1*c217d954SCole Faust /*
2*c217d954SCole Faust * Copyright (c) 2017-2021 Arm Limited.
3*c217d954SCole Faust *
4*c217d954SCole Faust * SPDX-License-Identifier: MIT
5*c217d954SCole Faust *
6*c217d954SCole Faust * Permission is hereby granted, free of charge, to any person obtaining a copy
7*c217d954SCole Faust * of this software and associated documentation files (the "Software"), to
8*c217d954SCole Faust * deal in the Software without restriction, including without limitation the
9*c217d954SCole Faust * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10*c217d954SCole Faust * sell copies of the Software, and to permit persons to whom the Software is
11*c217d954SCole Faust * furnished to do so, subject to the following conditions:
12*c217d954SCole Faust *
13*c217d954SCole Faust * The above copyright notice and this permission notice shall be included in all
14*c217d954SCole Faust * copies or substantial portions of the Software.
15*c217d954SCole Faust *
16*c217d954SCole Faust * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17*c217d954SCole Faust * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18*c217d954SCole Faust * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19*c217d954SCole Faust * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20*c217d954SCole Faust * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21*c217d954SCole Faust * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22*c217d954SCole Faust * SOFTWARE.
23*c217d954SCole Faust */
24*c217d954SCole Faust #include "arm_compute/graph.h"
25*c217d954SCole Faust #include "support/ToolchainSupport.h"
26*c217d954SCole Faust #include "utils/CommonGraphOptions.h"
27*c217d954SCole Faust #include "utils/GraphUtils.h"
28*c217d954SCole Faust #include "utils/Utils.h"
29*c217d954SCole Faust
30*c217d954SCole Faust using namespace arm_compute::utils;
31*c217d954SCole Faust using namespace arm_compute::graph::frontend;
32*c217d954SCole Faust using namespace arm_compute::graph_utils;
33*c217d954SCole Faust
34*c217d954SCole Faust /** Example demonstrating how to implement Googlenet's network using the Compute Library's graph API */
35*c217d954SCole Faust class GraphGooglenetExample : public Example
36*c217d954SCole Faust {
37*c217d954SCole Faust public:
GraphGooglenetExample()38*c217d954SCole Faust GraphGooglenetExample()
39*c217d954SCole Faust : cmd_parser(), common_opts(cmd_parser), common_params(), graph(0, "GoogleNet")
40*c217d954SCole Faust {
41*c217d954SCole Faust }
do_setup(int argc,char ** argv)42*c217d954SCole Faust bool do_setup(int argc, char **argv) override
43*c217d954SCole Faust {
44*c217d954SCole Faust // Parse arguments
45*c217d954SCole Faust cmd_parser.parse(argc, argv);
46*c217d954SCole Faust cmd_parser.validate();
47*c217d954SCole Faust
48*c217d954SCole Faust // Consume common parameters
49*c217d954SCole Faust common_params = consume_common_graph_parameters(common_opts);
50*c217d954SCole Faust
51*c217d954SCole Faust // Return when help menu is requested
52*c217d954SCole Faust if(common_params.help)
53*c217d954SCole Faust {
54*c217d954SCole Faust cmd_parser.print_help(argv[0]);
55*c217d954SCole Faust return false;
56*c217d954SCole Faust }
57*c217d954SCole Faust
58*c217d954SCole Faust // Checks
59*c217d954SCole Faust ARM_COMPUTE_EXIT_ON_MSG(arm_compute::is_data_type_quantized_asymmetric(common_params.data_type), "QASYMM8 not supported for this graph");
60*c217d954SCole Faust
61*c217d954SCole Faust // Print parameter values
62*c217d954SCole Faust std::cout << common_params << std::endl;
63*c217d954SCole Faust
64*c217d954SCole Faust // Get trainable parameters data path
65*c217d954SCole Faust std::string data_path = common_params.data_path;
66*c217d954SCole Faust
67*c217d954SCole Faust // Create a preprocessor object
68*c217d954SCole Faust const std::array<float, 3> mean_rgb{ { 122.68f, 116.67f, 104.01f } };
69*c217d954SCole Faust std::unique_ptr<IPreprocessor> preprocessor = std::make_unique<CaffePreproccessor>(mean_rgb);
70*c217d954SCole Faust
71*c217d954SCole Faust // Create input descriptor
72*c217d954SCole Faust const auto operation_layout = common_params.data_layout;
73*c217d954SCole Faust const TensorShape tensor_shape = permute_shape(TensorShape(224U, 224U, 3U, common_params.batches), DataLayout::NCHW, operation_layout);
74*c217d954SCole Faust TensorDescriptor input_descriptor = TensorDescriptor(tensor_shape, common_params.data_type).set_layout(operation_layout);
75*c217d954SCole Faust
76*c217d954SCole Faust // Set weights trained layout
77*c217d954SCole Faust const DataLayout weights_layout = DataLayout::NCHW;
78*c217d954SCole Faust
79*c217d954SCole Faust graph << common_params.target
80*c217d954SCole Faust << common_params.fast_math_hint
81*c217d954SCole Faust << InputLayer(input_descriptor, get_input_accessor(common_params, std::move(preprocessor)))
82*c217d954SCole Faust << ConvolutionLayer(
83*c217d954SCole Faust 7U, 7U, 64U,
84*c217d954SCole Faust get_weights_accessor(data_path, "/cnn_data/googlenet_model/conv1/conv1_7x7_s2_w.npy", weights_layout),
85*c217d954SCole Faust get_weights_accessor(data_path, "/cnn_data/googlenet_model/conv1/conv1_7x7_s2_b.npy"),
86*c217d954SCole Faust PadStrideInfo(2, 2, 3, 3))
87*c217d954SCole Faust .set_name("conv1/7x7_s2")
88*c217d954SCole Faust << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("conv1/relu_7x7")
89*c217d954SCole Faust << PoolingLayer(PoolingLayerInfo(PoolingType::MAX, 3, operation_layout, PadStrideInfo(2, 2, 0, 0, DimensionRoundingType::CEIL))).set_name("pool1/3x3_s2")
90*c217d954SCole Faust << NormalizationLayer(NormalizationLayerInfo(NormType::CROSS_MAP, 5, 0.0001f, 0.75f)).set_name("pool1/norm1")
91*c217d954SCole Faust << ConvolutionLayer(
92*c217d954SCole Faust 1U, 1U, 64U,
93*c217d954SCole Faust get_weights_accessor(data_path, "/cnn_data/googlenet_model/conv2/conv2_3x3_reduce_w.npy", weights_layout),
94*c217d954SCole Faust get_weights_accessor(data_path, "/cnn_data/googlenet_model/conv2/conv2_3x3_reduce_b.npy"),
95*c217d954SCole Faust PadStrideInfo(1, 1, 0, 0))
96*c217d954SCole Faust .set_name("conv2/3x3_reduce")
97*c217d954SCole Faust << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("conv2/relu_3x3_reduce")
98*c217d954SCole Faust << ConvolutionLayer(
99*c217d954SCole Faust 3U, 3U, 192U,
100*c217d954SCole Faust get_weights_accessor(data_path, "/cnn_data/googlenet_model/conv2/conv2_3x3_w.npy", weights_layout),
101*c217d954SCole Faust get_weights_accessor(data_path, "/cnn_data/googlenet_model/conv2/conv2_3x3_b.npy"),
102*c217d954SCole Faust PadStrideInfo(1, 1, 1, 1))
103*c217d954SCole Faust .set_name("conv2/3x3")
104*c217d954SCole Faust << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("conv2/relu_3x3")
105*c217d954SCole Faust << NormalizationLayer(NormalizationLayerInfo(NormType::CROSS_MAP, 5, 0.0001f, 0.75f)).set_name("conv2/norm2")
106*c217d954SCole Faust << PoolingLayer(PoolingLayerInfo(PoolingType::MAX, 3, operation_layout, PadStrideInfo(2, 2, 0, 0, DimensionRoundingType::CEIL))).set_name("pool2/3x3_s2");
107*c217d954SCole Faust graph << get_inception_node(data_path, "inception_3a", weights_layout, 64, std::make_tuple(96U, 128U), std::make_tuple(16U, 32U), 32U).set_name("inception_3a/concat");
108*c217d954SCole Faust graph << get_inception_node(data_path, "inception_3b", weights_layout, 128, std::make_tuple(128U, 192U), std::make_tuple(32U, 96U), 64U).set_name("inception_3b/concat");
109*c217d954SCole Faust graph << PoolingLayer(PoolingLayerInfo(PoolingType::MAX, 3, operation_layout, PadStrideInfo(2, 2, 0, 0, DimensionRoundingType::CEIL))).set_name("pool3/3x3_s2");
110*c217d954SCole Faust graph << get_inception_node(data_path, "inception_4a", weights_layout, 192, std::make_tuple(96U, 208U), std::make_tuple(16U, 48U), 64U).set_name("inception_4a/concat");
111*c217d954SCole Faust graph << get_inception_node(data_path, "inception_4b", weights_layout, 160, std::make_tuple(112U, 224U), std::make_tuple(24U, 64U), 64U).set_name("inception_4b/concat");
112*c217d954SCole Faust graph << get_inception_node(data_path, "inception_4c", weights_layout, 128, std::make_tuple(128U, 256U), std::make_tuple(24U, 64U), 64U).set_name("inception_4c/concat");
113*c217d954SCole Faust graph << get_inception_node(data_path, "inception_4d", weights_layout, 112, std::make_tuple(144U, 288U), std::make_tuple(32U, 64U), 64U).set_name("inception_4d/concat");
114*c217d954SCole Faust graph << get_inception_node(data_path, "inception_4e", weights_layout, 256, std::make_tuple(160U, 320U), std::make_tuple(32U, 128U), 128U).set_name("inception_4e/concat");
115*c217d954SCole Faust graph << PoolingLayer(PoolingLayerInfo(PoolingType::MAX, 3, operation_layout, PadStrideInfo(2, 2, 0, 0, DimensionRoundingType::CEIL))).set_name("pool4/3x3_s2");
116*c217d954SCole Faust graph << get_inception_node(data_path, "inception_5a", weights_layout, 256, std::make_tuple(160U, 320U), std::make_tuple(32U, 128U), 128U).set_name("inception_5a/concat");
117*c217d954SCole Faust graph << get_inception_node(data_path, "inception_5b", weights_layout, 384, std::make_tuple(192U, 384U), std::make_tuple(48U, 128U), 128U).set_name("inception_5b/concat");
118*c217d954SCole Faust graph << PoolingLayer(PoolingLayerInfo(PoolingType::AVG, 7, operation_layout, PadStrideInfo(1, 1, 0, 0, DimensionRoundingType::CEIL))).set_name("pool5/7x7_s1")
119*c217d954SCole Faust << FullyConnectedLayer(
120*c217d954SCole Faust 1000U,
121*c217d954SCole Faust get_weights_accessor(data_path, "/cnn_data/googlenet_model/loss3/loss3_classifier_w.npy", weights_layout),
122*c217d954SCole Faust get_weights_accessor(data_path, "/cnn_data/googlenet_model/loss3/loss3_classifier_b.npy"))
123*c217d954SCole Faust .set_name("loss3/classifier")
124*c217d954SCole Faust << SoftmaxLayer().set_name("prob")
125*c217d954SCole Faust << OutputLayer(get_output_accessor(common_params, 5));
126*c217d954SCole Faust
127*c217d954SCole Faust // Finalize graph
128*c217d954SCole Faust GraphConfig config;
129*c217d954SCole Faust config.num_threads = common_params.threads;
130*c217d954SCole Faust config.use_tuner = common_params.enable_tuner;
131*c217d954SCole Faust config.tuner_mode = common_params.tuner_mode;
132*c217d954SCole Faust config.tuner_file = common_params.tuner_file;
133*c217d954SCole Faust config.mlgo_file = common_params.mlgo_file;
134*c217d954SCole Faust
135*c217d954SCole Faust graph.finalize(common_params.target, config);
136*c217d954SCole Faust
137*c217d954SCole Faust return true;
138*c217d954SCole Faust }
do_run()139*c217d954SCole Faust void do_run() override
140*c217d954SCole Faust {
141*c217d954SCole Faust // Run graph
142*c217d954SCole Faust graph.run();
143*c217d954SCole Faust }
144*c217d954SCole Faust
145*c217d954SCole Faust private:
146*c217d954SCole Faust CommandLineParser cmd_parser;
147*c217d954SCole Faust CommonGraphOptions common_opts;
148*c217d954SCole Faust CommonGraphParams common_params;
149*c217d954SCole Faust Stream graph;
150*c217d954SCole Faust
get_inception_node(const std::string & data_path,std::string && param_path,DataLayout weights_layout,unsigned int a_filt,std::tuple<unsigned int,unsigned int> b_filters,std::tuple<unsigned int,unsigned int> c_filters,unsigned int d_filt)151*c217d954SCole Faust ConcatLayer get_inception_node(const std::string &data_path, std::string &¶m_path, DataLayout weights_layout,
152*c217d954SCole Faust unsigned int a_filt,
153*c217d954SCole Faust std::tuple<unsigned int, unsigned int> b_filters,
154*c217d954SCole Faust std::tuple<unsigned int, unsigned int> c_filters,
155*c217d954SCole Faust unsigned int d_filt)
156*c217d954SCole Faust {
157*c217d954SCole Faust std::string total_path = "/cnn_data/googlenet_model/" + param_path + "/" + param_path + "_";
158*c217d954SCole Faust SubStream i_a(graph);
159*c217d954SCole Faust i_a << ConvolutionLayer(
160*c217d954SCole Faust 1U, 1U, a_filt,
161*c217d954SCole Faust get_weights_accessor(data_path, total_path + "1x1_w.npy", weights_layout),
162*c217d954SCole Faust get_weights_accessor(data_path, total_path + "1x1_b.npy"),
163*c217d954SCole Faust PadStrideInfo(1, 1, 0, 0))
164*c217d954SCole Faust .set_name(param_path + "/1x1")
165*c217d954SCole Faust << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name(param_path + "/relu_1x1");
166*c217d954SCole Faust
167*c217d954SCole Faust SubStream i_b(graph);
168*c217d954SCole Faust i_b << ConvolutionLayer(
169*c217d954SCole Faust 1U, 1U, std::get<0>(b_filters),
170*c217d954SCole Faust get_weights_accessor(data_path, total_path + "3x3_reduce_w.npy", weights_layout),
171*c217d954SCole Faust get_weights_accessor(data_path, total_path + "3x3_reduce_b.npy"),
172*c217d954SCole Faust PadStrideInfo(1, 1, 0, 0))
173*c217d954SCole Faust .set_name(param_path + "/3x3_reduce")
174*c217d954SCole Faust << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name(param_path + "/relu_3x3_reduce")
175*c217d954SCole Faust << ConvolutionLayer(
176*c217d954SCole Faust 3U, 3U, std::get<1>(b_filters),
177*c217d954SCole Faust get_weights_accessor(data_path, total_path + "3x3_w.npy", weights_layout),
178*c217d954SCole Faust get_weights_accessor(data_path, total_path + "3x3_b.npy"),
179*c217d954SCole Faust PadStrideInfo(1, 1, 1, 1))
180*c217d954SCole Faust .set_name(param_path + "/3x3")
181*c217d954SCole Faust << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name(param_path + "/relu_3x3");
182*c217d954SCole Faust
183*c217d954SCole Faust SubStream i_c(graph);
184*c217d954SCole Faust i_c << ConvolutionLayer(
185*c217d954SCole Faust 1U, 1U, std::get<0>(c_filters),
186*c217d954SCole Faust get_weights_accessor(data_path, total_path + "5x5_reduce_w.npy", weights_layout),
187*c217d954SCole Faust get_weights_accessor(data_path, total_path + "5x5_reduce_b.npy"),
188*c217d954SCole Faust PadStrideInfo(1, 1, 0, 0))
189*c217d954SCole Faust .set_name(param_path + "/5x5_reduce")
190*c217d954SCole Faust << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name(param_path + "/relu_5x5_reduce")
191*c217d954SCole Faust << ConvolutionLayer(
192*c217d954SCole Faust 5U, 5U, std::get<1>(c_filters),
193*c217d954SCole Faust get_weights_accessor(data_path, total_path + "5x5_w.npy", weights_layout),
194*c217d954SCole Faust get_weights_accessor(data_path, total_path + "5x5_b.npy"),
195*c217d954SCole Faust PadStrideInfo(1, 1, 2, 2))
196*c217d954SCole Faust .set_name(param_path + "/5x5")
197*c217d954SCole Faust << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name(param_path + "/relu_5x5");
198*c217d954SCole Faust
199*c217d954SCole Faust SubStream i_d(graph);
200*c217d954SCole Faust i_d << PoolingLayer(PoolingLayerInfo(PoolingType::MAX, 3, common_params.data_layout, PadStrideInfo(1, 1, 1, 1, DimensionRoundingType::CEIL))).set_name(param_path + "/pool")
201*c217d954SCole Faust << ConvolutionLayer(
202*c217d954SCole Faust 1U, 1U, d_filt,
203*c217d954SCole Faust get_weights_accessor(data_path, total_path + "pool_proj_w.npy", weights_layout),
204*c217d954SCole Faust get_weights_accessor(data_path, total_path + "pool_proj_b.npy"),
205*c217d954SCole Faust PadStrideInfo(1, 1, 0, 0))
206*c217d954SCole Faust .set_name(param_path + "/pool_proj")
207*c217d954SCole Faust << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name(param_path + "/relu_pool_proj");
208*c217d954SCole Faust
209*c217d954SCole Faust return ConcatLayer(std::move(i_a), std::move(i_b), std::move(i_c), std::move(i_d));
210*c217d954SCole Faust }
211*c217d954SCole Faust };
212*c217d954SCole Faust
213*c217d954SCole Faust /** Main program for Googlenet
214*c217d954SCole Faust *
215*c217d954SCole Faust * Model is based on:
216*c217d954SCole Faust * https://arxiv.org/abs/1409.4842
217*c217d954SCole Faust * "Going deeper with convolutions"
218*c217d954SCole Faust * Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, Andrew Rabinovich
219*c217d954SCole Faust *
220*c217d954SCole Faust * Provenance: https://github.com/BVLC/caffe/tree/master/models/bvlc_googlenet
221*c217d954SCole Faust *
222*c217d954SCole Faust * @note To list all the possible arguments execute the binary appended with the --help option
223*c217d954SCole Faust *
224*c217d954SCole Faust * @param[in] argc Number of arguments
225*c217d954SCole Faust * @param[in] argv Arguments
226*c217d954SCole Faust */
main(int argc,char ** argv)227*c217d954SCole Faust int main(int argc, char **argv)
228*c217d954SCole Faust {
229*c217d954SCole Faust return arm_compute::utils::run_example<GraphGooglenetExample>(argc, argv);
230*c217d954SCole Faust }
231