752099990845f, 147), // expand_14
326*c217d954SCole Faust QuantizationInfo(0.04281935095787048f, 102), // expand_15
327*c217d954SCole Faust QuantizationInfo(0.16456253826618195, 201) // expand_16
328*c217d954SCole Faust };
329*c217d954SCole Faust // Project convolution quantization info
330*c217d954SCole Faust const std::vector<QuantizationInfo> prwc_q =
331*c217d954SCole Faust {
332*c217d954SCole Faust QuantizationInfo(0.03737175464630127f, 140), // expand_0
333*c217d954SCole Faust QuantizationInfo(0.0225360207259655f, 156), // expand_1
334*c217d954SCole Faust QuantizationInfo(0.02740888111293316f, 122), // expand_2
335*c217d954SCole Faust QuantizationInfo(0.016844693571329117f, 111), // expand_3
336*c217d954SCole Faust QuantizationInfo(0.019062912091612816f, 146), // expand_4
337*c217d954SCole Faust QuantizationInfo(0.018293123692274094f, 128), // expand_5
338*c217d954SCole Faust QuantizationInfo(0.014601286500692368f, 147), // expand_6
339*c217d954SCole Faust QuantizationInfo(0.016782939434051514f, 124), // expand_7
340*c217d954SCole Faust QuantizationInfo(0.012898261658847332f, 125), // expand_8
341*c217d954SCole Faust QuantizationInfo(0.019561484456062317f, 144), // expand_9
342*c217d954SCole Faust QuantizationInfo(0.007436311338096857f, 129), // expand_10
343*c217d954SCole Faust QuantizationInfo(0.00838223285973072f, 136), // expand_11
344*c217d954SCole Faust QuantizationInfo(0.023982593789696693f, 154), // expand_12
345*c217d954SCole Faust QuantizationInfo(0.009447949007153511f, 140), // expand_13
346*c217d954SCole Faust QuantizationInfo(0.00789870135486126f, 139), // expand_14
347*c217d954SCole Faust QuantizationInfo(0.03697410225868225f, 131), // expand_15
348*c217d954SCole Faust QuantizationInfo(0.008009289391338825f, 111) // expand_16
349*c217d954SCole Faust };
350*c217d954SCole Faust
351*c217d954SCole Faust graph << InputLayer(input_descriptor.set_quantization_info(in_quant_info),
352*c217d954SCole Faust get_weights_accessor(data_path, common_params.image))
353*c217d954SCole Faust << ConvolutionLayer(
354*c217d954SCole Faust 3U, 3U, 32U,
355*c217d954SCole Faust get_weights_accessor(data_path, "Conv_weights.npy"),
356*c217d954SCole Faust get_weights_accessor(data_path, "Conv_bias.npy"),
357*c217d954SCole Faust PadStrideInfo(2U, 2U, 0U, 1U, 0U, 1U, DimensionRoundingType::FLOOR),
358*c217d954SCole Faust 1, conv_weights_quant_info.at(0), mid_quant_info)
359*c217d954SCole Faust .set_name("Conv")
360*c217d954SCole Faust << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::LU_BOUNDED_RELU, 6.f)).set_name("Conv/Relu6")
361*c217d954SCole Faust << DepthwiseConvolutionLayer(3U, 3U,
362*c217d954SCole Faust get_weights_accessor(data_path, "expanded_conv_depthwise_depthwise_weights.npy"),
363*c217d954SCole Faust get_weights_accessor(data_path, "expanded_conv_depthwise_depthwise_biases.npy"),
364*c217d954SCole Faust PadStrideInfo(1, 1, 1, 1), 1, dwc_q.at(0))
365*c217d954SCole Faust .set_name("expanded_conv/depthwise/depthwise")
366*c217d954SCole Faust << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::LU_BOUNDED_RELU, 6.f)).set_name("expanded_conv/depthwise/Relu6")
367*c217d954SCole Faust << ConvolutionLayer(1U, 1U, 16U,
368*c217d954SCole Faust get_weights_accessor(data_path, "expanded_conv_project_weights.npy"),
369*c217d954SCole Faust get_weights_accessor(data_path, "expanded_conv_project_biases.npy"),
370*c217d954SCole Faust PadStrideInfo(1, 1, 0, 0), 1, prwc_q.at(0))
371*c217d954SCole Faust .set_name("expanded_conv/project/Conv2D");
372*c217d954SCole Faust
373*c217d954SCole Faust get_expanded_conv_qasymm8(data_path, "expanded_conv_1", IsResidual::No, 96U, 24U, PadStrideInfo(2, 2, 0, 1, 0, 1, DimensionRoundingType::CEIL),
374*c217d954SCole Faust pwc_q.at(1), dwc_q.at(1), prwc_q.at(1));
375*c217d954SCole Faust get_expanded_conv_qasymm8(data_path, "expanded_conv_2", IsResidual::Yes, 144U, 24U, PadStrideInfo(1, 1, 1, 1), pwc_q.at(2), dwc_q.at(2), prwc_q.at(2));
376*c217d954SCole Faust get_expanded_conv_qasymm8(data_path, "expanded_conv_3", IsResidual::No, 144U, 32U, PadStrideInfo(2, 2, 0, 1, 0, 1, DimensionRoundingType::CEIL),
377*c217d954SCole Faust pwc_q.at(3), dwc_q.at(3), prwc_q.at(3));
378*c217d954SCole Faust get_expanded_conv_qasymm8(data_path, "expanded_conv_4", IsResidual::Yes, 192U, 32U, PadStrideInfo(1, 1, 1, 1), pwc_q.at(4), dwc_q.at(4), prwc_q.at(4));
379*c217d954SCole Faust get_expanded_conv_qasymm8(data_path, "expanded_conv_5", IsResidual::Yes, 192U, 32U, PadStrideInfo(1, 1, 1, 1), pwc_q.at(5), dwc_q.at(5), prwc_q.at(5));
380*c217d954SCole Faust get_expanded_conv_qasymm8(data_path, "expanded_conv_6", IsResidual::No, 192U, 64U, PadStrideInfo(2, 2, 0, 1, 0, 1, DimensionRoundingType::CEIL),
381*c217d954SCole Faust pwc_q.at(6), dwc_q.at(6), prwc_q.at(6));
382*c217d954SCole Faust get_expanded_conv_qasymm8(data_path, "expanded_conv_7", IsResidual::Yes, 384U, 64U, PadStrideInfo(1, 1, 1, 1), pwc_q.at(7), dwc_q.at(7), prwc_q.at(7));
383*c217d954SCole Faust get_expanded_conv_qasymm8(data_path, "expanded_conv_8", IsResidual::Yes, 384U, 64U, PadStrideInfo(1, 1, 1, 1), pwc_q.at(8), dwc_q.at(8), prwc_q.at(8));
384*c217d954SCole Faust get_expanded_conv_qasymm8(data_path, "expanded_conv_9", IsResidual::Yes, 384U, 64U, PadStrideInfo(1, 1, 1, 1), pwc_q.at(9), dwc_q.at(9), prwc_q.at(9));
385*c217d954SCole Faust get_expanded_conv_qasymm8(data_path, "expanded_conv_10", IsResidual::No, 384U, 96U, PadStrideInfo(1, 1, 1, 1), pwc_q.at(10), dwc_q.at(10), prwc_q.at(10));
386*c217d954SCole Faust get_expanded_conv_qasymm8(data_path, "expanded_conv_11", IsResidual::Yes, 576U, 96U, PadStrideInfo(1, 1, 1, 1), pwc_q.at(11), dwc_q.at(11), prwc_q.at(11));
387*c217d954SCole Faust get_expanded_conv_qasymm8(data_path, "expanded_conv_12", IsResidual::Yes, 576U, 96U, PadStrideInfo(1, 1, 1, 1), pwc_q.at(12), dwc_q.at(12), prwc_q.at(12));
388*c217d954SCole Faust get_expanded_conv_qasymm8(data_path, "expanded_conv_13", IsResidual::No, 576U, 160U, PadStrideInfo(2, 2, 0, 1, 0, 1, DimensionRoundingType::CEIL),
389*c217d954SCole Faust pwc_q.at(13), dwc_q.at(13), prwc_q.at(13));
390*c217d954SCole Faust get_expanded_conv_qasymm8(data_path, "expanded_conv_14", IsResidual::Yes, 960U, 160U, PadStrideInfo(1, 1, 1, 1), pwc_q.at(14), dwc_q.at(14), prwc_q.at(14));
391*c217d954SCole Faust get_expanded_conv_qasymm8(data_path, "expanded_conv_15", IsResidual::Yes, 960U, 160U, PadStrideInfo(1, 1, 1, 1), pwc_q.at(15), dwc_q.at(15), prwc_q.at(15));
392*c217d954SCole Faust get_expanded_conv_qasymm8(data_path, "expanded_conv_16", IsResidual::No, 960U, 320U, PadStrideInfo(1, 1, 1, 1), pwc_q.at(16), dwc_q.at(16), prwc_q.at(16));
393*c217d954SCole Faust
394*c217d954SCole Faust graph << ConvolutionLayer(1U, 1U, 1280U,
395*c217d954SCole Faust get_weights_accessor(data_path, "Conv_1_weights.npy"),
396*c217d954SCole Faust get_weights_accessor(data_path, "Conv_1_biases.npy"),
397*c217d954SCole Faust PadStrideInfo(1, 1, 0, 0), 1, conv_weights_quant_info.at(1))
398*c217d954SCole Faust .set_name("Conv_1")
399*c217d954SCole Faust << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::LU_BOUNDED_RELU, 6.f)).set_name("Conv_1/Relu6")
400*c217d954SCole Faust << PoolingLayer(PoolingLayerInfo(PoolingType::AVG, common_params.data_layout)).set_name("Logits/AvgPool")
401*c217d954SCole Faust << ConvolutionLayer(1U, 1U, 1001U,
402*c217d954SCole Faust get_weights_accessor(data_path, "Logits_Conv2d_1c_1x1_weights.npy"),
403*c217d954SCole Faust get_weights_accessor(data_path, "Logits_Conv2d_1c_1x1_biases.npy"),
404*c217d954SCole Faust PadStrideInfo(1, 1, 0, 0), 1, conv_weights_quant_info.at(2))
405*c217d954SCole Faust .set_name("Logits/Conv2d_1c_1x1");
406*c217d954SCole Faust }
407*c217d954SCole Faust
get_expanded_conv_qasymm8(const std::string & data_path,std::string && param_path,IsResidual is_residual,unsigned int input_channels,unsigned int output_channels,PadStrideInfo dwc_pad_stride_info,const QuantizationInfo & pwi,const QuantizationInfo & dwi,const QuantizationInfo & pji)408*c217d954SCole Faust void get_expanded_conv_qasymm8(const std::string &data_path, std::string &¶m_path, IsResidual is_residual,
409*c217d954SCole Faust unsigned int input_channels, unsigned int output_channels,
410*c217d954SCole Faust PadStrideInfo dwc_pad_stride_info,
411*c217d954SCole Faust const QuantizationInfo &pwi, const QuantizationInfo &dwi, const QuantizationInfo &pji)
412*c217d954SCole Faust {
413*c217d954SCole Faust std::string total_path = param_path + "_";
414*c217d954SCole Faust
415*c217d954SCole Faust SubStream left(graph);
416*c217d954SCole Faust left << ConvolutionLayer(1U, 1U, input_channels,
417*c217d954SCole Faust get_weights_accessor(data_path, total_path + "project_weights.npy"),
418*c217d954SCole Faust get_weights_accessor(data_path, total_path + "project_biases.npy"),
419*c217d954SCole Faust PadStrideInfo(1, 1, 0, 0), 1, pwi)
420*c217d954SCole Faust .set_name(param_path + "/Conv2D")
421*c217d954SCole Faust << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::LU_BOUNDED_RELU, 6.f)).set_name(param_path + "/Conv2D/Relu6")
422*c217d954SCole Faust << DepthwiseConvolutionLayer(3U, 3U,
423*c217d954SCole Faust get_weights_accessor(data_path, total_path + "depthwise_depthwise_weights.npy"),
424*c217d954SCole Faust get_weights_accessor(data_path, total_path + "depthwise_depthwise_biases.npy"),
425*c217d954SCole Faust dwc_pad_stride_info, 1, dwi)
426*c217d954SCole Faust .set_name(param_path + "/depthwise/depthwise")
427*c217d954SCole Faust << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::LU_BOUNDED_RELU, 6.f)).set_name(param_path + "/depthwise/Relu6")
428*c217d954SCole Faust << ConvolutionLayer(1U, 1U, output_channels,
429*c217d954SCole Faust get_weights_accessor(data_path, total_path + "project_weights.npy"),
430*c217d954SCole Faust get_weights_accessor(data_path, total_path + "project_biases.npy"),
431*c217d954SCole Faust PadStrideInfo(1, 1, 0, 0), 1, pji)
432*c217d954SCole Faust .set_name(param_path + "/project/Conv2D");
433*c217d954SCole Faust
434*c217d954SCole Faust if(is_residual == IsResidual::Yes)
435*c217d954SCole Faust {
436*c217d954SCole Faust // Add residual node
437*c217d954SCole Faust SubStream right(graph);
438*c217d954SCole Faust graph << EltwiseLayer(std::move(left), std::move(right), EltwiseOperation::Add).set_name(param_path + "/add");
439*c217d954SCole Faust }
440*c217d954SCole Faust else
441*c217d954SCole Faust {
442*c217d954SCole Faust graph.forward_tail(left.tail_node());
443*c217d954SCole Faust }
444*c217d954SCole Faust }
445*c217d954SCole Faust };
446*c217d954SCole Faust
447*c217d954SCole Faust /** Main program for MobileNetV2
448*c217d954SCole Faust *
449*c217d954SCole Faust * Model is based on:
450*c217d954SCole Faust * https://arxiv.org/abs/1801.04381
451*c217d954SCole Faust * "MobileNetV2: Inverted Residuals and Linear Bottlenecks"
452*c217d954SCole Faust * Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, Liang-Chieh Chen
453*c217d954SCole Faust *
454*c217d954SCole Faust * Provenance: https://storage.googleapis.com/mobilenet_v2/checkpoints/mobilenet_v2_1.0_224.tgz
455*c217d954SCole Faust *
456*c217d954SCole Faust * @note To list all the possible arguments execute the binary appended with the --help option
457*c217d954SCole Faust *
458*c217d954SCole Faust * @param[in] argc Number of arguments
459*c217d954SCole Faust * @param[in] argv Arguments
460*c217d954SCole Faust */
main(int argc,char ** argv)461*c217d954SCole Faust int main(int argc, char **argv)
462*c217d954SCole Faust {
463*c217d954SCole Faust return arm_compute::utils::run_example<GraphMobilenetV2Example>(argc, argv);
464*c217d954SCole Faust }
465