xref: /XiangShan/src/main/scala/xiangshan/mem/pipeline/AtomicsUnit.scala (revision 13a87dc5fd3b3b04b3018dd370c5514d1f99d816)
1/***************************************************************************************
2* Copyright (c) 2020-2021 Institute of Computing Technology, Chinese Academy of Sciences
3* Copyright (c) 2020-2021 Peng Cheng Laboratory
4*
5* XiangShan is licensed under Mulan PSL v2.
6* You can use this software according to the terms and conditions of the Mulan PSL v2.
7* You may obtain a copy of Mulan PSL v2 at:
8*          http://license.coscl.org.cn/MulanPSL2
9*
10* THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND,
11* EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT,
12* MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE.
13*
14* See the Mulan PSL v2 for more details.
15***************************************************************************************/
16
17package xiangshan.mem
18
19import org.chipsalliance.cde.config.Parameters
20import chisel3._
21import chisel3.util._
22import utils._
23import utility._
24import xiangshan._
25import xiangshan.cache.{AtomicWordIO, HasDCacheParameters, MemoryOpConstants}
26import xiangshan.cache.mmu.{TlbCmd, TlbRequestIO}
27import difftest._
28import xiangshan.ExceptionNO._
29import xiangshan.backend.fu.PMPRespBundle
30import xiangshan.backend.Bundles.{MemExuInput, MemExuOutput}
31import xiangshan.backend.fu.util.SdtrigExt
32
33class AtomicsUnit(implicit p: Parameters) extends XSModule
34  with MemoryOpConstants
35  with HasDCacheParameters
36  with SdtrigExt{
37  val io = IO(new Bundle() {
38    val hartId        = Input(UInt(hartIdLen.W))
39    val in            = Flipped(Decoupled(new MemExuInput))
40    val storeDataIn   = Flipped(Valid(new MemExuOutput)) // src2 from rs
41    val out           = Decoupled(new MemExuOutput)
42    val dcache        = new AtomicWordIO
43    val dtlb          = new TlbRequestIO(2)
44    val pmpResp       = Flipped(new PMPRespBundle())
45    val flush_sbuffer = new SbufferFlushBundle
46    val feedbackSlow  = ValidIO(new RSFeedback)
47    val redirect      = Flipped(ValidIO(new Redirect))
48    val exceptionAddr = ValidIO(new Bundle {
49      val vaddr = UInt(VAddrBits.W)
50      val gpaddr = UInt(GPAddrBits.W)
51    })
52    val csrCtrl       = Flipped(new CustomCSRCtrlIO)
53  })
54
55  //-------------------------------------------------------
56  // Atomics Memory Accsess FSM
57  //-------------------------------------------------------
58  val s_invalid :: s_tlb_and_flush_sbuffer_req :: s_pm :: s_wait_flush_sbuffer_resp :: s_cache_req :: s_cache_resp :: s_cache_resp_latch :: s_finish :: Nil = Enum(8)
59  val state = RegInit(s_invalid)
60  val out_valid = RegInit(false.B)
61  val data_valid = RegInit(false.B)
62  val in = Reg(new MemExuInput())
63  val exceptionVec = RegInit(0.U.asTypeOf(ExceptionVec()))
64  val atom_override_xtval = RegInit(false.B)
65  val have_sent_first_tlb_req = RegInit(false.B)
66  val isLr = in.uop.fuOpType === LSUOpType.lr_w || in.uop.fuOpType === LSUOpType.lr_d
67  // paddr after translation
68  val paddr = Reg(UInt())
69  val gpaddr = Reg(UInt())
70  val vaddr = in.src(0)
71  val is_mmio = Reg(Bool())
72
73  // dcache response data
74  val resp_data = Reg(UInt())
75  val resp_data_wire = WireInit(0.U)
76  val is_lrsc_valid = Reg(Bool())
77  // sbuffer is empty or not
78  val sbuffer_empty = io.flush_sbuffer.empty
79
80
81  // Difftest signals
82  val paddr_reg = Reg(UInt(64.W))
83  val data_reg = Reg(UInt(64.W))
84  val mask_reg = Reg(UInt(8.W))
85  val fuop_reg = Reg(UInt(8.W))
86
87  io.exceptionAddr.valid := atom_override_xtval
88  io.exceptionAddr.bits.vaddr := in.src(0)
89  io.exceptionAddr.bits.gpaddr := gpaddr
90
91  // assign default value to output signals
92  io.in.ready          := false.B
93
94  io.dcache.req.valid  := false.B
95  io.dcache.req.bits   := DontCare
96
97  io.dtlb.req.valid    := false.B
98  io.dtlb.req.bits     := DontCare
99  io.dtlb.req_kill     := false.B
100  io.dtlb.resp.ready   := true.B
101
102  io.flush_sbuffer.valid := false.B
103
104  XSDebug("state: %d\n", state)
105
106  when (state === s_invalid) {
107    io.in.ready := true.B
108    when (io.in.fire) {
109      in := io.in.bits
110      in.src(1) := in.src(1) // leave src2 unchanged
111      state := s_tlb_and_flush_sbuffer_req
112      have_sent_first_tlb_req := false.B
113    }
114  }
115
116  when (io.storeDataIn.fire) {
117    in.src(1) := io.storeDataIn.bits.data
118    data_valid := true.B
119  }
120
121  assert(!(io.storeDataIn.fire && data_valid), "atomic unit re-receive data")
122
123  // Send TLB feedback to store issue queue
124  // we send feedback right after we receives request
125  // also, we always treat amo as tlb hit
126  // since we will continue polling tlb all by ourself
127  io.feedbackSlow.valid       := RegNext(RegNext(io.in.valid))
128  io.feedbackSlow.bits.hit    := true.B
129  io.feedbackSlow.bits.robIdx  := RegEnable(io.in.bits.uop.robIdx, io.in.valid)
130  io.feedbackSlow.bits.flushState := DontCare
131  io.feedbackSlow.bits.sourceType := DontCare
132  io.feedbackSlow.bits.dataInvalidSqIdx := DontCare
133
134  // tlb translation, manipulating signals && deal with exception
135  // at the same time, flush sbuffer
136  when (state === s_tlb_and_flush_sbuffer_req) {
137    // send req to dtlb
138    // keep firing until tlb hit
139    io.dtlb.req.valid       := true.B
140    io.dtlb.req.bits.vaddr  := in.src(0)
141    io.dtlb.resp.ready      := true.B
142    io.dtlb.req.bits.cmd    := Mux(isLr, TlbCmd.atom_read, TlbCmd.atom_write)
143    io.dtlb.req.bits.debug.pc := in.uop.pc
144    io.dtlb.req.bits.debug.robIdx := in.uop.robIdx
145    io.dtlb.req.bits.debug.isFirstIssue := false.B
146    io.out.bits.uop.debugInfo.tlbFirstReqTime := GTimer() // FIXME lyq: it will be always assigned
147
148    // send req to sbuffer to flush it if it is not empty
149    io.flush_sbuffer.valid := Mux(sbuffer_empty, false.B, true.B)
150
151    // do not accept tlb resp in the first cycle
152    // this limition is for hw prefetcher
153    // when !have_sent_first_tlb_req, tlb resp may come from hw prefetch
154    have_sent_first_tlb_req := true.B
155
156    when(io.dtlb.resp.fire && have_sent_first_tlb_req){
157      paddr := io.dtlb.resp.bits.paddr(0)
158      gpaddr := io.dtlb.resp.bits.gpaddr(0)
159      // exception handling
160      val addrAligned = LookupTree(in.uop.fuOpType(1,0), List(
161        "b00".U   -> true.B,              //b
162        "b01".U   -> (in.src(0)(0) === 0.U),   //h
163        "b10".U   -> (in.src(0)(1,0) === 0.U), //w
164        "b11".U   -> (in.src(0)(2,0) === 0.U)  //d
165      ))
166      exceptionVec(loadAddrMisaligned)  := !addrAligned && isLr
167      exceptionVec(storeAddrMisaligned) := !addrAligned && !isLr
168      exceptionVec(storePageFault)      := io.dtlb.resp.bits.excp(0).pf.st
169      exceptionVec(loadPageFault)       := io.dtlb.resp.bits.excp(0).pf.ld
170      exceptionVec(storeAccessFault)    := io.dtlb.resp.bits.excp(0).af.st
171      exceptionVec(loadAccessFault)     := io.dtlb.resp.bits.excp(0).af.ld
172      exceptionVec(storeGuestPageFault) := io.dtlb.resp.bits.excp(0).gpf.st
173      exceptionVec(loadGuestPageFault)  := io.dtlb.resp.bits.excp(0).gpf.ld
174
175      when (!io.dtlb.resp.bits.miss) {
176        io.out.bits.uop.debugInfo.tlbRespTime := GTimer()
177        when (!addrAligned) {
178          // NOTE: when addrAligned, do not need to wait tlb actually
179          // check for miss aligned exceptions, tlb exception are checked next cycle for timing
180          // if there are exceptions, no need to execute it
181          state := s_finish
182          out_valid := true.B
183          atom_override_xtval := true.B
184        } .otherwise {
185          state := s_pm
186        }
187      }
188    }
189  }
190
191  when (state === s_pm) {
192    val pmp = WireInit(io.pmpResp)
193    is_mmio := pmp.mmio
194
195    // NOTE: only handle load/store exception here, if other exception happens, don't send here
196    val exception_va = exceptionVec(storePageFault) || exceptionVec(loadPageFault) ||
197      exceptionVec(storeGuestPageFault) || exceptionVec(loadGuestPageFault) ||
198      exceptionVec(storeAccessFault) || exceptionVec(loadAccessFault)
199    val exception_pa = pmp.st || pmp.ld
200    when (exception_va || exception_pa) {
201      state := s_finish
202      out_valid := true.B
203      atom_override_xtval := true.B
204    }.otherwise {
205      // if sbuffer has been flushed, go to query dcache, otherwise wait for sbuffer.
206      state := Mux(sbuffer_empty, s_cache_req, s_wait_flush_sbuffer_resp);
207    }
208    // update storeAccessFault bit
209    exceptionVec(loadAccessFault) := exceptionVec(loadAccessFault) || pmp.ld && isLr
210    exceptionVec(storeAccessFault) := exceptionVec(storeAccessFault) || pmp.st || pmp.ld && !isLr
211  }
212
213  when (state === s_wait_flush_sbuffer_resp) {
214    when (sbuffer_empty) {
215      state := s_cache_req
216    }
217  }
218
219  when (state === s_cache_req) {
220    val pipe_req = io.dcache.req.bits
221    pipe_req := DontCare
222
223    pipe_req.cmd := LookupTree(in.uop.fuOpType, List(
224      LSUOpType.lr_w      -> M_XLR,
225      LSUOpType.sc_w      -> M_XSC,
226      LSUOpType.amoswap_w -> M_XA_SWAP,
227      LSUOpType.amoadd_w  -> M_XA_ADD,
228      LSUOpType.amoxor_w  -> M_XA_XOR,
229      LSUOpType.amoand_w  -> M_XA_AND,
230      LSUOpType.amoor_w   -> M_XA_OR,
231      LSUOpType.amomin_w  -> M_XA_MIN,
232      LSUOpType.amomax_w  -> M_XA_MAX,
233      LSUOpType.amominu_w -> M_XA_MINU,
234      LSUOpType.amomaxu_w -> M_XA_MAXU,
235
236      LSUOpType.lr_d      -> M_XLR,
237      LSUOpType.sc_d      -> M_XSC,
238      LSUOpType.amoswap_d -> M_XA_SWAP,
239      LSUOpType.amoadd_d  -> M_XA_ADD,
240      LSUOpType.amoxor_d  -> M_XA_XOR,
241      LSUOpType.amoand_d  -> M_XA_AND,
242      LSUOpType.amoor_d   -> M_XA_OR,
243      LSUOpType.amomin_d  -> M_XA_MIN,
244      LSUOpType.amomax_d  -> M_XA_MAX,
245      LSUOpType.amominu_d -> M_XA_MINU,
246      LSUOpType.amomaxu_d -> M_XA_MAXU
247    ))
248    pipe_req.miss := false.B
249    pipe_req.probe := false.B
250    pipe_req.probe_need_data := false.B
251    pipe_req.source := AMO_SOURCE.U
252    pipe_req.addr   := get_block_addr(paddr)
253    pipe_req.vaddr  := get_block_addr(in.src(0)) // vaddr
254    pipe_req.word_idx  := get_word(paddr)
255    pipe_req.amo_data  := genWdata(in.src(1), in.uop.fuOpType(1,0))
256    pipe_req.amo_mask  := genWmask(paddr, in.uop.fuOpType(1,0))
257
258    io.dcache.req.valid := Mux(
259      io.dcache.req.bits.cmd === M_XLR,
260      !io.dcache.block_lr, // block lr to survive in lr storm
261      data_valid // wait until src(1) is ready
262    )
263
264    when(io.dcache.req.fire){
265      state := s_cache_resp
266      paddr_reg := paddr
267      data_reg := io.dcache.req.bits.amo_data
268      mask_reg := io.dcache.req.bits.amo_mask
269      fuop_reg := in.uop.fuOpType
270    }
271  }
272
273  val dcache_resp_data  = Reg(UInt())
274  val dcache_resp_id    = Reg(UInt())
275  val dcache_resp_error = Reg(Bool())
276
277  when (state === s_cache_resp) {
278    // when not miss
279    // everything is OK, simply send response back to sbuffer
280    // when miss and not replay
281    // wait for missQueue to handling miss and replaying our request
282    // when miss and replay
283    // req missed and fail to enter missQueue, manually replay it later
284    // TODO: add assertions:
285    // 1. add a replay delay counter?
286    // 2. when req gets into MissQueue, it should not miss any more
287    when(io.dcache.resp.fire) {
288      when(io.dcache.resp.bits.miss) {
289        when(io.dcache.resp.bits.replay) {
290          state := s_cache_req
291        }
292      } .otherwise {
293        dcache_resp_data := io.dcache.resp.bits.data
294        dcache_resp_id := io.dcache.resp.bits.id
295        dcache_resp_error := io.dcache.resp.bits.error
296        state := s_cache_resp_latch
297      }
298    }
299  }
300
301  when (state === s_cache_resp_latch) {
302    is_lrsc_valid :=  dcache_resp_id
303    val rdataSel = LookupTree(paddr(2, 0), List(
304      "b000".U -> dcache_resp_data(63, 0),
305      "b001".U -> dcache_resp_data(63, 8),
306      "b010".U -> dcache_resp_data(63, 16),
307      "b011".U -> dcache_resp_data(63, 24),
308      "b100".U -> dcache_resp_data(63, 32),
309      "b101".U -> dcache_resp_data(63, 40),
310      "b110".U -> dcache_resp_data(63, 48),
311      "b111".U -> dcache_resp_data(63, 56)
312    ))
313
314    resp_data_wire := LookupTree(in.uop.fuOpType, List(
315      LSUOpType.lr_w      -> SignExt(rdataSel(31, 0), XLEN),
316      LSUOpType.sc_w      -> dcache_resp_data,
317      LSUOpType.amoswap_w -> SignExt(rdataSel(31, 0), XLEN),
318      LSUOpType.amoadd_w  -> SignExt(rdataSel(31, 0), XLEN),
319      LSUOpType.amoxor_w  -> SignExt(rdataSel(31, 0), XLEN),
320      LSUOpType.amoand_w  -> SignExt(rdataSel(31, 0), XLEN),
321      LSUOpType.amoor_w   -> SignExt(rdataSel(31, 0), XLEN),
322      LSUOpType.amomin_w  -> SignExt(rdataSel(31, 0), XLEN),
323      LSUOpType.amomax_w  -> SignExt(rdataSel(31, 0), XLEN),
324      LSUOpType.amominu_w -> SignExt(rdataSel(31, 0), XLEN),
325      LSUOpType.amomaxu_w -> SignExt(rdataSel(31, 0), XLEN),
326
327      LSUOpType.lr_d      -> SignExt(rdataSel(63, 0), XLEN),
328      LSUOpType.sc_d      -> dcache_resp_data,
329      LSUOpType.amoswap_d -> SignExt(rdataSel(63, 0), XLEN),
330      LSUOpType.amoadd_d  -> SignExt(rdataSel(63, 0), XLEN),
331      LSUOpType.amoxor_d  -> SignExt(rdataSel(63, 0), XLEN),
332      LSUOpType.amoand_d  -> SignExt(rdataSel(63, 0), XLEN),
333      LSUOpType.amoor_d   -> SignExt(rdataSel(63, 0), XLEN),
334      LSUOpType.amomin_d  -> SignExt(rdataSel(63, 0), XLEN),
335      LSUOpType.amomax_d  -> SignExt(rdataSel(63, 0), XLEN),
336      LSUOpType.amominu_d -> SignExt(rdataSel(63, 0), XLEN),
337      LSUOpType.amomaxu_d -> SignExt(rdataSel(63, 0), XLEN)
338    ))
339
340    when (dcache_resp_error && io.csrCtrl.cache_error_enable) {
341      exceptionVec(loadAccessFault)  := isLr
342      exceptionVec(storeAccessFault) := !isLr
343      assert(!exceptionVec(loadAccessFault))
344      assert(!exceptionVec(storeAccessFault))
345    }
346
347    resp_data := resp_data_wire
348    state := s_finish
349    out_valid := true.B
350  }
351
352  io.out.valid := out_valid
353  XSError((state === s_finish) =/= out_valid, "out_valid reg error\n")
354  io.out.bits := DontCare
355  io.out.bits.uop := in.uop
356  io.out.bits.uop.exceptionVec := exceptionVec
357  io.out.bits.data := resp_data
358  io.out.bits.debug.isMMIO := is_mmio
359  io.out.bits.debug.paddr := paddr
360  when (io.out.fire) {
361    XSDebug("atomics writeback: pc %x data %x\n", io.out.bits.uop.pc, io.dcache.resp.bits.data)
362    state := s_invalid
363    out_valid := false.B
364  }
365
366  when (state === s_finish) {
367    data_valid := false.B
368  }
369
370  when (io.redirect.valid) {
371    atom_override_xtval := false.B
372  }
373
374  /*
375  // atomic trigger
376  val csrCtrl = io.csrCtrl
377  val tdata = Reg(Vec(TriggerNum, new MatchTriggerIO))
378  val tEnableVec = RegInit(VecInit(Seq.fill(TriggerNum)(false.B)))
379  tEnableVec := csrCtrl.mem_trigger.tEnableVec
380  when(csrCtrl.mem_trigger.tUpdate.valid) {
381    tdata(csrCtrl.mem_trigger.tUpdate.bits.addr) := csrCtrl.mem_trigger.tUpdate.bits.tdata
382  }
383
384  val backendTriggerTimingVec = VecInit(tdata.map(_.timing))
385  val backendTriggerChainVec = VecInit(tdata.map(_.chain))
386  val backendTriggerHitVec = WireInit(VecInit(Seq.fill(TriggerNum)(false.B)))
387  val backendTriggerCanFireVec = RegInit(VecInit(Seq.fill(TriggerNum)(false.B)))
388
389  when(state === s_cache_req) {
390    // store trigger
391    val store_hit = Wire(Vec(TriggerNum, Bool()))
392    for (j <- 0 until TriggerNum) {
393      store_hit(j) := !tdata(j).select && TriggerCmp(
394        vaddr,
395        tdata(j).tdata2,
396        tdata(j).matchType,
397        tEnableVec(j) && tdata(j).store
398      )
399    }
400    // load trigger
401    val load_hit = Wire(Vec(TriggerNum, Bool()))
402    for (j <- 0 until TriggerNum) {
403      load_hit(j) := !tdata(j).select && TriggerCmp(
404        vaddr,
405        tdata(j).tdata2,
406        tdata(j).matchType,
407        tEnableVec(j) && tdata(j).load
408      )
409    }
410    backendTriggerHitVec := store_hit.zip(load_hit).map { case (sh, lh) => sh || lh }
411    // triggerCanFireVec will update at T+1
412    TriggerCheckCanFire(TriggerNum, backendTriggerCanFireVec, backendTriggerHitVec, backendTriggerTimingVec, backendTriggerChainVec)
413  }
414
415  // addr trigger do cmp at s_cache_req
416  // trigger result is used at s_finish
417  // thus we can delay it safely
418  io.out.bits.uop.trigger.backendHit := backendTriggerHitVec
419  io.out.bits.uop.trigger.backendCanFire := backendTriggerCanFireVec
420
421  */
422
423  if (env.EnableDifftest) {
424    val difftest = DifftestModule(new DiffAtomicEvent)
425    difftest.coreid := io.hartId
426    difftest.valid  := state === s_cache_resp_latch
427    difftest.addr   := paddr_reg
428    difftest.data   := data_reg
429    difftest.mask   := mask_reg
430    difftest.fuop   := fuop_reg
431    difftest.out    := resp_data_wire
432  }
433
434  if (env.EnableDifftest || env.AlwaysBasicDiff) {
435    val uop = io.out.bits.uop
436    val difftest = DifftestModule(new DiffLrScEvent)
437    difftest.coreid := io.hartId
438    difftest.valid := io.out.fire &&
439      (uop.fuOpType === LSUOpType.sc_d || uop.fuOpType === LSUOpType.sc_w)
440    difftest.success := is_lrsc_valid
441  }
442}
443