1/*************************************************************************************** 2* Copyright (c) 2020-2021 Institute of Computing Technology, Chinese Academy of Sciences 3* Copyright (c) 2020-2021 Peng Cheng Laboratory 4* 5* XiangShan is licensed under Mulan PSL v2. 6* You can use this software according to the terms and conditions of the Mulan PSL v2. 7* You may obtain a copy of Mulan PSL v2 at: 8* http://license.coscl.org.cn/MulanPSL2 9* 10* THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND, 11* EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT, 12* MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE. 13* 14* See the Mulan PSL v2 for more details. 15***************************************************************************************/ 16 17package xiangshan.mem 18 19import org.chipsalliance.cde.config.Parameters 20import chisel3._ 21import chisel3.util._ 22import utils._ 23import utility._ 24import xiangshan._ 25import xiangshan.ExceptionNO._ 26import xiangshan.backend.fu.PMPRespBundle 27import xiangshan.backend.fu.FuType 28import xiangshan.backend.Bundles.{MemExuInput, MemExuOutput} 29import xiangshan.backend.fu.NewCSR.TriggerUtil 30import xiangshan.backend.fu.util.SdtrigExt 31import xiangshan.mem.Bundles._ 32import xiangshan.cache.mmu.Pbmt 33import xiangshan.cache.{AtomicWordIO, HasDCacheParameters, MemoryOpConstants} 34import xiangshan.cache.mmu.{TlbCmd, TlbRequestIO} 35import difftest._ 36 37class AtomicsUnit(implicit p: Parameters) extends XSModule 38 with MemoryOpConstants 39 with HasDCacheParameters 40 with SdtrigExt{ 41 42 val StdCnt = backendParams.StdCnt 43 44 val io = IO(new Bundle() { 45 val hartId = Input(UInt(hartIdLen.W)) 46 val in = Flipped(Decoupled(new MemExuInput)) 47 val storeDataIn = Flipped(Vec(StdCnt, Valid(new MemExuOutput))) 48 val out = Decoupled(new MemExuOutput) 49 val dcache = new AtomicWordIO 50 val dtlb = new TlbRequestIO(2) 51 val pmpResp = Flipped(new PMPRespBundle()) 52 val flush_sbuffer = new SbufferFlushBundle 53 val feedbackSlow = ValidIO(new RSFeedback) 54 val redirect = Flipped(ValidIO(new Redirect)) 55 val exceptionInfo = ValidIO(new Bundle { 56 val vaddr = UInt(XLEN.W) 57 val gpaddr = UInt(XLEN.W) 58 val isForVSnonLeafPTE = Bool() 59 }) 60 val csrCtrl = Flipped(new CustomCSRCtrlIO) 61 }) 62 63 //------------------------------------------------------- 64 // Atomics Memory Accsess FSM 65 //------------------------------------------------------- 66 val s_invalid :: s_tlb_and_flush_sbuffer_req :: s_pm :: s_wait_flush_sbuffer_resp :: s_cache_req :: s_cache_resp :: s_cache_resp_latch :: s_finish :: s_finish2 :: Nil = Enum(9) 67 val state = RegInit(s_invalid) 68 val out_valid = RegInit(false.B) 69 val data_valid = RegInit(false.B) 70 71 val uop = Reg(io.in.bits.uop.cloneType) 72 val isLr = LSUOpType.isLr(uop.fuOpType) 73 val isSc = LSUOpType.isSc(uop.fuOpType) 74 val isAMOCAS = LSUOpType.isAMOCAS(uop.fuOpType) 75 val isNotLr = !isLr 76 val isNotSc = !isSc 77 // AMOCAS.Q needs to write two int registers, therefore backend issues two sta uops for AMOCAS.Q. 78 // `pdest2` is used to record the pdest of the second uop 79 val pdest1, pdest2 = Reg(UInt(PhyRegIdxWidth.W)) 80 val pdest1Valid, pdest2Valid = RegInit(false.B) 81 /** 82 * The # of std uops that an atomic instruction require: 83 * (1) For AMOs (except AMOCAS) and LR/SC, 1 std uop is wanted: X(rs2) with uopIdx = 0 84 * (2) For AMOCAS.W/D, 2 std uops are wanted: X(rd), X(rs2) with uopIdx = 0, 1 85 * (3) For AMOCAS.Q, 4 std uops are wanted: X(rd), X(rs2), X(rd+1), X(rs2+1) with uopIdx = 0, 1, 2, 3 86 * stds are not needed for write-back. 87 * 88 * The # of sta uops that an atomic instruction require, also the # of write-back: 89 * (1) For AMOs(except AMOCAS.Q) and LR/SC, 1 sta uop is wanted: X(rs1) with uopIdx = 0 90 * (2) For AMOCAS.Q, 2 sta uop is wanted: X(rs1)*2 with uopIdx = 0, 2 91 */ 92 val rs1, rs2_l, rs2_h, rd_l, rd_h = Reg(UInt(XLEN.W)) 93 val stds = Seq(rd_l, rs2_l, rd_h, rs2_h) 94 val rs2 = Cat(rs2_h, Mux(isAMOCAS, rs2_l, stds.head)) 95 val rd = Cat(rd_h, rd_l) 96 val stdCnt = RegInit(0.U(log2Ceil(stds.length + 1).W)) 97 98 val exceptionVec = RegInit(0.U.asTypeOf(ExceptionVec())) 99 val trigger = RegInit(TriggerAction.None) 100 val atom_override_xtval = RegInit(false.B) 101 val have_sent_first_tlb_req = RegInit(false.B) 102 // paddr after translation 103 val paddr = Reg(UInt()) 104 val gpaddr = Reg(UInt()) 105 val vaddr = rs1 106 107 val is_mmio = Reg(Bool()) 108 val isForVSnonLeafPTE = Reg(Bool()) 109 110 // dcache response data 111 val resp_data = Reg(UInt()) 112 val resp_data_wire = WireInit(0.U) 113 val success = Reg(Bool()) 114 // sbuffer is empty or not 115 val sbuffer_empty = io.flush_sbuffer.empty 116 117 // Only the least significant AMOFuOpWidth = 6 bits of fuOpType are used, 118 // therefore the MSBs are reused to identify uopIdx 119 val stdUopIdxs = io.storeDataIn.map(_.bits.uop.fuOpType >> LSUOpType.AMOFuOpWidth) 120 val staUopIdx = io.in.bits.uop.fuOpType >> LSUOpType.AMOFuOpWidth 121 122 // assign default value to output signals 123 io.in.ready := false.B 124 125 io.dcache.req.valid := false.B 126 io.dcache.req.bits := DontCare 127 128 io.dtlb.req.valid := false.B 129 io.dtlb.req.bits := DontCare 130 io.dtlb.req_kill := false.B 131 io.dtlb.resp.ready := true.B 132 133 io.flush_sbuffer.valid := false.B 134 135 when (state === s_invalid) { 136 when (io.in.fire) { 137 uop := io.in.bits.uop 138 rs1 := io.in.bits.src_rs1 139 state := s_tlb_and_flush_sbuffer_req 140 have_sent_first_tlb_req := false.B 141 } 142 } 143 144 when (io.in.fire) { 145 val pdest = io.in.bits.uop.pdest 146 when (staUopIdx === 0.U) { 147 pdest1Valid := true.B 148 pdest1 := pdest 149 }.elsewhen (staUopIdx === 2.U) { 150 pdest2Valid := true.B 151 pdest2 := pdest 152 }.otherwise { 153 assert(false.B, "unrecognized sta uopIdx") 154 } 155 } 156 157 stds.zipWithIndex.foreach { case (data, i) => 158 val sels = io.storeDataIn.zip(stdUopIdxs).map { case (in, uopIdx) => 159 val sel = in.fire && uopIdx === i.U 160 when (sel) { data := in.bits.data } 161 sel 162 } 163 OneHot.checkOneHot(sels) 164 } 165 stdCnt := stdCnt + PopCount(io.storeDataIn.map(_.fire)) 166 167 val StdCntNCAS = 1 // LR/SC and AMO need only 1 src besides rs1 168 val StdCntCASWD = 2 // AMOCAS.W/D needs 2 src regs (rs2 and rd) besides rs1 169 val StdCntCASQ = 4 // AMOCAS.Q needs 4 src regs (rs2, rs2+1, rd, rd+1) besides rs1 170 when (!data_valid) { 171 data_valid := state =/= s_invalid && ( 172 LSUOpType.isAMOCASQ(uop.fuOpType) && stdCnt === StdCntCASQ.U || 173 LSUOpType.isAMOCASWD(uop.fuOpType) && stdCnt === StdCntCASWD.U || 174 !isAMOCAS && stdCnt === StdCntNCAS.U 175 ) 176 } 177 assert(stdCnt <= stds.length.U, "unexpected std") 178 assert(!(Cat(io.storeDataIn.map(_.fire)).orR && data_valid), "atomic unit re-receive data") 179 180 // atomic trigger 181 val csrCtrl = io.csrCtrl 182 val tdata = Reg(Vec(TriggerNum, new MatchTriggerIO)) 183 val tEnableVec = RegInit(VecInit(Seq.fill(TriggerNum)(false.B))) 184 tEnableVec := csrCtrl.mem_trigger.tEnableVec 185 when (csrCtrl.mem_trigger.tUpdate.valid) { 186 tdata(csrCtrl.mem_trigger.tUpdate.bits.addr) := csrCtrl.mem_trigger.tUpdate.bits.tdata 187 } 188 189 val debugMode = csrCtrl.mem_trigger.debugMode 190 val triggerCanRaiseBpExp = csrCtrl.mem_trigger.triggerCanRaiseBpExp 191 val backendTriggerTimingVec = VecInit(tdata.map(_.timing)) 192 val backendTriggerChainVec = VecInit(tdata.map(_.chain)) 193 val backendTriggerHitVec = WireInit(VecInit(Seq.fill(TriggerNum)(false.B))) 194 val backendTriggerCanFireVec = RegInit(VecInit(Seq.fill(TriggerNum)(false.B))) 195 196 assert(state === s_invalid || 197 uop.fuOpType(1,0) === "b10".U || 198 uop.fuOpType(1,0) === "b11".U || 199 LSUOpType.isAMOCASQ(uop.fuOpType), 200 "Only word or doubleword or quadword is supported" 201 ) 202 203 // store trigger 204 val store_hit = Wire(Vec(TriggerNum, Bool())) 205 for (j <- 0 until TriggerNum) { 206 store_hit(j) := !tdata(j).select && !debugMode && isNotLr && TriggerCmp( 207 vaddr, 208 tdata(j).tdata2, 209 tdata(j).matchType, 210 tEnableVec(j) && tdata(j).store 211 ) 212 } 213 // load trigger 214 val load_hit = Wire(Vec(TriggerNum, Bool())) 215 for (j <- 0 until TriggerNum) { 216 load_hit(j) := !tdata(j).select && !debugMode && isNotSc && TriggerCmp( 217 vaddr, 218 tdata(j).tdata2, 219 tdata(j).matchType, 220 tEnableVec(j) && tdata(j).load 221 ) 222 } 223 backendTriggerHitVec := store_hit.zip(load_hit).map { case (sh, lh) => sh || lh } 224 // triggerCanFireVec will update at T+1 225 TriggerCheckCanFire(TriggerNum, backendTriggerCanFireVec, backendTriggerHitVec, 226 backendTriggerTimingVec, backendTriggerChainVec) 227 228 val actionVec = VecInit(tdata.map(_.action)) 229 val triggerAction = Wire(TriggerAction()) 230 TriggerUtil.triggerActionGen(triggerAction, backendTriggerCanFireVec, actionVec, triggerCanRaiseBpExp) 231 val triggerDebugMode = TriggerAction.isDmode(triggerAction) 232 val triggerBreakpoint = TriggerAction.isExp(triggerAction) 233 234 // tlb translation, manipulating signals && deal with exception 235 // at the same time, flush sbuffer 236 when (state === s_tlb_and_flush_sbuffer_req) { 237 // do not accept tlb resp in the first cycle 238 // this limition is for hw prefetcher 239 // when !have_sent_first_tlb_req, tlb resp may come from hw prefetch 240 have_sent_first_tlb_req := true.B 241 242 when (io.dtlb.resp.fire && have_sent_first_tlb_req) { 243 paddr := io.dtlb.resp.bits.paddr(0) 244 gpaddr := io.dtlb.resp.bits.gpaddr(0) 245 vaddr := io.dtlb.resp.bits.fullva 246 isForVSnonLeafPTE := io.dtlb.resp.bits.isForVSnonLeafPTE 247 // exception handling 248 val addrAligned = LookupTree(uop.fuOpType(1,0), List( 249 "b10".U -> (vaddr(1,0) === 0.U), // W 250 "b11".U -> (vaddr(2,0) === 0.U), // D 251 "b00".U -> (vaddr(3,0) === 0.U) // Q 252 )) 253 exceptionVec(loadAddrMisaligned) := !addrAligned && isLr 254 exceptionVec(storeAddrMisaligned) := !addrAligned && !isLr 255 exceptionVec(storePageFault) := io.dtlb.resp.bits.excp(0).pf.st 256 exceptionVec(loadPageFault) := io.dtlb.resp.bits.excp(0).pf.ld 257 exceptionVec(storeAccessFault) := io.dtlb.resp.bits.excp(0).af.st 258 exceptionVec(loadAccessFault) := io.dtlb.resp.bits.excp(0).af.ld 259 exceptionVec(storeGuestPageFault) := io.dtlb.resp.bits.excp(0).gpf.st 260 exceptionVec(loadGuestPageFault) := io.dtlb.resp.bits.excp(0).gpf.ld 261 262 exceptionVec(breakPoint) := triggerBreakpoint 263 trigger := triggerAction 264 265 when (!io.dtlb.resp.bits.miss) { 266 io.out.bits.uop.debugInfo.tlbRespTime := GTimer() 267 when (!addrAligned || triggerDebugMode || triggerBreakpoint) { 268 // NOTE: when addrAligned or trigger fire, do not need to wait tlb actually 269 // check for miss aligned exceptions, tlb exception are checked next cycle for timing 270 // if there are exceptions, no need to execute it 271 state := s_finish 272 out_valid := true.B 273 atom_override_xtval := true.B 274 }.otherwise { 275 state := s_pm 276 } 277 } 278 } 279 } 280 281 val pbmtReg = RegEnable(io.dtlb.resp.bits.pbmt(0), io.dtlb.resp.fire && !io.dtlb.resp.bits.miss) 282 when (state === s_pm) { 283 val pmp = WireInit(io.pmpResp) 284 is_mmio := Pbmt.isIO(pbmtReg) || (Pbmt.isPMA(pbmtReg) && pmp.mmio) 285 286 // NOTE: only handle load/store exception here, if other exception happens, don't send here 287 val exception_va = exceptionVec(storePageFault) || exceptionVec(loadPageFault) || 288 exceptionVec(storeGuestPageFault) || exceptionVec(loadGuestPageFault) || 289 exceptionVec(storeAccessFault) || exceptionVec(loadAccessFault) 290 val exception_pa_mmio_nc = pmp.mmio || Pbmt.isIO(pbmtReg) || Pbmt.isNC(pbmtReg) 291 val exception_pa = pmp.st || pmp.ld || exception_pa_mmio_nc 292 when (exception_va || exception_pa) { 293 state := s_finish 294 out_valid := true.B 295 atom_override_xtval := true.B 296 }.otherwise { 297 // if sbuffer has been flushed, go to query dcache, otherwise wait for sbuffer. 298 state := Mux(sbuffer_empty, s_cache_req, s_wait_flush_sbuffer_resp); 299 } 300 // update storeAccessFault bit 301 exceptionVec(loadAccessFault) := exceptionVec(loadAccessFault) || 302 (pmp.ld || exception_pa_mmio_nc) && isLr 303 exceptionVec(storeAccessFault) := exceptionVec(storeAccessFault) || pmp.st || 304 (pmp.ld || exception_pa_mmio_nc) && !isLr 305 } 306 307 when (state === s_wait_flush_sbuffer_resp) { 308 when (sbuffer_empty) { 309 state := s_cache_req 310 } 311 } 312 313 def genWdataAMO(data: UInt, sizeEncode: UInt): UInt = { 314 LookupTree(sizeEncode(1, 0), List( 315 "b10".U -> Fill(4, data(31, 0)), 316 "b11".U -> Fill(2, data(63, 0)), 317 "b00".U -> data(127, 0) 318 )) 319 } 320 321 def genWmaskAMO(addr: UInt, sizeEncode: UInt): UInt = { 322 /** 323 * `MainPipeReq` uses `word_idx` to recognize which 64-bits data bank to operate on. Double-word atomics are 324 * always 8B aligned and quad-word atomics are always 16B aligned except for misaligned exception, therefore 325 * `word_idx` is enough and there is no need to shift according address. Only word atomics needs LSBs of the 326 * address to shift mask inside a 64-bits aligned range. 327 */ 328 LookupTree(sizeEncode(1, 0), List( 329 "b10".U -> (0xf.U << addr(2,0)), // W 330 "b11".U -> 0xff.U, // D 331 "b00".U -> 0xffff.U // Q 332 )) 333 } 334 335 when (state === s_cache_req) { 336 when (io.dcache.req.fire) { 337 state := s_cache_resp 338 } 339 } 340 341 val dcache_resp_data = Reg(UInt()) 342 val dcache_resp_id = Reg(UInt()) 343 val dcache_resp_error = Reg(Bool()) 344 345 when (state === s_cache_resp) { 346 // when not miss 347 // everything is OK, simply send response back to sbuffer 348 // when miss and not replay 349 // wait for missQueue to handling miss and replaying our request 350 // when miss and replay 351 // req missed and fail to enter missQueue, manually replay it later 352 // TODO: add assertions: 353 // 1. add a replay delay counter? 354 // 2. when req gets into MissQueue, it should not miss any more 355 when (io.dcache.resp.fire) { 356 when (io.dcache.resp.bits.miss) { 357 when (io.dcache.resp.bits.replay) { 358 state := s_cache_req 359 } 360 }.otherwise { 361 dcache_resp_data := io.dcache.resp.bits.data 362 dcache_resp_id := io.dcache.resp.bits.id 363 dcache_resp_error := io.dcache.resp.bits.error 364 state := s_cache_resp_latch 365 } 366 } 367 } 368 369 when (state === s_cache_resp_latch) { 370 success := dcache_resp_id 371 val rdataSel = Mux( 372 paddr(2, 0) === 0.U, 373 dcache_resp_data, 374 dcache_resp_data >> 32 375 ) 376 assert(paddr(2, 0) === "b000".U || paddr(2, 0) === "b100".U) 377 378 resp_data_wire := Mux( 379 isSc, 380 dcache_resp_data, 381 LookupTree(uop.fuOpType(1,0), List( 382 "b10".U -> SignExt(rdataSel(31, 0), QuadWordBits), // W 383 "b11".U -> SignExt(rdataSel(63, 0), QuadWordBits), // D 384 "b00".U -> rdataSel // Q 385 )) 386 ) 387 388 when (dcache_resp_error && io.csrCtrl.cache_error_enable) { 389 exceptionVec(loadAccessFault) := isLr 390 exceptionVec(storeAccessFault) := !isLr 391 assert(!exceptionVec(loadAccessFault)) 392 assert(!exceptionVec(storeAccessFault)) 393 } 394 395 resp_data := resp_data_wire 396 state := s_finish 397 out_valid := true.B 398 } 399 400 when (state === s_finish) { 401 when (io.out.fire) { 402 when (LSUOpType.isAMOCASQ(uop.fuOpType)) { 403 // enter `s_finish2` to write the 2nd uop back 404 state := s_finish2 405 out_valid := true.B 406 }.otherwise { 407 // otherwise the FSM ends here 408 resetFSM() 409 } 410 } 411 } 412 413 when (state === s_finish2) { 414 when (io.out.fire) { 415 resetFSM() 416 } 417 } 418 419 when (io.redirect.valid) { 420 atom_override_xtval := false.B 421 } 422 423 def resetFSM(): Unit = { 424 state := s_invalid 425 out_valid := false.B 426 data_valid := false.B 427 stdCnt := 0.U 428 pdest1Valid := false.B 429 pdest2Valid := false.B 430 } 431 432 /** 433 * IO assignment 434 */ 435 io.exceptionInfo.valid := atom_override_xtval 436 io.exceptionInfo.bits.vaddr := vaddr 437 io.exceptionInfo.bits.gpaddr := gpaddr 438 io.exceptionInfo.bits.isForVSnonLeafPTE := isForVSnonLeafPTE 439 440 // Send TLB feedback to store issue queue 441 // we send feedback right after we receives request 442 // also, we always treat amo as tlb hit 443 // since we will continue polling tlb all by ourself 444 io.feedbackSlow.valid := GatedValidRegNext(GatedValidRegNext(io.in.valid)) 445 io.feedbackSlow.bits.hit := true.B 446 io.feedbackSlow.bits.robIdx := RegEnable(io.in.bits.uop.robIdx, io.in.valid) 447 io.feedbackSlow.bits.sqIdx := RegEnable(io.in.bits.uop.sqIdx, io.in.valid) 448 io.feedbackSlow.bits.lqIdx := RegEnable(io.in.bits.uop.lqIdx, io.in.valid) 449 io.feedbackSlow.bits.flushState := DontCare 450 io.feedbackSlow.bits.sourceType := DontCare 451 io.feedbackSlow.bits.dataInvalidSqIdx := DontCare 452 453 // send req to dtlb 454 // keep firing until tlb hit 455 io.dtlb.req.valid := state === s_tlb_and_flush_sbuffer_req 456 io.dtlb.req.bits.vaddr := vaddr 457 io.dtlb.req.bits.fullva := vaddr 458 io.dtlb.req.bits.checkfullva := true.B 459 io.dtlb.resp.ready := true.B 460 io.dtlb.req.bits.cmd := Mux(isLr, TlbCmd.atom_read, TlbCmd.atom_write) 461 io.dtlb.req.bits.debug.pc := uop.pc 462 io.dtlb.req.bits.debug.robIdx := uop.robIdx 463 io.dtlb.req.bits.debug.isFirstIssue := false.B 464 io.out.bits.uop.debugInfo.tlbFirstReqTime := GTimer() // FIXME lyq: it will be always assigned 465 466 // send req to sbuffer to flush it if it is not empty 467 io.flush_sbuffer.valid := !sbuffer_empty && state === s_tlb_and_flush_sbuffer_req 468 469 // When is sta issue port ready: 470 // (1) AtomicsUnit is idle, or 471 // (2) For AMOCAS.Q, the second uop with the pdest of the higher bits of rd is not received yet 472 io.in.ready := state === s_invalid || LSUOpType.isAMOCASQ(uop.fuOpType) && (!pdest2Valid || !pdest1Valid) 473 474 io.out.valid := out_valid && Mux(state === s_finish2, pdest2Valid, pdest1Valid) 475 XSError((state === s_finish || state === s_finish2) =/= out_valid, "out_valid reg error\n") 476 io.out.bits := DontCare 477 io.out.bits.uop := uop 478 io.out.bits.uop.fuType := FuType.mou.U 479 io.out.bits.uop.pdest := Mux(state === s_finish2, pdest2, pdest1) 480 io.out.bits.uop.exceptionVec := exceptionVec 481 io.out.bits.uop.trigger := trigger 482 io.out.bits.data := Mux(state === s_finish2, resp_data >> XLEN, resp_data) 483 io.out.bits.debug.isMMIO := is_mmio 484 io.out.bits.debug.paddr := paddr 485 486 io.dcache.req.valid := Mux( 487 io.dcache.req.bits.cmd === M_XLR, 488 !io.dcache.block_lr, // block lr to survive in lr storm 489 data_valid // wait until src(1) is ready 490 ) && state === s_cache_req 491 val pipe_req = io.dcache.req.bits 492 pipe_req := DontCare 493 pipe_req.cmd := LookupTree(uop.fuOpType, List( 494 // TODO: optimize this 495 LSUOpType.lr_w -> M_XLR, 496 LSUOpType.sc_w -> M_XSC, 497 LSUOpType.amoswap_w -> M_XA_SWAP, 498 LSUOpType.amoadd_w -> M_XA_ADD, 499 LSUOpType.amoxor_w -> M_XA_XOR, 500 LSUOpType.amoand_w -> M_XA_AND, 501 LSUOpType.amoor_w -> M_XA_OR, 502 LSUOpType.amomin_w -> M_XA_MIN, 503 LSUOpType.amomax_w -> M_XA_MAX, 504 LSUOpType.amominu_w -> M_XA_MINU, 505 LSUOpType.amomaxu_w -> M_XA_MAXU, 506 LSUOpType.amocas_w -> M_XA_CASW, 507 508 LSUOpType.lr_d -> M_XLR, 509 LSUOpType.sc_d -> M_XSC, 510 LSUOpType.amoswap_d -> M_XA_SWAP, 511 LSUOpType.amoadd_d -> M_XA_ADD, 512 LSUOpType.amoxor_d -> M_XA_XOR, 513 LSUOpType.amoand_d -> M_XA_AND, 514 LSUOpType.amoor_d -> M_XA_OR, 515 LSUOpType.amomin_d -> M_XA_MIN, 516 LSUOpType.amomax_d -> M_XA_MAX, 517 LSUOpType.amominu_d -> M_XA_MINU, 518 LSUOpType.amomaxu_d -> M_XA_MAXU, 519 LSUOpType.amocas_d -> M_XA_CASD, 520 521 LSUOpType.amocas_q -> M_XA_CASQ 522 )) 523 pipe_req.miss := false.B 524 pipe_req.probe := false.B 525 pipe_req.probe_need_data := false.B 526 pipe_req.source := AMO_SOURCE.U 527 pipe_req.addr := get_block_addr(paddr) 528 pipe_req.vaddr := get_block_addr(vaddr) 529 pipe_req.word_idx := get_word(paddr) 530 pipe_req.amo_data := genWdataAMO(rs2, uop.fuOpType) 531 pipe_req.amo_mask := genWmaskAMO(paddr, uop.fuOpType) 532 pipe_req.amo_cmp := genWdataAMO(rd, uop.fuOpType) 533 534 if (env.EnableDifftest) { 535 val difftest = DifftestModule(new DiffAtomicEvent) 536 val en = io.dcache.req.fire 537 difftest.coreid := io.hartId 538 difftest.valid := state === s_cache_resp_latch 539 difftest.addr := RegEnable(paddr, en) 540 difftest.data := RegEnable(io.dcache.req.bits.amo_data.asTypeOf(difftest.data), en) 541 difftest.mask := RegEnable(io.dcache.req.bits.amo_mask, en) 542 difftest.cmp := RegEnable(io.dcache.req.bits.amo_cmp.asTypeOf(difftest.cmp), en) 543 difftest.fuop := RegEnable(uop.fuOpType, en) 544 difftest.out := resp_data_wire.asTypeOf(difftest.out) 545 } 546 547 if (env.EnableDifftest || env.AlwaysBasicDiff) { 548 val uop = io.out.bits.uop 549 val difftest = DifftestModule(new DiffLrScEvent) 550 difftest.coreid := io.hartId 551 difftest.valid := io.out.fire && state === s_finish && isSc 552 difftest.success := success 553 } 554} 555