1/*************************************************************************************** 2* Copyright (c) 2020-2021 Institute of Computing Technology, Chinese Academy of Sciences 3* Copyright (c) 2020-2021 Peng Cheng Laboratory 4* 5* XiangShan is licensed under Mulan PSL v2. 6* You can use this software according to the terms and conditions of the Mulan PSL v2. 7* You may obtain a copy of Mulan PSL v2 at: 8* http://license.coscl.org.cn/MulanPSL2 9* 10* THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND, 11* EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT, 12* MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE. 13* 14* See the Mulan PSL v2 for more details. 15***************************************************************************************/ 16 17package xiangshan.mem 18 19import org.chipsalliance.cde.config.Parameters 20import chisel3._ 21import chisel3.util._ 22import utils._ 23import utility._ 24import xiangshan._ 25import xiangshan.cache.{AtomicWordIO, HasDCacheParameters, MemoryOpConstants} 26import xiangshan.cache.mmu.{TlbCmd, TlbRequestIO} 27import difftest._ 28import xiangshan.ExceptionNO._ 29import xiangshan.backend.fu.PMPRespBundle 30import xiangshan.backend.fu.FuType 31import xiangshan.backend.Bundles.{MemExuInput, MemExuOutput} 32import xiangshan.backend.fu.NewCSR.TriggerUtil 33import xiangshan.backend.fu.util.SdtrigExt 34import xiangshan.cache.mmu.Pbmt 35 36class AtomicsUnit(implicit p: Parameters) extends XSModule 37 with MemoryOpConstants 38 with HasDCacheParameters 39 with SdtrigExt{ 40 41 val StdCnt = backendParams.StdCnt 42 43 val io = IO(new Bundle() { 44 val hartId = Input(UInt(hartIdLen.W)) 45 val in = Flipped(Decoupled(new MemExuInput)) 46 val storeDataIn = Flipped(Vec(StdCnt, Valid(new MemExuOutput))) 47 val out = Decoupled(new MemExuOutput) 48 val dcache = new AtomicWordIO 49 val dtlb = new TlbRequestIO(2) 50 val pmpResp = Flipped(new PMPRespBundle()) 51 val flush_sbuffer = new SbufferFlushBundle 52 val feedbackSlow = ValidIO(new RSFeedback) 53 val redirect = Flipped(ValidIO(new Redirect)) 54 val exceptionInfo = ValidIO(new Bundle { 55 val vaddr = UInt(XLEN.W) 56 val gpaddr = UInt(XLEN.W) 57 val isForVSnonLeafPTE = Bool() 58 }) 59 val csrCtrl = Flipped(new CustomCSRCtrlIO) 60 }) 61 62 //------------------------------------------------------- 63 // Atomics Memory Accsess FSM 64 //------------------------------------------------------- 65 val s_invalid :: s_tlb_and_flush_sbuffer_req :: s_pm :: s_wait_flush_sbuffer_resp :: s_cache_req :: s_cache_resp :: s_cache_resp_latch :: s_finish :: s_finish2 :: Nil = Enum(9) 66 val state = RegInit(s_invalid) 67 val out_valid = RegInit(false.B) 68 val data_valid = RegInit(false.B) 69 70 val uop = Reg(io.in.bits.uop.cloneType) 71 val isLr = LSUOpType.isLr(uop.fuOpType) 72 val isSc = LSUOpType.isSc(uop.fuOpType) 73 val isAMOCAS = LSUOpType.isAMOCAS(uop.fuOpType) 74 val isNotLr = !isLr 75 val isNotSc = !isSc 76 // AMOCAS.Q needs to write two int registers, therefore backend issues two sta uops for AMOCAS.Q. 77 // `pdest2` is used to record the pdest of the second uop 78 val pdest1, pdest2 = Reg(UInt(PhyRegIdxWidth.W)) 79 val pdest1Valid, pdest2Valid = RegInit(false.B) 80 /** 81 * The # of std uops that an atomic instruction require: 82 * (1) For AMOs (except AMOCAS) and LR/SC, 1 std uop is wanted: X(rs2) with uopIdx = 0 83 * (2) For AMOCAS.W/D, 2 std uops are wanted: X(rd), X(rs2) with uopIdx = 0, 1 84 * (3) For AMOCAS.Q, 4 std uops are wanted: X(rd), X(rs2), X(rd+1), X(rs2+1) with uopIdx = 0, 1, 2, 3 85 * stds are not needed for write-back. 86 * 87 * The # of sta uops that an atomic instruction require, also the # of write-back: 88 * (1) For AMOs(except AMOCAS.Q) and LR/SC, 1 sta uop is wanted: X(rs1) with uopIdx = 0 89 * (2) For AMOCAS.Q, 2 sta uop is wanted: X(rs1)*2 with uopIdx = 0, 2 90 */ 91 val rs1, rs2_l, rs2_h, rd_l, rd_h = Reg(UInt(XLEN.W)) 92 val stds = Seq(rd_l, rs2_l, rd_h, rs2_h) 93 val rs2 = Cat(rs2_h, Mux(isAMOCAS, rs2_l, stds.head)) 94 val rd = Cat(rd_h, rd_l) 95 val stdCnt = RegInit(0.U(log2Ceil(stds.length + 1).W)) 96 97 val exceptionVec = RegInit(0.U.asTypeOf(ExceptionVec())) 98 val trigger = RegInit(TriggerAction.None) 99 val atom_override_xtval = RegInit(false.B) 100 val have_sent_first_tlb_req = RegInit(false.B) 101 // paddr after translation 102 val paddr = Reg(UInt()) 103 val gpaddr = Reg(UInt()) 104 val vaddr = rs1 105 106 val is_mmio = Reg(Bool()) 107 val isForVSnonLeafPTE = Reg(Bool()) 108 109 // dcache response data 110 val resp_data = Reg(UInt()) 111 val resp_data_wire = WireInit(0.U) 112 val success = Reg(Bool()) 113 // sbuffer is empty or not 114 val sbuffer_empty = io.flush_sbuffer.empty 115 116 // Only the least significant AMOFuOpWidth = 6 bits of fuOpType are used, 117 // therefore the MSBs are reused to identify uopIdx 118 val stdUopIdxs = io.storeDataIn.map(_.bits.uop.fuOpType >> LSUOpType.AMOFuOpWidth) 119 val staUopIdx = io.in.bits.uop.fuOpType >> LSUOpType.AMOFuOpWidth 120 121 // assign default value to output signals 122 io.in.ready := false.B 123 124 io.dcache.req.valid := false.B 125 io.dcache.req.bits := DontCare 126 127 io.dtlb.req.valid := false.B 128 io.dtlb.req.bits := DontCare 129 io.dtlb.req_kill := false.B 130 io.dtlb.resp.ready := true.B 131 132 io.flush_sbuffer.valid := false.B 133 134 when (state === s_invalid) { 135 when (io.in.fire) { 136 uop := io.in.bits.uop 137 rs1 := io.in.bits.src_rs1 138 state := s_tlb_and_flush_sbuffer_req 139 have_sent_first_tlb_req := false.B 140 } 141 } 142 143 when (io.in.fire) { 144 val pdest = io.in.bits.uop.pdest 145 when (staUopIdx === 0.U) { 146 pdest1Valid := true.B 147 pdest1 := pdest 148 }.elsewhen (staUopIdx === 2.U) { 149 pdest2Valid := true.B 150 pdest2 := pdest 151 }.otherwise { 152 assert(false.B, "unrecognized sta uopIdx") 153 } 154 } 155 156 stds.zipWithIndex.foreach { case (data, i) => 157 val sels = io.storeDataIn.zip(stdUopIdxs).map { case (in, uopIdx) => 158 val sel = in.fire && uopIdx === i.U 159 when (sel) { data := in.bits.data } 160 sel 161 } 162 OneHot.checkOneHot(sels) 163 } 164 stdCnt := stdCnt + PopCount(io.storeDataIn.map(_.fire)) 165 166 val StdCntNCAS = 1 // LR/SC and AMO need only 1 src besides rs1 167 val StdCntCASWD = 2 // AMOCAS.W/D needs 2 src regs (rs2 and rd) besides rs1 168 val StdCntCASQ = 4 // AMOCAS.Q needs 4 src regs (rs2, rs2+1, rd, rd+1) besides rs1 169 when (!data_valid) { 170 data_valid := state =/= s_invalid && ( 171 LSUOpType.isAMOCASQ(uop.fuOpType) && stdCnt === StdCntCASQ.U || 172 LSUOpType.isAMOCASWD(uop.fuOpType) && stdCnt === StdCntCASWD.U || 173 !isAMOCAS && stdCnt === StdCntNCAS.U 174 ) 175 } 176 assert(stdCnt <= stds.length.U, "unexpected std") 177 assert(!(Cat(io.storeDataIn.map(_.fire)).orR && data_valid), "atomic unit re-receive data") 178 179 // atomic trigger 180 val csrCtrl = io.csrCtrl 181 val tdata = Reg(Vec(TriggerNum, new MatchTriggerIO)) 182 val tEnableVec = RegInit(VecInit(Seq.fill(TriggerNum)(false.B))) 183 tEnableVec := csrCtrl.mem_trigger.tEnableVec 184 when (csrCtrl.mem_trigger.tUpdate.valid) { 185 tdata(csrCtrl.mem_trigger.tUpdate.bits.addr) := csrCtrl.mem_trigger.tUpdate.bits.tdata 186 } 187 188 val debugMode = csrCtrl.mem_trigger.debugMode 189 val triggerCanRaiseBpExp = csrCtrl.mem_trigger.triggerCanRaiseBpExp 190 val backendTriggerTimingVec = VecInit(tdata.map(_.timing)) 191 val backendTriggerChainVec = VecInit(tdata.map(_.chain)) 192 val backendTriggerHitVec = WireInit(VecInit(Seq.fill(TriggerNum)(false.B))) 193 val backendTriggerCanFireVec = RegInit(VecInit(Seq.fill(TriggerNum)(false.B))) 194 195 assert(state === s_invalid || 196 uop.fuOpType(1,0) === "b10".U || 197 uop.fuOpType(1,0) === "b11".U || 198 LSUOpType.isAMOCASQ(uop.fuOpType), 199 "Only word or doubleword or quadword is supported" 200 ) 201 202 // store trigger 203 val store_hit = Wire(Vec(TriggerNum, Bool())) 204 for (j <- 0 until TriggerNum) { 205 store_hit(j) := !tdata(j).select && !debugMode && isNotLr && TriggerCmp( 206 vaddr, 207 tdata(j).tdata2, 208 tdata(j).matchType, 209 tEnableVec(j) && tdata(j).store 210 ) 211 } 212 // load trigger 213 val load_hit = Wire(Vec(TriggerNum, Bool())) 214 for (j <- 0 until TriggerNum) { 215 load_hit(j) := !tdata(j).select && !debugMode && isNotSc && TriggerCmp( 216 vaddr, 217 tdata(j).tdata2, 218 tdata(j).matchType, 219 tEnableVec(j) && tdata(j).load 220 ) 221 } 222 backendTriggerHitVec := store_hit.zip(load_hit).map { case (sh, lh) => sh || lh } 223 // triggerCanFireVec will update at T+1 224 TriggerCheckCanFire(TriggerNum, backendTriggerCanFireVec, backendTriggerHitVec, 225 backendTriggerTimingVec, backendTriggerChainVec) 226 227 val actionVec = VecInit(tdata.map(_.action)) 228 val triggerAction = Wire(TriggerAction()) 229 TriggerUtil.triggerActionGen(triggerAction, backendTriggerCanFireVec, actionVec, triggerCanRaiseBpExp) 230 val triggerDebugMode = TriggerAction.isDmode(triggerAction) 231 val triggerBreakpoint = TriggerAction.isExp(triggerAction) 232 233 // tlb translation, manipulating signals && deal with exception 234 // at the same time, flush sbuffer 235 when (state === s_tlb_and_flush_sbuffer_req) { 236 // do not accept tlb resp in the first cycle 237 // this limition is for hw prefetcher 238 // when !have_sent_first_tlb_req, tlb resp may come from hw prefetch 239 have_sent_first_tlb_req := true.B 240 241 when (io.dtlb.resp.fire && have_sent_first_tlb_req) { 242 paddr := io.dtlb.resp.bits.paddr(0) 243 gpaddr := io.dtlb.resp.bits.gpaddr(0) 244 vaddr := io.dtlb.resp.bits.fullva 245 isForVSnonLeafPTE := io.dtlb.resp.bits.isForVSnonLeafPTE 246 // exception handling 247 val addrAligned = LookupTree(uop.fuOpType(1,0), List( 248 "b10".U -> (vaddr(1,0) === 0.U), // W 249 "b11".U -> (vaddr(2,0) === 0.U), // D 250 "b00".U -> (vaddr(3,0) === 0.U) // Q 251 )) 252 exceptionVec(loadAddrMisaligned) := !addrAligned && isLr 253 exceptionVec(storeAddrMisaligned) := !addrAligned && !isLr 254 exceptionVec(storePageFault) := io.dtlb.resp.bits.excp(0).pf.st 255 exceptionVec(loadPageFault) := io.dtlb.resp.bits.excp(0).pf.ld 256 exceptionVec(storeAccessFault) := io.dtlb.resp.bits.excp(0).af.st 257 exceptionVec(loadAccessFault) := io.dtlb.resp.bits.excp(0).af.ld 258 exceptionVec(storeGuestPageFault) := io.dtlb.resp.bits.excp(0).gpf.st 259 exceptionVec(loadGuestPageFault) := io.dtlb.resp.bits.excp(0).gpf.ld 260 261 exceptionVec(breakPoint) := triggerBreakpoint 262 trigger := triggerAction 263 264 when (!io.dtlb.resp.bits.miss) { 265 io.out.bits.uop.debugInfo.tlbRespTime := GTimer() 266 when (!addrAligned || triggerDebugMode || triggerBreakpoint) { 267 // NOTE: when addrAligned or trigger fire, do not need to wait tlb actually 268 // check for miss aligned exceptions, tlb exception are checked next cycle for timing 269 // if there are exceptions, no need to execute it 270 state := s_finish 271 out_valid := true.B 272 atom_override_xtval := true.B 273 }.otherwise { 274 state := s_pm 275 } 276 } 277 } 278 } 279 280 val pbmtReg = RegEnable(io.dtlb.resp.bits.pbmt(0), io.dtlb.resp.fire && !io.dtlb.resp.bits.miss) 281 when (state === s_pm) { 282 val pmp = WireInit(io.pmpResp) 283 is_mmio := Pbmt.isIO(pbmtReg) || (Pbmt.isPMA(pbmtReg) && pmp.mmio) 284 285 // NOTE: only handle load/store exception here, if other exception happens, don't send here 286 val exception_va = exceptionVec(storePageFault) || exceptionVec(loadPageFault) || 287 exceptionVec(storeGuestPageFault) || exceptionVec(loadGuestPageFault) || 288 exceptionVec(storeAccessFault) || exceptionVec(loadAccessFault) 289 val exception_pa_mmio_nc = pmp.mmio || Pbmt.isIO(pbmtReg) || Pbmt.isNC(pbmtReg) 290 val exception_pa = pmp.st || pmp.ld || exception_pa_mmio_nc 291 when (exception_va || exception_pa) { 292 state := s_finish 293 out_valid := true.B 294 atom_override_xtval := true.B 295 }.otherwise { 296 // if sbuffer has been flushed, go to query dcache, otherwise wait for sbuffer. 297 state := Mux(sbuffer_empty, s_cache_req, s_wait_flush_sbuffer_resp); 298 } 299 // update storeAccessFault bit 300 exceptionVec(loadAccessFault) := exceptionVec(loadAccessFault) || 301 (pmp.ld || exception_pa_mmio_nc) && isLr 302 exceptionVec(storeAccessFault) := exceptionVec(storeAccessFault) || pmp.st || 303 (pmp.ld || exception_pa_mmio_nc) && !isLr 304 } 305 306 when (state === s_wait_flush_sbuffer_resp) { 307 when (sbuffer_empty) { 308 state := s_cache_req 309 } 310 } 311 312 def genWdataAMO(data: UInt, sizeEncode: UInt): UInt = { 313 LookupTree(sizeEncode(1, 0), List( 314 "b10".U -> Fill(4, data(31, 0)), 315 "b11".U -> Fill(2, data(63, 0)), 316 "b00".U -> data(127, 0) 317 )) 318 } 319 320 def genWmaskAMO(addr: UInt, sizeEncode: UInt): UInt = { 321 /** 322 * `MainPipeReq` uses `word_idx` to recognize which 64-bits data bank to operate on. Double-word atomics are 323 * always 8B aligned and quad-word atomics are always 16B aligned except for misaligned exception, therefore 324 * `word_idx` is enough and there is no need to shift according address. Only word atomics needs LSBs of the 325 * address to shift mask inside a 64-bits aligned range. 326 */ 327 LookupTree(sizeEncode(1, 0), List( 328 "b10".U -> (0xf.U << addr(2,0)), // W 329 "b11".U -> 0xff.U, // D 330 "b00".U -> 0xffff.U // Q 331 )) 332 } 333 334 when (state === s_cache_req) { 335 when (io.dcache.req.fire) { 336 state := s_cache_resp 337 } 338 } 339 340 val dcache_resp_data = Reg(UInt()) 341 val dcache_resp_id = Reg(UInt()) 342 val dcache_resp_error = Reg(Bool()) 343 344 when (state === s_cache_resp) { 345 // when not miss 346 // everything is OK, simply send response back to sbuffer 347 // when miss and not replay 348 // wait for missQueue to handling miss and replaying our request 349 // when miss and replay 350 // req missed and fail to enter missQueue, manually replay it later 351 // TODO: add assertions: 352 // 1. add a replay delay counter? 353 // 2. when req gets into MissQueue, it should not miss any more 354 when (io.dcache.resp.fire) { 355 when (io.dcache.resp.bits.miss) { 356 when (io.dcache.resp.bits.replay) { 357 state := s_cache_req 358 } 359 }.otherwise { 360 dcache_resp_data := io.dcache.resp.bits.data 361 dcache_resp_id := io.dcache.resp.bits.id 362 dcache_resp_error := io.dcache.resp.bits.error 363 state := s_cache_resp_latch 364 } 365 } 366 } 367 368 when (state === s_cache_resp_latch) { 369 success := dcache_resp_id 370 val rdataSel = Mux( 371 paddr(2, 0) === 0.U, 372 dcache_resp_data, 373 dcache_resp_data >> 32 374 ) 375 assert(paddr(2, 0) === "b000".U || paddr(2, 0) === "b100".U) 376 377 resp_data_wire := Mux( 378 isSc, 379 dcache_resp_data, 380 LookupTree(uop.fuOpType(1,0), List( 381 "b10".U -> SignExt(rdataSel(31, 0), QuadWordBits), // W 382 "b11".U -> SignExt(rdataSel(63, 0), QuadWordBits), // D 383 "b00".U -> rdataSel // Q 384 )) 385 ) 386 387 when (dcache_resp_error && io.csrCtrl.cache_error_enable) { 388 exceptionVec(loadAccessFault) := isLr 389 exceptionVec(storeAccessFault) := !isLr 390 assert(!exceptionVec(loadAccessFault)) 391 assert(!exceptionVec(storeAccessFault)) 392 } 393 394 resp_data := resp_data_wire 395 state := s_finish 396 out_valid := true.B 397 } 398 399 when (state === s_finish) { 400 when (io.out.fire) { 401 when (LSUOpType.isAMOCASQ(uop.fuOpType)) { 402 // enter `s_finish2` to write the 2nd uop back 403 state := s_finish2 404 out_valid := true.B 405 }.otherwise { 406 // otherwise the FSM ends here 407 resetFSM() 408 } 409 } 410 } 411 412 when (state === s_finish2) { 413 when (io.out.fire) { 414 resetFSM() 415 } 416 } 417 418 when (io.redirect.valid) { 419 atom_override_xtval := false.B 420 } 421 422 def resetFSM(): Unit = { 423 state := s_invalid 424 out_valid := false.B 425 data_valid := false.B 426 stdCnt := 0.U 427 pdest1Valid := false.B 428 pdest2Valid := false.B 429 } 430 431 /** 432 * IO assignment 433 */ 434 io.exceptionInfo.valid := atom_override_xtval 435 io.exceptionInfo.bits.vaddr := vaddr 436 io.exceptionInfo.bits.gpaddr := gpaddr 437 io.exceptionInfo.bits.isForVSnonLeafPTE := isForVSnonLeafPTE 438 439 // Send TLB feedback to store issue queue 440 // we send feedback right after we receives request 441 // also, we always treat amo as tlb hit 442 // since we will continue polling tlb all by ourself 443 io.feedbackSlow.valid := GatedValidRegNext(GatedValidRegNext(io.in.valid)) 444 io.feedbackSlow.bits.hit := true.B 445 io.feedbackSlow.bits.robIdx := RegEnable(io.in.bits.uop.robIdx, io.in.valid) 446 io.feedbackSlow.bits.sqIdx := RegEnable(io.in.bits.uop.sqIdx, io.in.valid) 447 io.feedbackSlow.bits.lqIdx := RegEnable(io.in.bits.uop.lqIdx, io.in.valid) 448 io.feedbackSlow.bits.flushState := DontCare 449 io.feedbackSlow.bits.sourceType := DontCare 450 io.feedbackSlow.bits.dataInvalidSqIdx := DontCare 451 452 // send req to dtlb 453 // keep firing until tlb hit 454 io.dtlb.req.valid := state === s_tlb_and_flush_sbuffer_req 455 io.dtlb.req.bits.vaddr := vaddr 456 io.dtlb.req.bits.fullva := vaddr 457 io.dtlb.req.bits.checkfullva := true.B 458 io.dtlb.resp.ready := true.B 459 io.dtlb.req.bits.cmd := Mux(isLr, TlbCmd.atom_read, TlbCmd.atom_write) 460 io.dtlb.req.bits.debug.pc := uop.pc 461 io.dtlb.req.bits.debug.robIdx := uop.robIdx 462 io.dtlb.req.bits.debug.isFirstIssue := false.B 463 io.out.bits.uop.debugInfo.tlbFirstReqTime := GTimer() // FIXME lyq: it will be always assigned 464 465 // send req to sbuffer to flush it if it is not empty 466 io.flush_sbuffer.valid := !sbuffer_empty && state === s_tlb_and_flush_sbuffer_req 467 468 // When is sta issue port ready: 469 // (1) AtomicsUnit is idle, or 470 // (2) For AMOCAS.Q, the second uop with the pdest of the higher bits of rd is not received yet 471 io.in.ready := state === s_invalid || LSUOpType.isAMOCASQ(uop.fuOpType) && (!pdest2Valid || !pdest1Valid) 472 473 io.out.valid := out_valid && Mux(state === s_finish2, pdest2Valid, pdest1Valid) 474 XSError((state === s_finish || state === s_finish2) =/= out_valid, "out_valid reg error\n") 475 io.out.bits := DontCare 476 io.out.bits.uop := uop 477 io.out.bits.uop.fuType := FuType.mou.U 478 io.out.bits.uop.pdest := Mux(state === s_finish2, pdest2, pdest1) 479 io.out.bits.uop.exceptionVec := exceptionVec 480 io.out.bits.uop.trigger := trigger 481 io.out.bits.data := Mux(state === s_finish2, resp_data >> XLEN, resp_data) 482 io.out.bits.debug.isMMIO := is_mmio 483 io.out.bits.debug.paddr := paddr 484 485 io.dcache.req.valid := Mux( 486 io.dcache.req.bits.cmd === M_XLR, 487 !io.dcache.block_lr, // block lr to survive in lr storm 488 data_valid // wait until src(1) is ready 489 ) && state === s_cache_req 490 val pipe_req = io.dcache.req.bits 491 pipe_req := DontCare 492 pipe_req.cmd := LookupTree(uop.fuOpType, List( 493 // TODO: optimize this 494 LSUOpType.lr_w -> M_XLR, 495 LSUOpType.sc_w -> M_XSC, 496 LSUOpType.amoswap_w -> M_XA_SWAP, 497 LSUOpType.amoadd_w -> M_XA_ADD, 498 LSUOpType.amoxor_w -> M_XA_XOR, 499 LSUOpType.amoand_w -> M_XA_AND, 500 LSUOpType.amoor_w -> M_XA_OR, 501 LSUOpType.amomin_w -> M_XA_MIN, 502 LSUOpType.amomax_w -> M_XA_MAX, 503 LSUOpType.amominu_w -> M_XA_MINU, 504 LSUOpType.amomaxu_w -> M_XA_MAXU, 505 LSUOpType.amocas_w -> M_XA_CASW, 506 507 LSUOpType.lr_d -> M_XLR, 508 LSUOpType.sc_d -> M_XSC, 509 LSUOpType.amoswap_d -> M_XA_SWAP, 510 LSUOpType.amoadd_d -> M_XA_ADD, 511 LSUOpType.amoxor_d -> M_XA_XOR, 512 LSUOpType.amoand_d -> M_XA_AND, 513 LSUOpType.amoor_d -> M_XA_OR, 514 LSUOpType.amomin_d -> M_XA_MIN, 515 LSUOpType.amomax_d -> M_XA_MAX, 516 LSUOpType.amominu_d -> M_XA_MINU, 517 LSUOpType.amomaxu_d -> M_XA_MAXU, 518 LSUOpType.amocas_d -> M_XA_CASD, 519 520 LSUOpType.amocas_q -> M_XA_CASQ 521 )) 522 pipe_req.miss := false.B 523 pipe_req.probe := false.B 524 pipe_req.probe_need_data := false.B 525 pipe_req.source := AMO_SOURCE.U 526 pipe_req.addr := get_block_addr(paddr) 527 pipe_req.vaddr := get_block_addr(vaddr) 528 pipe_req.word_idx := get_word(paddr) 529 pipe_req.amo_data := genWdataAMO(rs2, uop.fuOpType) 530 pipe_req.amo_mask := genWmaskAMO(paddr, uop.fuOpType) 531 pipe_req.amo_cmp := genWdataAMO(rd, uop.fuOpType) 532 533 if (env.EnableDifftest) { 534 val difftest = DifftestModule(new DiffAtomicEvent) 535 val en = io.dcache.req.fire 536 difftest.coreid := io.hartId 537 difftest.valid := state === s_cache_resp_latch 538 difftest.addr := RegEnable(paddr, en) 539 difftest.data := RegEnable(io.dcache.req.bits.amo_data.asTypeOf(difftest.data), en) 540 difftest.mask := RegEnable(io.dcache.req.bits.amo_mask, en) 541 difftest.cmp := RegEnable(io.dcache.req.bits.amo_cmp.asTypeOf(difftest.cmp), en) 542 difftest.fuop := RegEnable(uop.fuOpType, en) 543 difftest.out := resp_data_wire.asTypeOf(difftest.out) 544 } 545 546 if (env.EnableDifftest || env.AlwaysBasicDiff) { 547 val uop = io.out.bits.uop 548 val difftest = DifftestModule(new DiffLrScEvent) 549 difftest.coreid := io.hartId 550 difftest.valid := io.out.fire && state === s_finish && isSc 551 difftest.success := success 552 } 553} 554