1/*************************************************************************************** 2 * Copyright (c) 2020-2021 Institute of Computing Technology, Chinese Academy of Sciences 3 * Copyright (c) 2020-2021 Peng Cheng Laboratory 4 * 5 * XiangShan is licensed under Mulan PSL v2. 6 * You can use this software according to the terms and conditions of the Mulan PSL v2. 7 * You may obtain a copy of Mulan PSL v2 at: 8 * http://license.coscl.org.cn/MulanPSL2 9 * 10 * THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND, 11 * EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT, 12 * MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE. 13 * 14 * See the Mulan PSL v2 for more details. 15 ***************************************************************************************/ 16 17package xiangshan.mem 18 19import org.chipsalliance.cde.config.Parameters 20import chisel3._ 21import chisel3.util._ 22import utils._ 23import utility._ 24import xiangshan._ 25import xiangshan.backend.rob.RobPtr 26import xiangshan.backend.Bundles._ 27import xiangshan.mem._ 28import xiangshan.backend.fu.vector.Bundles._ 29 30 31class VSplitPipeline(implicit p: Parameters) extends VLSUModule{ 32 val io = IO(new VSplitPipelineIO()) 33 34 def us_whole_reg(fuOpType: UInt) = fuOpType === VlduType.vlr 35 def us_mask(fuOpType: UInt) = fuOpType === VlduType.vlm 36 def us_fof(fuOpType: UInt) = fuOpType === VlduType.vleff 37 38 val s1_ready = WireInit(false.B) 39 40 /**----------------------------------------------------------- 41 * s0 stage 42 * decode and generate AlignedType, uop mask, preIsSplit 43 * ---------------------------------------------------------- 44 */ 45 val s0_vtype = io.in.bits.uop.vpu.vtype 46 val s0_sew = s0_vtype.vsew 47 val s0_eew = io.in.bits.uop.vpu.veew 48 val s0_lmul = s0_vtype.vlmul 49 // when load whole register or unit-stride masked , emul should be 1 50 val s0_fuOpType = io.in.bits.uop.fuOpType 51 val s0_mop = s0_fuOpType(6, 5) 52 val s0_nf = Mux(us_whole_reg(s0_fuOpType), 0.U, io.in.bits.uop.vpu.nf) 53 val s0_vm = io.in.bits.uop.vpu.vm 54 val s0_emul = Mux(us_whole_reg(s0_fuOpType) ,GenUSWholeEmul(io.in.bits.uop.vpu.nf), Mux(us_mask(s0_fuOpType), 0.U(mulBits.W), EewLog2(s0_eew) - s0_sew + s0_lmul)) 55 val s0_preIsSplit = !(isUnitStride(s0_mop) && !us_fof(s0_fuOpType)) 56 57 val s0_valid = Wire(Bool()) 58 val s0_kill = Wire(Bool()) 59 val s0_can_go = s1_ready 60 val s0_fire = s0_valid && s0_can_go 61 val s0_out = Wire(new VLSBundle) 62 63 val isUsWholeReg = isUnitStride(s0_mop) && us_whole_reg(s0_fuOpType) 64 val isMaskReg = isUnitStride(s0_mop) && us_mask(s0_fuOpType) 65 val isSegment = s0_nf =/= 0.U && !us_whole_reg(s0_fuOpType) 66 val instType = Cat(isSegment, s0_mop) 67 val uopIdx = io.in.bits.uop.vpu.vuopIdx 68 val uopIdxInField = GenUopIdxInField(instType, s0_emul, s0_lmul, uopIdx) 69 val vdIdxInField = GenVdIdxInField(instType, s0_emul, s0_lmul, uopIdxInField) 70 val lmulLog2 = Mux(s0_lmul.asSInt >= 0.S, 0.U, s0_lmul) 71 val emulLog2 = Mux(s0_emul.asSInt >= 0.S, 0.U, s0_emul) 72 val numEewLog2 = emulLog2 - EewLog2(s0_eew) 73 val numSewLog2 = lmulLog2 - s0_sew 74 val numFlowsSameVdLog2 = Mux( 75 isIndexed(instType), 76 log2Up(VLENB).U - s0_sew(1,0), 77 log2Up(VLENB).U - s0_eew(1,0) 78 ) 79 // numUops = nf * max(lmul, emul) 80 val lmulLog2Pos = Mux(s0_lmul.asSInt < 0.S, 0.U, s0_lmul) 81 val emulLog2Pos = Mux(s0_emul.asSInt < 0.S, 0.U, s0_emul) 82 val numUops = Mux( 83 isIndexed(s0_mop) && s0_lmul.asSInt > s0_emul.asSInt, 84 (s0_nf +& 1.U) << lmulLog2Pos, 85 (s0_nf +& 1.U) << emulLog2Pos 86 ) 87 88 val vvl = io.in.bits.src_vl.asTypeOf(VConfig()).vl 89 val evl = Mux(isUsWholeReg, GenUSWholeRegVL(io.in.bits.uop.vpu.nf +& 1.U,s0_eew), Mux(isMaskReg, GenUSMaskRegVL(vvl), vvl)) 90 val vvstart = io.in.bits.uop.vpu.vstart 91 val alignedType = Mux(isIndexed(instType), s0_sew(1, 0), s0_eew(1, 0)) 92 val broadenAligendType = Mux(s0_preIsSplit, Cat("b0".U, alignedType), "b100".U) // if is unit-stride, use 128-bits memory access 93 val flowsLog2 = GenRealFlowLog2(instType, s0_emul, s0_lmul, s0_eew, s0_sew) 94 val flowsPrevThisUop = uopIdxInField << flowsLog2 // # of flows before this uop in a field 95 val flowsPrevThisVd = vdIdxInField << numFlowsSameVdLog2 // # of flows before this vd in a field 96 val flowsIncludeThisUop = (uopIdxInField +& 1.U) << flowsLog2 // # of flows before this uop besides this uop 97 val flowNum = io.in.bits.flowNum.get 98 val srcMask = GenFlowMask(Mux(s0_vm, Fill(VLEN, 1.U(1.W)), io.in.bits.src_mask), vvstart, evl, true) 99 100 val flowMask = ((srcMask & 101 UIntToMask(flowsIncludeThisUop, VLEN + 1) & 102 ~UIntToMask(flowsPrevThisUop, VLEN) 103 ) >> flowsPrevThisVd)(VLENB - 1, 0) 104 val vlmax = GenVLMAX(s0_lmul, s0_sew) 105 106 // connect 107 s0_out := DontCare 108 s0_out match {case x => 109 x.uop := io.in.bits.uop 110 x.uop.vpu.vl := evl 111 x.uop.uopIdx := uopIdx 112 x.uop.numUops := numUops 113 x.uop.lastUop := (uopIdx +& 1.U) === numUops 114 x.flowMask := flowMask 115 x.byteMask := GenUopByteMask(flowMask, broadenAligendType)(VLENB - 1, 0) 116 x.fof := isUnitStride(s0_mop) && us_fof(s0_fuOpType) 117 x.baseAddr := io.in.bits.src_rs1 118 x.stride := io.in.bits.src_stride 119 x.flowNum := (1.U << flowNum) 120 x.nfields := s0_nf +& 1.U 121 x.vm := s0_vm 122 x.usWholeReg := isUsWholeReg 123 x.usMaskReg := isMaskReg 124 x.eew := s0_eew 125 x.sew := s0_sew 126 x.emul := s0_emul 127 x.lmul := s0_lmul 128 x.vlmax := Mux(isUsWholeReg, evl, vlmax) 129 x.instType := instType 130 x.data := io.in.bits.src_vs3 131 x.vdIdxInField := vdIdxInField 132 x.preIsSplit := s0_preIsSplit 133 x.alignedType := broadenAligendType 134 } 135 s0_valid := io.in.valid && !s0_kill 136 /**------------------------------------- 137 * s1 stage 138 * ------------------------------------ 139 * generate UopOffset 140 */ 141 val s1_valid = RegInit(false.B) 142 val s1_kill = Wire(Bool()) 143 val s1_in = Wire(new VLSBundle) 144 val s1_out = Wire(new VLSBundle) 145 val s1_can_go = io.out.ready && io.toMergeBuffer.resp.valid 146 val s1_fire = s1_valid && !s1_kill && s1_can_go 147 148 s1_ready := s1_kill || !s1_valid || io.out.ready 149 150 when(s0_fire){ 151 s1_valid := true.B 152 }.elsewhen(s1_fire){ 153 s1_valid := false.B 154 }.elsewhen(s1_kill){ 155 s1_valid := false.B 156 } 157 s1_in := RegEnable(s0_out, s0_fire) 158 159 val s1_uopidx = s1_in.uop.vpu.vuopIdx 160 val s1_nf = s1_in.uop.vpu.nf 161 val s1_nfields = s1_in.nfields 162 val s1_eew = s1_in.eew 163 val s1_instType = s1_in.instType 164 val s1_stride = s1_in.stride 165 val s1_alignedType = Mux(isIndexed(s1_in.instType), s1_in.sew(1, 0), s1_in.eew(1, 0)) 166 val s1_notIndexedStride = Mux( // stride for strided/unit-stride instruction 167 isStrided(s1_instType), 168 s1_stride(XLEN - 1, 0), // for strided load, stride = x[rs2] 169 s1_nfields << s1_eew(1, 0) // for unit-stride load, stride = eew * NFIELDS 170 ) 171 val uopOffset = (s1_uopidx >> s1_nf) << s1_alignedType 172 val stride = Mux(isIndexed(s1_instType), s1_stride, s1_notIndexedStride) // if is index instructions, get index when split 173 174 s1_kill := s1_in.uop.robIdx.needFlush(io.redirect) 175 176 // query mergeBuffer 177 io.toMergeBuffer.req.valid := s1_fire // only can_go will get MergeBuffer entry 178 io.toMergeBuffer.req.bits.flowNum := Mux(s1_in.preIsSplit, 1.U << flowNum, PopCount(s1_in.flowMask)) 179 io.toMergeBuffer.req.bits.data := s1_in.data 180 io.toMergeBuffer.req.bits.uop := s1_in.uop 181 io.toMergeBuffer.req.bits.mask := flowMask 182 io.toMergeBuffer.req.bits.vaddr := DontCare 183// io.toMergeBuffer.req.bits.vdOffset := 184 185 // out connect 186 io.out := s1_in 187 io.out.bits.uopOffset := uopOffset 188 io.out.bits.stride := stride 189 io.out.bits.mBIdx := io.toMergeBuffer.resp.bits.mBIndex 190} 191 192abstract class VSplitBuffer(isVStore: Boolean = false)(implicit p: Parameters) extends VLSUModule{ 193 val io = IO(new VSplitBufferIO(isVStore)) 194 195 val splitBufferSize:Int 196 197 class VSplitPtr(implicit p: Parameters) extends CircularQueuePtr[VSplitPtr](splitBufferSize){ 198 } 199 200 object VSplitPtr { 201 def apply(f: Bool, v: UInt)(implicit p: Parameters): VSplitPtr = { 202 val ptr = Wire(new VSplitPtr) 203 ptr.flag := f 204 ptr.value := v 205 ptr 206 } 207 } 208 209 val uopq = Reg(Vec(splitBufferSize, new VLSBundle)) 210 val valid = RegInit(VecInit(Seq.fill(splitBufferSize)(false.B))) 211 val vstart = RegInit(VecInit(Seq.fill(splitBufferSize)(0.U(elemIdxBits.W)))) // index of the exception element 212 val vl = RegInit(VecInit(Seq.fill(splitBufferSize)(0.U.asTypeOf(Valid(UInt(elemIdxBits.W)))))) // only for fof instructions that modify vl 213 val srcMaskVec = Reg(Vec(splitBufferSize, UInt(VLEN.W))) 214 // ptr 215 val enqPtr = RegInit(0.U.asTypeOf(new VSplitPtr)) 216 val deqPtr = RegInit(0.U.asTypeOf(new VSplitPtr)) 217 // for split 218 val splitIdx = RegInit(0.U(flowIdxBits.W)) 219 val strideOffsetReg = RegInit(0.U(VLEN.W)) 220 221 /** 222 * Redirect 223 */ 224 val flushed = WireInit(VecInit(Seq.fill(splitBufferSize)(false.B))) // entry has been flushed by the redirect arrived in the pre 1 cycle 225 val flushVec = (valid zip flushed).zip(uopq).map { case ((v, f), entry) => v && entry.uop.robIdx.needFlush(io.redirect) && !f } 226 val flushEnq = io.in.fire && io.in.bits.uop.robIdx.needFlush(io.redirect) 227 val flushNumReg = RegNext(PopCount(flushEnq +: flushVec)) 228 val redirectReg = RegNext(io.redirect) 229 val flushVecReg = RegNext(WireInit(VecInit(flushVec))) 230 231 // enqueue 232 when (io.in.fire && !flushEnq) { 233 val id = enqPtr.value 234 uopq(id) := io.in.bits 235 valid(id) := true.B 236 } 237 238 //split uops 239 val issueValid = valid(deqPtr.value) 240 val issueEntry = uopq(deqPtr.value) 241 val issueFlowNum = issueEntry.flowNum 242 val issueBaseAddr = issueEntry.baseAddr 243 val issueUop = issueEntry.uop 244 val issueUopIdx = issueUop.vpu.vuopIdx 245 val issueInstType = issueEntry.instType 246 val issueUopOffset = issueEntry.uopOffset 247 val issueEew = issueEntry.eew 248 val issueSew = issueEntry.sew 249 val issueLmul = issueEntry.emul 250 val issueEmul = issueEntry.lmul 251 val issueAlignedType = issueEntry.alignedType 252 val issuePreIsSplit = issueEntry.preIsSplit 253 val issueByteMask = issueEntry.byteMask 254 val elemIdx = GenElemIdx( 255 instType = issueInstType, 256 emul = issueEmul, 257 lmul = issueLmul, 258 eew = issueEew, 259 sew = issueSew, 260 uopIdx = issueUopIdx, 261 flowIdx = splitIdx 262 ) // elemIdx inside an inst, for exception 263 val indexedStride = IndexAddr( // index for indexed instruction 264 index = issueEntry.stride, 265 flow_inner_idx = (splitIdx << issueEew(1, 0))(vOffsetBits - 1, 0) >> issueEew(1, 0), 266 eew = issueEew 267 ) 268 val issueStride = Mux(isIndexed(issueInstType), indexedStride, strideOffsetReg) 269 val vaddr = issueBaseAddr + issueUopOffset + issueStride 270 val mask = genVWmask128(vaddr ,issueAlignedType) // scala maske for flow 271 val flowMask = issueEntry.flowMask 272 val vecActive = (flowMask & UIntToOH(splitIdx)).orR 273 /* 274 * Unit-Stride split to one flow or two flow. 275 * for Unit-Stride, if uop's addr is aligned with 128-bits, split it to one flow, otherwise split two 276 */ 277 278 val usAligned128 = (vaddr(3,0) === 0.U)// addr 128-bit aligned 279 val usSplitMask = genUSSplitMask(issueByteMask, splitIdx, vaddr(3,0)) 280 val usNoSplit = (usAligned128 || !(vaddr(3,0) +& PopCount(usSplitMask))(4)) && !issuePreIsSplit && (splitIdx === 0.U)// unit-stride uop don't need to split into two flow 281 val usSplitVaddr = genUSSplitAddr(vaddr, splitIdx) 282 val regOffset = vaddr(3,0) // offset in 256-bits vd 283 XSError((splitIdx > 1.U && usNoSplit) || (splitIdx > 1.U && !issuePreIsSplit) , "Unit-Stride addr split error!\n") 284 285 // data 286 io.out.bits match { case x => 287 x.uop := issueUop 288 x.vaddr := Mux(issuePreIsSplit, usSplitVaddr, vaddr) 289 x.alignedType := issueAlignedType 290 x.isvec := true.B 291 x.mask := Mux(issuePreIsSplit, usSplitMask, mask) 292 x.reg_offset := regOffset //for merge unit-stride 293 x.vecActive := vecActive 294 x.is_first_ele := DontCare 295 x.usSecondInv := usNoSplit 296 x.elemIdx := elemIdx 297 } 298 299 //update enqptr 300 when (redirectReg.valid && flushNumReg =/= 0.U) { 301 enqPtr := enqPtr - flushNumReg 302 }.otherwise { 303 when (io.in.fire) { 304 enqPtr := enqPtr + 1.U 305 } 306 } 307 308 // flush queue 309 for (i <- 0 until splitBufferSize) { 310 when(flushVecReg(i) && redirectReg.valid && flushNumReg =/= 0.U) { 311 valid(i) := false.B 312 flushed(i) := true.B 313 } 314 } 315 316 /* Execute logic */ 317 /** Issue to scala pipeline**/ 318 val canIssue = Wire(Bool()) 319 val allowIssue = io.out.ready 320 val doIssue = Wire(Bool()) 321 val issueCount = Mux(usNoSplit, 2.U,PopCount(doIssue)) // for dont need split unit-stride, issue two flow 322 323 // handshake 324 val thisPtr = deqPtr.value 325 canIssue := !issueUop.robIdx.needFlush(io.redirect) && deqPtr < enqPtr 326 doIssue := canIssue && allowIssue 327 when (!RegNext(io.redirect.valid) || distanceBetween(enqPtr, deqPtr) > flushNumReg) { 328 when (splitIdx < (issueFlowNum - issueCount)) { 329 // The uop has not been entirly splited yet 330 splitIdx := splitIdx + issueCount 331 strideOffsetReg := strideOffsetReg + issueStride 332 }.otherwise { 333 when (doIssue) { 334 // The uop is done spliting 335 splitIdx := 0.U(flowIdxBits.W) // initialize flowIdx 336 strideOffsetReg := 0.U 337 deqPtr := deqPtr + 1.U 338 } 339 } 340 }.otherwise { 341 splitIdx := 0.U(flowIdxBits.W) // initialize flowIdx 342 strideOffsetReg := 0.U 343 } 344 345 // out connect 346 io.out.valid := canIssue && vecActive 347} 348 349class VSSplitBufferImp(implicit p: Parameters) extends VSplitBuffer(isVStore = true){ 350 override val splitBufferSize = splitBufferSize 351 // split data 352 val flowData = GenVSData( 353 data = issueEntry.data.asUInt, 354 elemIdx = splitIdx, 355 alignedType = issueAlignedType 356 ) 357 val usSplitData = genUSSplitData(issueEntry.data.asUInt, splitIdx, vaddr(3,0)) 358 359 // send data to sq 360 val vstd = io.vstd.get 361 vstd.valid := canIssue 362 vstd.bits.uop := issueUop 363 vstd.bits.data := Mux(issuePreIsSplit, usSplitData, flowData) 364} 365 366class VLSplitBufferImp(implicit p: Parameters) extends VSplitBuffer(isVStore = false){ 367 override val splitBufferSize = splitBufferSize 368} 369 370class VSSplitPipelineImp(implicit p: Parameters) extends VSplitPipeline{ 371} 372 373class VLSplitPipelineImp(implicit p: Parameters) extends VSplitPipeline{ 374} 375 376class VLSplitImp(implicit p: Parameters) extends VLSUModule{ 377 val io = IO(new VSplitIO(isVStore=false)) 378 val splitPipeline = Module(new VLSplitPipelineImp()) 379 val splitBuffer = Module(new VLSplitBufferImp()) 380 // Split Pipeline 381 splitPipeline.io.in <> io.in 382 splitPipeline.io.redirect <> io.redirect 383 io.toMergeBuffer <> splitPipeline.io.toMergeBuffer 384 385 // Split Buffer 386 splitBuffer.io.in <> splitPipeline.io.in 387 splitBuffer.io.redirect <> io.redirect 388 io.out <> splitBuffer.io.out 389} 390 391class VSSplitImp(implicit p: Parameters) extends VLSUModule{ 392 val io = IO(new VSplitIO(isVStore=true)) 393 val splitPipeline = Module(new VSSplitPipelineImp()) 394 val splitBuffer = Module(new VSSplitBufferImp()) 395 // Split Pipeline 396 splitPipeline.io.in <> io.in 397 splitPipeline.io.redirect <> io.redirect 398 io.toMergeBuffer <> splitPipeline.io.toMergeBuffer 399 400 // Split Buffer 401 splitBuffer.io.in <> splitPipeline.io.in 402 splitBuffer.io.redirect <> io.redirect 403 io.out <> splitBuffer.io.out 404 io.vstd.get <> splitBuffer.io.vstd.get 405} 406 407