xref: /aosp_15_r20/external/ComputeLibrary/examples/graph_lenet.cpp (revision c217d954acce2dbc11938adb493fc0abd69584f3)
1*c217d954SCole Faust /*
2*c217d954SCole Faust  * Copyright (c) 2017-2021 Arm Limited.
3*c217d954SCole Faust  *
4*c217d954SCole Faust  * SPDX-License-Identifier: MIT
5*c217d954SCole Faust  *
6*c217d954SCole Faust  * Permission is hereby granted, free of charge, to any person obtaining a copy
7*c217d954SCole Faust  * of this software and associated documentation files (the "Software"), to
8*c217d954SCole Faust  * deal in the Software without restriction, including without limitation the
9*c217d954SCole Faust  * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10*c217d954SCole Faust  * sell copies of the Software, and to permit persons to whom the Software is
11*c217d954SCole Faust  * furnished to do so, subject to the following conditions:
12*c217d954SCole Faust  *
13*c217d954SCole Faust  * The above copyright notice and this permission notice shall be included in all
14*c217d954SCole Faust  * copies or substantial portions of the Software.
15*c217d954SCole Faust  *
16*c217d954SCole Faust  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17*c217d954SCole Faust  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18*c217d954SCole Faust  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19*c217d954SCole Faust  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20*c217d954SCole Faust  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21*c217d954SCole Faust  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22*c217d954SCole Faust  * SOFTWARE.
23*c217d954SCole Faust  */
24*c217d954SCole Faust #include "arm_compute/graph.h"
25*c217d954SCole Faust #include "support/ToolchainSupport.h"
26*c217d954SCole Faust #include "utils/CommonGraphOptions.h"
27*c217d954SCole Faust #include "utils/GraphUtils.h"
28*c217d954SCole Faust #include "utils/Utils.h"
29*c217d954SCole Faust 
30*c217d954SCole Faust using namespace arm_compute::utils;
31*c217d954SCole Faust using namespace arm_compute::graph::frontend;
32*c217d954SCole Faust using namespace arm_compute::graph_utils;
33*c217d954SCole Faust 
34*c217d954SCole Faust /** Example demonstrating how to implement LeNet's network using the Compute Library's graph API */
35*c217d954SCole Faust class GraphLenetExample : public Example
36*c217d954SCole Faust {
37*c217d954SCole Faust public:
GraphLenetExample()38*c217d954SCole Faust     GraphLenetExample()
39*c217d954SCole Faust         : cmd_parser(), common_opts(cmd_parser), common_params(), graph(0, "LeNet")
40*c217d954SCole Faust     {
41*c217d954SCole Faust     }
do_setup(int argc,char ** argv)42*c217d954SCole Faust     bool do_setup(int argc, char **argv) override
43*c217d954SCole Faust     {
44*c217d954SCole Faust         // Parse arguments
45*c217d954SCole Faust         cmd_parser.parse(argc, argv);
46*c217d954SCole Faust         cmd_parser.validate();
47*c217d954SCole Faust 
48*c217d954SCole Faust         // Consume common parameters
49*c217d954SCole Faust         common_params = consume_common_graph_parameters(common_opts);
50*c217d954SCole Faust 
51*c217d954SCole Faust         // Return when help menu is requested
52*c217d954SCole Faust         if(common_params.help)
53*c217d954SCole Faust         {
54*c217d954SCole Faust             cmd_parser.print_help(argv[0]);
55*c217d954SCole Faust             return false;
56*c217d954SCole Faust         }
57*c217d954SCole Faust 
58*c217d954SCole Faust         // Checks
59*c217d954SCole Faust         ARM_COMPUTE_EXIT_ON_MSG(arm_compute::is_data_type_quantized_asymmetric(common_params.data_type), "QASYMM8 not supported for this graph");
60*c217d954SCole Faust 
61*c217d954SCole Faust         // Print parameter values
62*c217d954SCole Faust         std::cout << common_params << std::endl;
63*c217d954SCole Faust 
64*c217d954SCole Faust         // Get trainable parameters data path
65*c217d954SCole Faust         std::string  data_path = common_params.data_path;
66*c217d954SCole Faust         unsigned int batches   = 4; /** Number of batches */
67*c217d954SCole Faust 
68*c217d954SCole Faust         // Create input descriptor
69*c217d954SCole Faust         const auto        operation_layout = common_params.data_layout;
70*c217d954SCole Faust         const TensorShape tensor_shape     = permute_shape(TensorShape(28U, 28U, 1U, batches), DataLayout::NCHW, operation_layout);
71*c217d954SCole Faust         TensorDescriptor  input_descriptor = TensorDescriptor(tensor_shape, common_params.data_type).set_layout(operation_layout);
72*c217d954SCole Faust 
73*c217d954SCole Faust         // Set weights trained layout
74*c217d954SCole Faust         const DataLayout weights_layout = DataLayout::NCHW;
75*c217d954SCole Faust 
76*c217d954SCole Faust         //conv1 << pool1 << conv2 << pool2 << fc1 << act1 << fc2 << smx
77*c217d954SCole Faust         graph << common_params.target
78*c217d954SCole Faust               << common_params.fast_math_hint
79*c217d954SCole Faust               << InputLayer(input_descriptor, get_input_accessor(common_params))
80*c217d954SCole Faust               << ConvolutionLayer(
81*c217d954SCole Faust                   5U, 5U, 20U,
82*c217d954SCole Faust                   get_weights_accessor(data_path, "/cnn_data/lenet_model/conv1_w.npy", weights_layout),
83*c217d954SCole Faust                   get_weights_accessor(data_path, "/cnn_data/lenet_model/conv1_b.npy"),
84*c217d954SCole Faust                   PadStrideInfo(1, 1, 0, 0))
85*c217d954SCole Faust               .set_name("conv1")
86*c217d954SCole Faust               << PoolingLayer(PoolingLayerInfo(PoolingType::MAX, 2, operation_layout, PadStrideInfo(2, 2, 0, 0))).set_name("pool1")
87*c217d954SCole Faust               << ConvolutionLayer(
88*c217d954SCole Faust                   5U, 5U, 50U,
89*c217d954SCole Faust                   get_weights_accessor(data_path, "/cnn_data/lenet_model/conv2_w.npy", weights_layout),
90*c217d954SCole Faust                   get_weights_accessor(data_path, "/cnn_data/lenet_model/conv2_b.npy"),
91*c217d954SCole Faust                   PadStrideInfo(1, 1, 0, 0))
92*c217d954SCole Faust               .set_name("conv2")
93*c217d954SCole Faust               << PoolingLayer(PoolingLayerInfo(PoolingType::MAX, 2, operation_layout, PadStrideInfo(2, 2, 0, 0))).set_name("pool2")
94*c217d954SCole Faust               << FullyConnectedLayer(
95*c217d954SCole Faust                   500U,
96*c217d954SCole Faust                   get_weights_accessor(data_path, "/cnn_data/lenet_model/ip1_w.npy", weights_layout),
97*c217d954SCole Faust                   get_weights_accessor(data_path, "/cnn_data/lenet_model/ip1_b.npy"))
98*c217d954SCole Faust               .set_name("ip1")
99*c217d954SCole Faust               << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("relu")
100*c217d954SCole Faust               << FullyConnectedLayer(
101*c217d954SCole Faust                   10U,
102*c217d954SCole Faust                   get_weights_accessor(data_path, "/cnn_data/lenet_model/ip2_w.npy", weights_layout),
103*c217d954SCole Faust                   get_weights_accessor(data_path, "/cnn_data/lenet_model/ip2_b.npy"))
104*c217d954SCole Faust               .set_name("ip2")
105*c217d954SCole Faust               << SoftmaxLayer().set_name("prob")
106*c217d954SCole Faust               << OutputLayer(get_output_accessor(common_params));
107*c217d954SCole Faust 
108*c217d954SCole Faust         // Finalize graph
109*c217d954SCole Faust         GraphConfig config;
110*c217d954SCole Faust         config.num_threads = common_params.threads;
111*c217d954SCole Faust         config.use_tuner   = common_params.enable_tuner;
112*c217d954SCole Faust         config.tuner_mode  = common_params.tuner_mode;
113*c217d954SCole Faust         config.tuner_file  = common_params.tuner_file;
114*c217d954SCole Faust         config.mlgo_file   = common_params.mlgo_file;
115*c217d954SCole Faust 
116*c217d954SCole Faust         graph.finalize(common_params.target, config);
117*c217d954SCole Faust 
118*c217d954SCole Faust         return true;
119*c217d954SCole Faust     }
do_run()120*c217d954SCole Faust     void do_run() override
121*c217d954SCole Faust     {
122*c217d954SCole Faust         // Run graph
123*c217d954SCole Faust         graph.run();
124*c217d954SCole Faust     }
125*c217d954SCole Faust 
126*c217d954SCole Faust private:
127*c217d954SCole Faust     CommandLineParser  cmd_parser;
128*c217d954SCole Faust     CommonGraphOptions common_opts;
129*c217d954SCole Faust     CommonGraphParams  common_params;
130*c217d954SCole Faust     Stream             graph;
131*c217d954SCole Faust };
132*c217d954SCole Faust 
133*c217d954SCole Faust /** Main program for LeNet
134*c217d954SCole Faust  *
135*c217d954SCole Faust  * Model is based on:
136*c217d954SCole Faust  *      http://yann.lecun.com/exdb/publis/pdf/lecun-98.pdf
137*c217d954SCole Faust  *      "Gradient-Based Learning Applied to Document Recognition"
138*c217d954SCole Faust  *      Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner
139*c217d954SCole Faust  *
140*c217d954SCole Faust  * The original model uses tanh instead of relu activations. However the use of relu activations in lenet has been
141*c217d954SCole Faust  * widely adopted to improve accuracy.*
142*c217d954SCole Faust  *
143*c217d954SCole Faust  * @note To list all the possible arguments execute the binary appended with the --help option
144*c217d954SCole Faust  *
145*c217d954SCole Faust  * @param[in] argc Number of arguments
146*c217d954SCole Faust  * @param[in] argv Arguments
147*c217d954SCole Faust  */
main(int argc,char ** argv)148*c217d954SCole Faust int main(int argc, char **argv)
149*c217d954SCole Faust {
150*c217d954SCole Faust     return arm_compute::utils::run_example<GraphLenetExample>(argc, argv);
151*c217d954SCole Faust }
152