1/*************************************************************************************** 2* Copyright (c) 2020-2021 Institute of Computing Technology, Chinese Academy of Sciences 3* Copyright (c) 2020-2021 Peng Cheng Laboratory 4* 5* XiangShan is licensed under Mulan PSL v2. 6* You can use this software according to the terms and conditions of the Mulan PSL v2. 7* You may obtain a copy of Mulan PSL v2 at: 8* http://license.coscl.org.cn/MulanPSL2 9* 10* THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND, 11* EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT, 12* MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE. 13* 14* See the Mulan PSL v2 for more details. 15***************************************************************************************/ 16 17package xiangshan.mem.mdp 18 19import chipsalliance.rocketchip.config.Parameters 20import chisel3._ 21import chisel3.util._ 22import xiangshan._ 23import utils._ 24import xiangshan.backend.rob.RobPtr 25 26// store set load violation predictor 27// See "Memory Dependence Prediction using Store Sets" for details 28 29// Store Set Identifier Table Entry 30class SSITEntry(implicit p: Parameters) extends XSBundle { 31 val valid = Bool() 32 val ssid = UInt(SSIDWidth.W) // store set identifier 33 val strict = Bool() // strict load wait is needed 34} 35 36// Store Set Identifier Table Entry 37class SSITDataEntry(implicit p: Parameters) extends XSBundle { 38 val ssid = UInt(SSIDWidth.W) // store set identifier 39 val strict = Bool() // strict load wait is needed 40} 41 42// Store Set Identifier Table 43class SSIT(implicit p: Parameters) extends XSModule { 44 val io = IO(new Bundle { 45 // to decode 46 val raddr = Vec(DecodeWidth, Input(UInt(MemPredPCWidth.W))) // xor hashed decode pc(VaddrBits-1, 1) 47 // to rename 48 val rdata = Vec(RenameWidth, Output(new SSITEntry)) 49 // misc 50 val update = Input(new MemPredUpdateReq) // RegNext should be added outside 51 val csrCtrl = Input(new CustomCSRCtrlIO) 52 }) 53 54 // raddrs are sent to ssit in decode 55 // rdata will be send to rename 56 require(DecodeWidth == RenameWidth) 57 58 // data sram read port allocate 59 // 60 // SSIT update logic will reuse decode ssit read port. 61 // If io.update.valid, a redirect will be send to frontend, 62 // then decode will not need to read SSIT 63 val SSIT_DECODE_READ_PORT_BASE = 0 64 val SSIT_UPDATE_LOAD_READ_PORT = 0 65 val SSIT_UPDATE_STORE_READ_PORT = 1 66 val SSIT_READ_PORT_NUM = DecodeWidth 67 68 // data sram write port allocate 69 // load update and flush uses the same write port 70 val SSIT_MISC_WRITE_PORT = 0 71 val SSIT_UPDATE_LOAD_WRITE_PORT = 0 72 val SSIT_UPDATE_STORE_WRITE_PORT = 1 73 val SSIT_WRITE_PORT_NUM = 2 74 75 val valid_array = Module(new SyncDataModuleTemplate( 76 Bool(), 77 SSITSize, 78 SSIT_READ_PORT_NUM, 79 SSIT_WRITE_PORT_NUM 80 )) 81 82 val data_array = Module(new SyncDataModuleTemplate( 83 new SSITDataEntry, 84 SSITSize, 85 SSIT_READ_PORT_NUM, 86 SSIT_WRITE_PORT_NUM 87 )) 88 89 // TODO: use SRAM or not? 90 (0 until SSIT_WRITE_PORT_NUM).map(i => { 91 valid_array.io.wen(i) := false.B 92 valid_array.io.waddr(i) := DontCare 93 valid_array.io.wdata(i) := DontCare 94 data_array.io.wen(i) := false.B 95 data_array.io.waddr(i) := DontCare 96 data_array.io.wdata(i) := DontCare 97 }) 98 99 val debug_valid = RegInit(VecInit(Seq.fill(SSITSize)(false.B))) 100 val debug_ssid = Reg(Vec(SSITSize, UInt(SSIDWidth.W))) 101 val debug_strict = Reg(Vec(SSITSize, Bool())) 102 if(!env.FPGAPlatform){ 103 dontTouch(debug_valid) 104 dontTouch(debug_ssid) 105 dontTouch(debug_strict) 106 } 107 108 val resetCounter = RegInit(0.U(ResetTimeMax2Pow.W)) 109 resetCounter := resetCounter + 1.U 110 111 for (i <- 0 until DecodeWidth) { 112 // io.rdata(i).valid := RegNext(valid(io.raddr(i))) 113 // io.rdata(i).ssid := RegNext(ssid(io.raddr(i))) 114 // io.rdata(i).strict := RegNext(strict(io.raddr(i)) && valid(io.raddr(i))) 115 116 // read SSIT in decode stage 117 valid_array.io.raddr(i) := io.raddr(i) 118 data_array.io.raddr(i) := io.raddr(i) 119 120 // gen result in rename stage 121 io.rdata(i).valid := valid_array.io.rdata(i) 122 io.rdata(i).ssid := data_array.io.rdata(i).ssid 123 io.rdata(i).strict := data_array.io.rdata(i).strict 124 } 125 126 // flush SSIT 127 // reset period: ResetTimeMax2Pow 128 val resetStepCounter = RegInit(0.U(log2Up(SSITSize + 1).W)) 129 val s_idle :: s_flush :: Nil = Enum(2) 130 val state = RegInit(s_flush) 131 132 switch (state) { 133 is(s_idle) { 134 when(resetCounter(ResetTimeMax2Pow - 1, ResetTimeMin2Pow)(RegNext(io.csrCtrl.lvpred_timeout))) { 135 state := s_flush 136 resetCounter := 0.U 137 } 138 } 139 is(s_flush) { 140 when(resetStepCounter === (SSITSize - 1).U) { 141 state := s_idle // reset finished 142 resetStepCounter := 0.U 143 }.otherwise{ 144 valid_array.io.wen(SSIT_MISC_WRITE_PORT) := true.B 145 valid_array.io.waddr(SSIT_MISC_WRITE_PORT) := resetStepCounter 146 valid_array.io.wdata(SSIT_MISC_WRITE_PORT) := false.B 147 debug_valid(resetStepCounter) := false.B 148 resetStepCounter := resetStepCounter + 1.U 149 } 150 } 151 } 152 XSPerfAccumulate("reset_timeout", state === s_flush && resetCounter === 0.U) 153 154 // update SSIT if load violation redirect is detected 155 156 // update stage 0: read ssit 157 val s1_mempred_update_req_valid = RegNext(io.update.valid) 158 val s1_mempred_update_req = RegEnable(io.update, io.update.valid) 159 160 // when io.update.valid, take over ssit read port 161 when (io.update.valid) { 162 valid_array.io.raddr(SSIT_UPDATE_LOAD_READ_PORT) := io.update.ldpc 163 valid_array.io.raddr(SSIT_UPDATE_STORE_READ_PORT) := io.update.stpc 164 data_array.io.raddr(SSIT_UPDATE_LOAD_READ_PORT) := io.update.ldpc 165 data_array.io.raddr(SSIT_UPDATE_STORE_READ_PORT) := io.update.stpc 166 } 167 168 // update stage 1: get ssit read result 169 170 // Read result 171 // load has already been assigned with a store set 172 val s1_loadAssigned = valid_array.io.rdata(SSIT_UPDATE_LOAD_READ_PORT) 173 val s1_loadOldSSID = data_array.io.rdata(SSIT_UPDATE_LOAD_READ_PORT).ssid 174 val s1_loadStrict = data_array.io.rdata(SSIT_UPDATE_LOAD_READ_PORT).strict 175 // store has already been assigned with a store set 176 val s1_storeAssigned = valid_array.io.rdata(SSIT_UPDATE_STORE_READ_PORT) 177 val s1_storeOldSSID = data_array.io.rdata(SSIT_UPDATE_STORE_READ_PORT).ssid 178 val s1_storeStrict = data_array.io.rdata(SSIT_UPDATE_STORE_READ_PORT).strict 179 // val s1_ssidIsSame = s1_loadOldSSID === s1_storeOldSSID 180 181 // update stage 2, update ssit data_array 182 val s2_mempred_update_req_valid = RegNext(s1_mempred_update_req_valid) 183 val s2_mempred_update_req = RegEnable(s1_mempred_update_req, s1_mempred_update_req_valid) 184 val s2_loadAssigned = RegEnable(s1_loadAssigned, s1_mempred_update_req_valid) 185 val s2_storeAssigned = RegEnable(s1_storeAssigned, s1_mempred_update_req_valid) 186 val s2_loadOldSSID = RegEnable(s1_loadOldSSID, s1_mempred_update_req_valid) 187 val s2_storeOldSSID = RegEnable(s1_storeOldSSID, s1_mempred_update_req_valid) 188 val s2_loadStrict = RegEnable(s1_loadStrict, s1_mempred_update_req_valid) 189 190 val s2_ssidIsSame = s2_loadOldSSID === s2_storeOldSSID 191 // for now we just use lowest bits of ldpc as store set id 192 val s2_ldSsidAllocate = XORFold(s1_mempred_update_req.ldpc, SSIDWidth) 193 val s2_stSsidAllocate = XORFold(s1_mempred_update_req.stpc, SSIDWidth) 194 // both the load and the store have already been assigned store sets 195 // but load's store set ID is smaller 196 val s2_winnerSSID = Mux(s2_loadOldSSID < s2_storeOldSSID, s2_loadOldSSID, s2_storeOldSSID) 197 198 def update_ld_ssit_entry(pc: UInt, valid: Bool, ssid: UInt, strict: Bool) = { 199 valid_array.io.wen(SSIT_UPDATE_LOAD_WRITE_PORT) := true.B 200 valid_array.io.waddr(SSIT_UPDATE_LOAD_WRITE_PORT) := pc 201 valid_array.io.wdata(SSIT_UPDATE_LOAD_WRITE_PORT) := valid 202 data_array.io.wen(SSIT_UPDATE_LOAD_WRITE_PORT) := true.B 203 data_array.io.waddr(SSIT_UPDATE_LOAD_WRITE_PORT) := pc 204 data_array.io.wdata(SSIT_UPDATE_LOAD_WRITE_PORT).ssid := ssid 205 data_array.io.wdata(SSIT_UPDATE_LOAD_WRITE_PORT).strict := strict 206 debug_valid(pc) := valid 207 debug_ssid(pc) := ssid 208 debug_strict(pc) := strict 209 } 210 211 def update_st_ssit_entry(pc: UInt, valid: Bool, ssid: UInt, strict: Bool) = { 212 valid_array.io.wen(SSIT_UPDATE_STORE_WRITE_PORT) := true.B 213 valid_array.io.waddr(SSIT_UPDATE_STORE_WRITE_PORT) := pc 214 valid_array.io.wdata(SSIT_UPDATE_STORE_WRITE_PORT):= valid 215 data_array.io.wen(SSIT_UPDATE_STORE_WRITE_PORT) := true.B 216 data_array.io.waddr(SSIT_UPDATE_STORE_WRITE_PORT) := pc 217 data_array.io.wdata(SSIT_UPDATE_STORE_WRITE_PORT).ssid := ssid 218 data_array.io.wdata(SSIT_UPDATE_STORE_WRITE_PORT).strict := strict 219 debug_valid(pc) := valid 220 debug_ssid(pc) := ssid 221 debug_strict(pc) := strict 222 } 223 224 when(s2_mempred_update_req_valid){ 225 switch (Cat(s2_loadAssigned, s2_storeAssigned)) { 226 // 1. "If neither the load nor the store has been assigned a store set, 227 // two are allocated and assigned to each instruction." 228 is ("b00".U(2.W)) { 229 update_ld_ssit_entry( 230 pc = s2_mempred_update_req.ldpc, 231 valid = true.B, 232 ssid = s2_ldSsidAllocate, 233 strict = false.B 234 ) 235 update_st_ssit_entry( 236 pc = s2_mempred_update_req.stpc, 237 valid = true.B, 238 ssid = s2_stSsidAllocate, 239 strict = false.B 240 ) 241 } 242 // 2. "If the load has been assigned a store set, but the store has not, 243 // one is allocated and assigned to the store instructions." 244 is ("b10".U(2.W)) { 245 update_st_ssit_entry( 246 pc = s2_mempred_update_req.stpc, 247 valid = true.B, 248 ssid = s2_stSsidAllocate, 249 strict = false.B 250 ) 251 } 252 // 3. "If the store has been assigned a store set, but the load has not, 253 // one is allocated and assigned to the load instructions." 254 is ("b01".U(2.W)) { 255 update_ld_ssit_entry( 256 pc = s2_mempred_update_req.ldpc, 257 valid = true.B, 258 ssid = s2_ldSsidAllocate, 259 strict = false.B 260 ) 261 } 262 // 4. "If both the load and the store have already been assigned store sets, 263 // one of the two store sets is declared the "winner". 264 // The instruction belonging to the loser’s store set is assigned the winner’s store set." 265 is ("b11".U(2.W)) { 266 update_ld_ssit_entry( 267 pc = s2_mempred_update_req.ldpc, 268 valid = true.B, 269 ssid = s2_winnerSSID, 270 strict = false.B 271 ) 272 update_st_ssit_entry( 273 pc = s2_mempred_update_req.stpc, 274 valid = true.B, 275 ssid = s2_winnerSSID, 276 strict = false.B 277 ) 278 when(s2_ssidIsSame){ 279 data_array.io.wdata(SSIT_UPDATE_LOAD_READ_PORT).strict := true.B 280 debug_strict(s2_mempred_update_req.ldpc) := true.B 281 } 282 } 283 } 284 } 285 286 // make SyncDataModuleTemplate happy 287 when(valid_array.io.waddr(SSIT_UPDATE_LOAD_WRITE_PORT) === valid_array.io.waddr(SSIT_UPDATE_STORE_WRITE_PORT)){ 288 valid_array.io.wen(SSIT_UPDATE_STORE_WRITE_PORT) := false.B 289 } 290 291 when(data_array.io.waddr(SSIT_UPDATE_LOAD_WRITE_PORT) === data_array.io.waddr(SSIT_UPDATE_STORE_WRITE_PORT)){ 292 data_array.io.wen(SSIT_UPDATE_STORE_WRITE_PORT) := false.B 293 } 294 295 XSPerfAccumulate("ssit_update_lxsx", s2_mempred_update_req_valid && !s2_loadAssigned && !s2_storeAssigned) 296 XSPerfAccumulate("ssit_update_lysx", s2_mempred_update_req_valid && s2_loadAssigned && !s2_storeAssigned) 297 XSPerfAccumulate("ssit_update_lxsy", s2_mempred_update_req_valid && !s2_loadAssigned && s2_storeAssigned) 298 XSPerfAccumulate("ssit_update_lysy", s2_mempred_update_req_valid && s2_loadAssigned && s2_storeAssigned) 299 XSPerfAccumulate("ssit_update_should_strict", s2_mempred_update_req_valid && s2_ssidIsSame && s2_loadAssigned && s2_storeAssigned) 300 XSPerfAccumulate("ssit_update_strict_failed", 301 s2_mempred_update_req_valid && s2_ssidIsSame && s2_loadStrict && s2_loadAssigned && s2_storeAssigned 302 ) // should be zero 303 304 // debug 305 when (s2_mempred_update_req.valid) { 306 XSDebug("%d: SSIT update: load pc %x store pc %x\n", GTimer(), s2_mempred_update_req.ldpc, s2_mempred_update_req.stpc) 307 XSDebug("%d: SSIT update: load valid %b ssid %x store valid %b ssid %x\n", GTimer(), s2_loadAssigned, s2_loadOldSSID, s2_storeAssigned, s2_storeOldSSID) 308 } 309} 310 311 312// Last Fetched Store Table Entry 313class LFSTEntry(implicit p: Parameters) extends XSBundle { 314 val valid = Bool() 315 val robIdx = new RobPtr 316} 317 318class LFSTReq(implicit p: Parameters) extends XSBundle { 319 val isstore = Bool() 320 val ssid = UInt(SSIDWidth.W) // use ssid to lookup LFST 321 val robIdx = new RobPtr 322} 323 324class LFSTResp(implicit p: Parameters) extends XSBundle { 325 val shouldWait = Bool() 326 val robIdx = new RobPtr 327} 328 329class DispatchLFSTIO(implicit p: Parameters) extends XSBundle { 330 val req = Vec(RenameWidth, Valid(new LFSTReq)) 331 val resp = Vec(RenameWidth, Flipped(Valid(new LFSTResp))) 332} 333 334// Last Fetched Store Table 335class LFST(implicit p: Parameters) extends XSModule { 336 val io = IO(new Bundle { 337 // when redirect, mark canceled store as invalid 338 val redirect = Input(Valid(new Redirect)) 339 val dispatch = Flipped(new DispatchLFSTIO) 340 // when store issued, mark store as invalid 341 val storeIssue = Vec(exuParameters.StuCnt, Flipped(Valid(new ExuInput))) 342 val csrCtrl = Input(new CustomCSRCtrlIO) 343 }) 344 345 val validVec = RegInit(VecInit(Seq.fill(LFSTSize)(VecInit(Seq.fill(LFSTWidth)(false.B))))) 346 val robIdxVec = Reg(Vec(LFSTSize, Vec(LFSTWidth, new RobPtr))) 347 val allocPtr = RegInit(VecInit(Seq.fill(LFSTSize)(0.U(log2Up(LFSTWidth).W)))) 348 val valid = Wire(Vec(LFSTSize, Bool())) 349 (0 until LFSTSize).map(i => { 350 valid(i) := validVec(i).asUInt.orR 351 }) 352 353 // read LFST in rename stage 354 for (i <- 0 until RenameWidth) { 355 io.dispatch.resp(i).valid := io.dispatch.req(i).valid 356 357 // If store-load pair is in the same dispatch bundle, loadWaitBit should also be set for load 358 val hitInDispatchBundleVec = if(i > 0){ 359 WireInit(VecInit((0 until i).map(j => 360 io.dispatch.req(j).valid && 361 io.dispatch.req(j).bits.isstore && 362 io.dispatch.req(j).bits.ssid === io.dispatch.req(i).bits.ssid 363 ))) 364 } else { 365 WireInit(VecInit(Seq(false.B))) // DontCare 366 } 367 val hitInDispatchBundle = hitInDispatchBundleVec.asUInt.orR 368 // Check if store set is valid in LFST 369 io.dispatch.resp(i).bits.shouldWait := ( 370 (valid(io.dispatch.req(i).bits.ssid) || hitInDispatchBundle) && 371 io.dispatch.req(i).valid && 372 (!io.dispatch.req(i).bits.isstore || io.csrCtrl.storeset_wait_store) 373 ) && !io.csrCtrl.lvpred_disable || io.csrCtrl.no_spec_load 374 io.dispatch.resp(i).bits.robIdx := robIdxVec(io.dispatch.req(i).bits.ssid)(allocPtr(io.dispatch.req(i).bits.ssid)-1.U) 375 if(i > 0){ 376 (0 until i).map(j => 377 when(hitInDispatchBundleVec(j)){ 378 io.dispatch.resp(i).bits.robIdx := io.dispatch.req(i).bits.robIdx 379 } 380 ) 381 } 382 } 383 384 // when store is issued, mark it as invalid 385 (0 until exuParameters.StuCnt).map(i => { 386 // TODO: opt timing 387 (0 until LFSTWidth).map(j => { 388 when(io.storeIssue(i).valid && io.storeIssue(i).bits.uop.cf.storeSetHit && io.storeIssue(i).bits.uop.robIdx.value === robIdxVec(io.storeIssue(i).bits.uop.cf.ssid)(j).value){ 389 validVec(io.storeIssue(i).bits.uop.cf.ssid)(j) := false.B 390 } 391 }) 392 }) 393 394 // when store is dispatched, mark it as valid 395 (0 until RenameWidth).map(i => { 396 when(io.dispatch.req(i).valid && io.dispatch.req(i).bits.isstore){ 397 val waddr = io.dispatch.req(i).bits.ssid 398 val wptr = allocPtr(waddr) 399 allocPtr(waddr) := allocPtr(waddr) + 1.U 400 validVec(waddr)(wptr) := true.B 401 robIdxVec(waddr)(wptr) := io.dispatch.req(i).bits.robIdx 402 } 403 }) 404 405 // when redirect, cancel store influenced 406 (0 until LFSTSize).map(i => { 407 (0 until LFSTWidth).map(j => { 408 when(robIdxVec(i)(j).needFlush(io.redirect)){ 409 validVec(i)(j) := false.B 410 } 411 }) 412 }) 413 414 // recover robIdx after squash 415 // behavior model, to be refactored later 416 when(RegNext(io.redirect.fire())) { 417 (0 until LFSTSize).map(i => { 418 (0 until LFSTWidth).map(j => { 419 val check_position = WireInit(allocPtr(i) + (j+1).U) 420 when(!validVec(i)(check_position)){ 421 allocPtr(i) := check_position 422 } 423 }) 424 }) 425 } 426} 427