xref: /XiangShan/src/main/scala/xiangshan/mem/pipeline/AtomicsUnit.scala (revision b1e920234888fd3e5463ceb2a99c9bdca087f585)
1/***************************************************************************************
2* Copyright (c) 2020-2021 Institute of Computing Technology, Chinese Academy of Sciences
3* Copyright (c) 2020-2021 Peng Cheng Laboratory
4*
5* XiangShan is licensed under Mulan PSL v2.
6* You can use this software according to the terms and conditions of the Mulan PSL v2.
7* You may obtain a copy of Mulan PSL v2 at:
8*          http://license.coscl.org.cn/MulanPSL2
9*
10* THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND,
11* EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT,
12* MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE.
13*
14* See the Mulan PSL v2 for more details.
15***************************************************************************************/
16
17package xiangshan.mem
18
19import org.chipsalliance.cde.config.Parameters
20import chisel3._
21import chisel3.util._
22import utils._
23import utility._
24import xiangshan._
25import xiangshan.cache.{AtomicWordIO, HasDCacheParameters, MemoryOpConstants}
26import xiangshan.cache.mmu.{TlbCmd, TlbRequestIO}
27import difftest._
28import xiangshan.ExceptionNO._
29import xiangshan.backend.fu.PMPRespBundle
30import xiangshan.backend.Bundles.{MemExuInput, MemExuOutput}
31import xiangshan.backend.fu.util.SdtrigExt
32
33class AtomicsUnit(implicit p: Parameters) extends XSModule
34  with MemoryOpConstants
35  with HasDCacheParameters
36  with SdtrigExt{
37  val io = IO(new Bundle() {
38    val hartId = Input(UInt(8.W))
39    val in            = Flipped(Decoupled(new MemExuInput))
40    val storeDataIn   = Flipped(Valid(new MemExuOutput)) // src2 from rs
41    val out           = Decoupled(new MemExuOutput)
42    val dcache        = new AtomicWordIO
43    val dtlb          = new TlbRequestIO(2)
44    val pmpResp       = Flipped(new PMPRespBundle())
45    val flush_sbuffer = new SbufferFlushBundle
46    val feedbackSlow  = ValidIO(new RSFeedback)
47    val redirect      = Flipped(ValidIO(new Redirect))
48    val exceptionAddr = ValidIO(UInt(VAddrBits.W))
49    val csrCtrl       = Flipped(new CustomCSRCtrlIO)
50  })
51
52  //-------------------------------------------------------
53  // Atomics Memory Accsess FSM
54  //-------------------------------------------------------
55  val s_invalid :: s_tlb_and_flush_sbuffer_req :: s_pm :: s_wait_flush_sbuffer_resp :: s_cache_req :: s_cache_resp :: s_cache_resp_latch :: s_finish :: Nil = Enum(8)
56  val state = RegInit(s_invalid)
57  val out_valid = RegInit(false.B)
58  val data_valid = RegInit(false.B)
59  val in = Reg(new MemExuInput())
60  val exceptionVec = RegInit(0.U.asTypeOf(ExceptionVec()))
61  val atom_override_xtval = RegInit(false.B)
62  val have_sent_first_tlb_req = RegInit(false.B)
63  val isLr = in.uop.fuOpType === LSUOpType.lr_w || in.uop.fuOpType === LSUOpType.lr_d
64  // paddr after translation
65  val paddr = Reg(UInt())
66  val vaddr = in.src(0)
67  val is_mmio = Reg(Bool())
68
69  // dcache response data
70  val resp_data = Reg(UInt())
71  val resp_data_wire = WireInit(0.U)
72  val is_lrsc_valid = Reg(Bool())
73  // sbuffer is empty or not
74  val sbuffer_empty = io.flush_sbuffer.empty
75
76
77  // Difftest signals
78  val paddr_reg = Reg(UInt(64.W))
79  val data_reg = Reg(UInt(64.W))
80  val mask_reg = Reg(UInt(8.W))
81  val fuop_reg = Reg(UInt(8.W))
82
83  io.exceptionAddr.valid := atom_override_xtval
84  io.exceptionAddr.bits  := in.src(0)
85
86  // assign default value to output signals
87  io.in.ready          := false.B
88
89  io.dcache.req.valid  := false.B
90  io.dcache.req.bits   := DontCare
91
92  io.dtlb.req.valid    := false.B
93  io.dtlb.req.bits     := DontCare
94  io.dtlb.req_kill     := false.B
95  io.dtlb.resp.ready   := true.B
96
97  io.flush_sbuffer.valid := false.B
98
99  XSDebug("state: %d\n", state)
100
101  when (state === s_invalid) {
102    io.in.ready := true.B
103    when (io.in.fire) {
104      in := io.in.bits
105      in.src(1) := in.src(1) // leave src2 unchanged
106      state := s_tlb_and_flush_sbuffer_req
107      have_sent_first_tlb_req := false.B
108    }
109  }
110
111  when (io.storeDataIn.fire) {
112    in.src(1) := io.storeDataIn.bits.data
113    data_valid := true.B
114  }
115
116  assert(!(io.storeDataIn.fire && data_valid), "atomic unit re-receive data")
117
118  // Send TLB feedback to store issue queue
119  // we send feedback right after we receives request
120  // also, we always treat amo as tlb hit
121  // since we will continue polling tlb all by ourself
122  io.feedbackSlow.valid       := RegNext(RegNext(io.in.valid))
123  io.feedbackSlow.bits.hit    := true.B
124  io.feedbackSlow.bits.robIdx  := RegEnable(io.in.bits.uop.robIdx, io.in.valid)
125  io.feedbackSlow.bits.flushState := DontCare
126  io.feedbackSlow.bits.sourceType := DontCare
127  io.feedbackSlow.bits.dataInvalidSqIdx := DontCare
128
129  // tlb translation, manipulating signals && deal with exception
130  // at the same time, flush sbuffer
131  when (state === s_tlb_and_flush_sbuffer_req) {
132    // send req to dtlb
133    // keep firing until tlb hit
134    io.dtlb.req.valid       := true.B
135    io.dtlb.req.bits.vaddr  := in.src(0)
136    io.dtlb.resp.ready      := true.B
137    io.dtlb.req.bits.cmd    := Mux(isLr, TlbCmd.atom_read, TlbCmd.atom_write)
138    io.dtlb.req.bits.debug.pc := in.uop.pc
139    io.dtlb.req.bits.debug.isFirstIssue := false.B
140    io.out.bits.uop.debugInfo.tlbFirstReqTime := GTimer() // FIXME lyq: it will be always assigned
141
142    // send req to sbuffer to flush it if it is not empty
143    io.flush_sbuffer.valid := Mux(sbuffer_empty, false.B, true.B)
144
145    // do not accept tlb resp in the first cycle
146    // this limition is for hw prefetcher
147    // when !have_sent_first_tlb_req, tlb resp may come from hw prefetch
148    have_sent_first_tlb_req := true.B
149
150    when(io.dtlb.resp.fire && have_sent_first_tlb_req){
151      paddr := io.dtlb.resp.bits.paddr(0)
152      // exception handling
153      val addrAligned = LookupTree(in.uop.fuOpType(1,0), List(
154        "b00".U   -> true.B,              //b
155        "b01".U   -> (in.src(0)(0) === 0.U),   //h
156        "b10".U   -> (in.src(0)(1,0) === 0.U), //w
157        "b11".U   -> (in.src(0)(2,0) === 0.U)  //d
158      ))
159      exceptionVec(loadAddrMisaligned)  := !addrAligned && isLr
160      exceptionVec(storeAddrMisaligned) := !addrAligned && !isLr
161      exceptionVec(storePageFault)      := io.dtlb.resp.bits.excp(0).pf.st
162      exceptionVec(loadPageFault)       := io.dtlb.resp.bits.excp(0).pf.ld
163      exceptionVec(storeAccessFault)    := io.dtlb.resp.bits.excp(0).af.st
164      exceptionVec(loadAccessFault)     := io.dtlb.resp.bits.excp(0).af.ld
165
166      when (!io.dtlb.resp.bits.miss) {
167        io.out.bits.uop.debugInfo.tlbRespTime := GTimer()
168        when (!addrAligned) {
169          // NOTE: when addrAligned, do not need to wait tlb actually
170          // check for miss aligned exceptions, tlb exception are checked next cycle for timing
171          // if there are exceptions, no need to execute it
172          state := s_finish
173          out_valid := true.B
174          atom_override_xtval := true.B
175        } .otherwise {
176          state := s_pm
177        }
178      }
179    }
180  }
181
182  when (state === s_pm) {
183    val pmp = WireInit(io.pmpResp)
184    is_mmio := pmp.mmio
185
186    // NOTE: only handle load/store exception here, if other exception happens, don't send here
187    val exception_va = exceptionVec(storePageFault) || exceptionVec(loadPageFault) ||
188      exceptionVec(storeAccessFault) || exceptionVec(loadAccessFault)
189    val exception_pa = pmp.st || pmp.ld
190    when (exception_va || exception_pa) {
191      state := s_finish
192      out_valid := true.B
193      atom_override_xtval := true.B
194    }.otherwise {
195      // if sbuffer has been flushed, go to query dcache, otherwise wait for sbuffer.
196      state := Mux(sbuffer_empty, s_cache_req, s_wait_flush_sbuffer_resp);
197    }
198    // update storeAccessFault bit
199    exceptionVec(loadAccessFault) := exceptionVec(loadAccessFault) || pmp.ld && isLr
200    exceptionVec(storeAccessFault) := exceptionVec(storeAccessFault) || pmp.st || pmp.ld && !isLr
201  }
202
203  when (state === s_wait_flush_sbuffer_resp) {
204    when (sbuffer_empty) {
205      state := s_cache_req
206    }
207  }
208
209  when (state === s_cache_req) {
210    val pipe_req = io.dcache.req.bits
211    pipe_req := DontCare
212
213    pipe_req.cmd := LookupTree(in.uop.fuOpType, List(
214      LSUOpType.lr_w      -> M_XLR,
215      LSUOpType.sc_w      -> M_XSC,
216      LSUOpType.amoswap_w -> M_XA_SWAP,
217      LSUOpType.amoadd_w  -> M_XA_ADD,
218      LSUOpType.amoxor_w  -> M_XA_XOR,
219      LSUOpType.amoand_w  -> M_XA_AND,
220      LSUOpType.amoor_w   -> M_XA_OR,
221      LSUOpType.amomin_w  -> M_XA_MIN,
222      LSUOpType.amomax_w  -> M_XA_MAX,
223      LSUOpType.amominu_w -> M_XA_MINU,
224      LSUOpType.amomaxu_w -> M_XA_MAXU,
225
226      LSUOpType.lr_d      -> M_XLR,
227      LSUOpType.sc_d      -> M_XSC,
228      LSUOpType.amoswap_d -> M_XA_SWAP,
229      LSUOpType.amoadd_d  -> M_XA_ADD,
230      LSUOpType.amoxor_d  -> M_XA_XOR,
231      LSUOpType.amoand_d  -> M_XA_AND,
232      LSUOpType.amoor_d   -> M_XA_OR,
233      LSUOpType.amomin_d  -> M_XA_MIN,
234      LSUOpType.amomax_d  -> M_XA_MAX,
235      LSUOpType.amominu_d -> M_XA_MINU,
236      LSUOpType.amomaxu_d -> M_XA_MAXU
237    ))
238    pipe_req.miss := false.B
239    pipe_req.probe := false.B
240    pipe_req.probe_need_data := false.B
241    pipe_req.source := AMO_SOURCE.U
242    pipe_req.addr   := get_block_addr(paddr)
243    pipe_req.vaddr  := get_block_addr(in.src(0)) // vaddr
244    pipe_req.word_idx  := get_word(paddr)
245    pipe_req.amo_data  := genWdata(in.src(1), in.uop.fuOpType(1,0))
246    pipe_req.amo_mask  := genWmask(paddr, in.uop.fuOpType(1,0))
247
248    io.dcache.req.valid := Mux(
249      io.dcache.req.bits.cmd === M_XLR,
250      !io.dcache.block_lr, // block lr to survive in lr storm
251      data_valid // wait until src(1) is ready
252    )
253
254    when(io.dcache.req.fire){
255      state := s_cache_resp
256      paddr_reg := paddr
257      data_reg := io.dcache.req.bits.amo_data
258      mask_reg := io.dcache.req.bits.amo_mask
259      fuop_reg := in.uop.fuOpType
260    }
261  }
262
263  val dcache_resp_data  = Reg(UInt())
264  val dcache_resp_id    = Reg(UInt())
265  val dcache_resp_error = Reg(Bool())
266
267  when (state === s_cache_resp) {
268    // when not miss
269    // everything is OK, simply send response back to sbuffer
270    // when miss and not replay
271    // wait for missQueue to handling miss and replaying our request
272    // when miss and replay
273    // req missed and fail to enter missQueue, manually replay it later
274    // TODO: add assertions:
275    // 1. add a replay delay counter?
276    // 2. when req gets into MissQueue, it should not miss any more
277    when(io.dcache.resp.fire) {
278      when(io.dcache.resp.bits.miss) {
279        when(io.dcache.resp.bits.replay) {
280          state := s_cache_req
281        }
282      } .otherwise {
283        dcache_resp_data := io.dcache.resp.bits.data
284        dcache_resp_id := io.dcache.resp.bits.id
285        dcache_resp_error := io.dcache.resp.bits.error
286        state := s_cache_resp_latch
287      }
288    }
289  }
290
291  when (state === s_cache_resp_latch) {
292    is_lrsc_valid :=  dcache_resp_id
293    val rdataSel = LookupTree(paddr(2, 0), List(
294      "b000".U -> dcache_resp_data(63, 0),
295      "b001".U -> dcache_resp_data(63, 8),
296      "b010".U -> dcache_resp_data(63, 16),
297      "b011".U -> dcache_resp_data(63, 24),
298      "b100".U -> dcache_resp_data(63, 32),
299      "b101".U -> dcache_resp_data(63, 40),
300      "b110".U -> dcache_resp_data(63, 48),
301      "b111".U -> dcache_resp_data(63, 56)
302    ))
303
304    resp_data_wire := LookupTree(in.uop.fuOpType, List(
305      LSUOpType.lr_w      -> SignExt(rdataSel(31, 0), XLEN),
306      LSUOpType.sc_w      -> dcache_resp_data,
307      LSUOpType.amoswap_w -> SignExt(rdataSel(31, 0), XLEN),
308      LSUOpType.amoadd_w  -> SignExt(rdataSel(31, 0), XLEN),
309      LSUOpType.amoxor_w  -> SignExt(rdataSel(31, 0), XLEN),
310      LSUOpType.amoand_w  -> SignExt(rdataSel(31, 0), XLEN),
311      LSUOpType.amoor_w   -> SignExt(rdataSel(31, 0), XLEN),
312      LSUOpType.amomin_w  -> SignExt(rdataSel(31, 0), XLEN),
313      LSUOpType.amomax_w  -> SignExt(rdataSel(31, 0), XLEN),
314      LSUOpType.amominu_w -> SignExt(rdataSel(31, 0), XLEN),
315      LSUOpType.amomaxu_w -> SignExt(rdataSel(31, 0), XLEN),
316
317      LSUOpType.lr_d      -> SignExt(rdataSel(63, 0), XLEN),
318      LSUOpType.sc_d      -> dcache_resp_data,
319      LSUOpType.amoswap_d -> SignExt(rdataSel(63, 0), XLEN),
320      LSUOpType.amoadd_d  -> SignExt(rdataSel(63, 0), XLEN),
321      LSUOpType.amoxor_d  -> SignExt(rdataSel(63, 0), XLEN),
322      LSUOpType.amoand_d  -> SignExt(rdataSel(63, 0), XLEN),
323      LSUOpType.amoor_d   -> SignExt(rdataSel(63, 0), XLEN),
324      LSUOpType.amomin_d  -> SignExt(rdataSel(63, 0), XLEN),
325      LSUOpType.amomax_d  -> SignExt(rdataSel(63, 0), XLEN),
326      LSUOpType.amominu_d -> SignExt(rdataSel(63, 0), XLEN),
327      LSUOpType.amomaxu_d -> SignExt(rdataSel(63, 0), XLEN)
328    ))
329
330    when (dcache_resp_error && io.csrCtrl.cache_error_enable) {
331      exceptionVec(loadAccessFault)  := isLr
332      exceptionVec(storeAccessFault) := !isLr
333      assert(!exceptionVec(loadAccessFault))
334      assert(!exceptionVec(storeAccessFault))
335    }
336
337    resp_data := resp_data_wire
338    state := s_finish
339    out_valid := true.B
340  }
341
342  io.out.valid := out_valid
343  XSError((state === s_finish) =/= out_valid, "out_valid reg error\n")
344  io.out.bits := DontCare
345  io.out.bits.uop := in.uop
346  io.out.bits.uop.exceptionVec := exceptionVec
347  io.out.bits.data := resp_data
348  io.out.bits.debug.isMMIO := is_mmio
349  io.out.bits.debug.paddr := paddr
350  when (io.out.fire) {
351    XSDebug("atomics writeback: pc %x data %x\n", io.out.bits.uop.pc, io.dcache.resp.bits.data)
352    state := s_invalid
353    out_valid := false.B
354  }
355
356  when (state === s_finish) {
357    data_valid := false.B
358  }
359
360  when (io.redirect.valid) {
361    atom_override_xtval := false.B
362  }
363
364  // atomic trigger
365  val csrCtrl = io.csrCtrl
366  val tdata = Reg(Vec(TriggerNum, new MatchTriggerIO))
367  val tEnableVec = RegInit(VecInit(Seq.fill(TriggerNum)(false.B)))
368  tEnableVec := csrCtrl.mem_trigger.tEnableVec
369  when(csrCtrl.mem_trigger.tUpdate.valid) {
370    tdata(csrCtrl.mem_trigger.tUpdate.bits.addr) := csrCtrl.mem_trigger.tUpdate.bits.tdata
371  }
372
373  val frontendTriggerTimingVec = in.uop.trigger.frontendTiming
374  val frontendTriggerChainVec = in.uop.trigger.frontendChain
375  val frontendTriggerHitVec = in.uop.trigger.frontendHit
376
377  val backendTriggerTimingVec = tdata.map(_.timing)
378  val backendTriggerChainVec = tdata.map(_.chain)
379  val backendTriggerHitVec = WireInit(VecInit(Seq.fill(TriggerNum)(false.B)))
380
381  val triggerTimingVec = VecInit(backendTriggerTimingVec.zip(frontendTriggerTimingVec).map { case (b, f) => b || f })
382  val triggerChainVec = VecInit(backendTriggerChainVec.zip(frontendTriggerChainVec).map { case (b, f) => b || f })
383  val triggerHitVec = Reg(Vec(TriggerNum, Bool()))
384  triggerHitVec := VecInit(backendTriggerHitVec.zip(frontendTriggerHitVec).map { case (b, f) => b || f })
385
386  val triggerCanFireVec = RegInit(VecInit(Seq.fill(TriggerNum)(false.B)))
387  when(state === s_cache_req) {
388    // store trigger
389    val store_hit = Wire(Vec(TriggerNum, Bool()))
390    for (j <- 0 until TriggerNum) {
391      store_hit(j) := !tdata(j).select && TriggerCmp(
392        vaddr,
393        tdata(j).tdata2,
394        tdata(j).matchType,
395        tEnableVec(j) && tdata(j).store
396      )
397    }
398    // load trigger
399    val load_hit = Wire(Vec(TriggerNum, Bool()))
400    for (j <- 0 until TriggerNum) {
401      load_hit(j) := !tdata(j).select && TriggerCmp(
402        vaddr,
403        tdata(j).tdata2,
404        tdata(j).matchType,
405        tEnableVec(j) && tdata(j).load
406      )
407    }
408    backendTriggerHitVec := store_hit.zip(load_hit).map { case (sh, lh) => sh || lh }
409    // triggerCanFireVec will update at T+1
410    TriggerCheckCanFire(TriggerNum, triggerCanFireVec, triggerHitVec, triggerTimingVec, triggerChainVec)
411  }
412
413  // addr trigger do cmp at s_cache_req
414  // trigger result is used at s_finish
415  // thus we can delay it safely
416  io.out.bits.uop.trigger.backendHit := triggerHitVec
417  io.out.bits.uop.trigger.backendCanFire := triggerCanFireVec
418
419  if (env.EnableDifftest) {
420    val difftest = DifftestModule(new DiffAtomicEvent)
421    difftest.coreid := io.hartId
422    difftest.valid  := state === s_cache_resp_latch
423    difftest.addr   := paddr_reg
424    difftest.data   := data_reg
425    difftest.mask   := mask_reg
426    difftest.fuop   := fuop_reg
427    difftest.out    := resp_data_wire
428  }
429
430  if (env.EnableDifftest || env.AlwaysBasicDiff) {
431    val uop = io.out.bits.uop
432    val difftest = DifftestModule(new DiffLrScEvent)
433    difftest.coreid := io.hartId
434    difftest.valid := io.out.fire &&
435      (uop.fuOpType === LSUOpType.sc_d || uop.fuOpType === LSUOpType.sc_w)
436    difftest.success := is_lrsc_valid
437  }
438}
439