1/*************************************************************************************** 2* Copyright (c) 2020-2021 Institute of Computing Technology, Chinese Academy of Sciences 3* Copyright (c) 2020-2021 Peng Cheng Laboratory 4* 5* XiangShan is licensed under Mulan PSL v2. 6* You can use this software according to the terms and conditions of the Mulan PSL v2. 7* You may obtain a copy of Mulan PSL v2 at: 8* http://license.coscl.org.cn/MulanPSL2 9* 10* THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND, 11* EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT, 12* MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE. 13* 14* See the Mulan PSL v2 for more details. 15***************************************************************************************/ 16 17package xiangshan.mem.mdp 18 19import chipsalliance.rocketchip.config.Parameters 20import chisel3._ 21import chisel3.util._ 22import xiangshan._ 23import utils._ 24import utility._ 25import xiangshan.backend.rob.RobPtr 26import xiangshan.v2backend.Bundles.DynInst 27 28// store set load violation predictor 29// See "Memory Dependence Prediction using Store Sets" for details 30 31// Store Set Identifier Table Entry 32class SSITEntry(implicit p: Parameters) extends XSBundle { 33 val valid = Bool() 34 val ssid = UInt(SSIDWidth.W) // store set identifier 35 val strict = Bool() // strict load wait is needed 36} 37 38// Store Set Identifier Table Entry 39class SSITDataEntry(implicit p: Parameters) extends XSBundle { 40 val ssid = UInt(SSIDWidth.W) // store set identifier 41 val strict = Bool() // strict load wait is needed 42} 43 44// Store Set Identifier Table 45class SSIT(implicit p: Parameters) extends XSModule { 46 val io = IO(new Bundle { 47 // to decode 48 val raddr = Vec(DecodeWidth, Input(UInt(MemPredPCWidth.W))) // xor hashed decode pc(VaddrBits-1, 1) 49 // to rename 50 val rdata = Vec(RenameWidth, Output(new SSITEntry)) 51 // misc 52 val update = Input(new MemPredUpdateReq) // RegNext should be added outside 53 val csrCtrl = Input(new CustomCSRCtrlIO) 54 }) 55 56 // raddrs are sent to ssit in decode 57 // rdata will be send to rename 58 require(DecodeWidth == RenameWidth) 59 60 // data sram read port allocate 61 // 62 // SSIT update logic will reuse decode ssit read port. 63 // If io.update.valid, a redirect will be send to frontend, 64 // then decode will not need to read SSIT 65 val SSIT_DECODE_READ_PORT_BASE = 0 66 val SSIT_UPDATE_LOAD_READ_PORT = 0 67 val SSIT_UPDATE_STORE_READ_PORT = 1 68 val SSIT_READ_PORT_NUM = DecodeWidth 69 70 // data sram write port allocate 71 // load update and flush uses the same write port 72 val SSIT_MISC_WRITE_PORT = 0 73 val SSIT_UPDATE_LOAD_WRITE_PORT = 0 74 val SSIT_UPDATE_STORE_WRITE_PORT = 1 75 val SSIT_WRITE_PORT_NUM = 2 76 77 val valid_array = Module(new SyncDataModuleTemplate( 78 Bool(), 79 SSITSize, 80 SSIT_READ_PORT_NUM, 81 SSIT_WRITE_PORT_NUM 82 )) 83 84 val data_array = Module(new SyncDataModuleTemplate( 85 new SSITDataEntry, 86 SSITSize, 87 SSIT_READ_PORT_NUM, 88 SSIT_WRITE_PORT_NUM 89 )) 90 91 // TODO: use SRAM or not? 92 (0 until SSIT_WRITE_PORT_NUM).map(i => { 93 valid_array.io.wen(i) := false.B 94 valid_array.io.waddr(i) := DontCare 95 valid_array.io.wdata(i) := DontCare 96 data_array.io.wen(i) := false.B 97 data_array.io.waddr(i) := DontCare 98 data_array.io.wdata(i) := DontCare 99 }) 100 101 val debug_valid = RegInit(VecInit(Seq.fill(SSITSize)(false.B))) 102 val debug_ssid = Reg(Vec(SSITSize, UInt(SSIDWidth.W))) 103 val debug_strict = Reg(Vec(SSITSize, Bool())) 104 if(!env.FPGAPlatform){ 105 dontTouch(debug_valid) 106 dontTouch(debug_ssid) 107 dontTouch(debug_strict) 108 } 109 110 val resetCounter = RegInit(0.U(ResetTimeMax2Pow.W)) 111 resetCounter := resetCounter + 1.U 112 113 for (i <- 0 until DecodeWidth) { 114 // io.rdata(i).valid := RegNext(valid(io.raddr(i))) 115 // io.rdata(i).ssid := RegNext(ssid(io.raddr(i))) 116 // io.rdata(i).strict := RegNext(strict(io.raddr(i)) && valid(io.raddr(i))) 117 118 // read SSIT in decode stage 119 valid_array.io.raddr(i) := io.raddr(i) 120 data_array.io.raddr(i) := io.raddr(i) 121 122 // gen result in rename stage 123 io.rdata(i).valid := valid_array.io.rdata(i) 124 io.rdata(i).ssid := data_array.io.rdata(i).ssid 125 io.rdata(i).strict := data_array.io.rdata(i).strict 126 } 127 128 // flush SSIT 129 // reset period: ResetTimeMax2Pow 130 val resetStepCounter = RegInit(0.U(log2Up(SSITSize + 1).W)) 131 val s_idle :: s_flush :: Nil = Enum(2) 132 val state = RegInit(s_flush) 133 134 switch (state) { 135 is(s_idle) { 136 when(resetCounter(ResetTimeMax2Pow - 1, ResetTimeMin2Pow)(RegNext(io.csrCtrl.lvpred_timeout))) { 137 state := s_flush 138 resetCounter := 0.U 139 } 140 } 141 is(s_flush) { 142 when(resetStepCounter === (SSITSize - 1).U) { 143 state := s_idle // reset finished 144 resetStepCounter := 0.U 145 }.otherwise{ 146 resetStepCounter := resetStepCounter + 1.U 147 } 148 valid_array.io.wen(SSIT_MISC_WRITE_PORT) := true.B 149 valid_array.io.waddr(SSIT_MISC_WRITE_PORT) := resetStepCounter 150 valid_array.io.wdata(SSIT_MISC_WRITE_PORT) := false.B 151 debug_valid(resetStepCounter) := false.B 152 } 153 } 154 XSPerfAccumulate("reset_timeout", state === s_flush && resetCounter === 0.U) 155 156 // update SSIT if load violation redirect is detected 157 158 // update stage 0: read ssit 159 val s1_mempred_update_req_valid = RegNext(io.update.valid) 160 val s1_mempred_update_req = RegEnable(io.update, io.update.valid) 161 162 // when io.update.valid, take over ssit read port 163 when (io.update.valid) { 164 valid_array.io.raddr(SSIT_UPDATE_LOAD_READ_PORT) := io.update.ldpc 165 valid_array.io.raddr(SSIT_UPDATE_STORE_READ_PORT) := io.update.stpc 166 data_array.io.raddr(SSIT_UPDATE_LOAD_READ_PORT) := io.update.ldpc 167 data_array.io.raddr(SSIT_UPDATE_STORE_READ_PORT) := io.update.stpc 168 } 169 170 // update stage 1: get ssit read result 171 172 // Read result 173 // load has already been assigned with a store set 174 val s1_loadAssigned = valid_array.io.rdata(SSIT_UPDATE_LOAD_READ_PORT) 175 val s1_loadOldSSID = data_array.io.rdata(SSIT_UPDATE_LOAD_READ_PORT).ssid 176 val s1_loadStrict = data_array.io.rdata(SSIT_UPDATE_LOAD_READ_PORT).strict 177 // store has already been assigned with a store set 178 val s1_storeAssigned = valid_array.io.rdata(SSIT_UPDATE_STORE_READ_PORT) 179 val s1_storeOldSSID = data_array.io.rdata(SSIT_UPDATE_STORE_READ_PORT).ssid 180 val s1_storeStrict = data_array.io.rdata(SSIT_UPDATE_STORE_READ_PORT).strict 181 // val s1_ssidIsSame = s1_loadOldSSID === s1_storeOldSSID 182 183 // update stage 2, update ssit data_array 184 val s2_mempred_update_req_valid = RegNext(s1_mempred_update_req_valid) 185 val s2_mempred_update_req = RegEnable(s1_mempred_update_req, s1_mempred_update_req_valid) 186 val s2_loadAssigned = RegEnable(s1_loadAssigned, s1_mempred_update_req_valid) 187 val s2_storeAssigned = RegEnable(s1_storeAssigned, s1_mempred_update_req_valid) 188 val s2_loadOldSSID = RegEnable(s1_loadOldSSID, s1_mempred_update_req_valid) 189 val s2_storeOldSSID = RegEnable(s1_storeOldSSID, s1_mempred_update_req_valid) 190 val s2_loadStrict = RegEnable(s1_loadStrict, s1_mempred_update_req_valid) 191 192 val s2_ssidIsSame = s2_loadOldSSID === s2_storeOldSSID 193 // for now we just use lowest bits of ldpc as store set id 194 val s2_ldSsidAllocate = XORFold(s1_mempred_update_req.ldpc, SSIDWidth) 195 val s2_stSsidAllocate = XORFold(s1_mempred_update_req.stpc, SSIDWidth) 196 // both the load and the store have already been assigned store sets 197 // but load's store set ID is smaller 198 val s2_winnerSSID = Mux(s2_loadOldSSID < s2_storeOldSSID, s2_loadOldSSID, s2_storeOldSSID) 199 200 def update_ld_ssit_entry(pc: UInt, valid: Bool, ssid: UInt, strict: Bool) = { 201 valid_array.io.wen(SSIT_UPDATE_LOAD_WRITE_PORT) := true.B 202 valid_array.io.waddr(SSIT_UPDATE_LOAD_WRITE_PORT) := pc 203 valid_array.io.wdata(SSIT_UPDATE_LOAD_WRITE_PORT) := valid 204 data_array.io.wen(SSIT_UPDATE_LOAD_WRITE_PORT) := true.B 205 data_array.io.waddr(SSIT_UPDATE_LOAD_WRITE_PORT) := pc 206 data_array.io.wdata(SSIT_UPDATE_LOAD_WRITE_PORT).ssid := ssid 207 data_array.io.wdata(SSIT_UPDATE_LOAD_WRITE_PORT).strict := strict 208 debug_valid(pc) := valid 209 debug_ssid(pc) := ssid 210 debug_strict(pc) := strict 211 } 212 213 def update_st_ssit_entry(pc: UInt, valid: Bool, ssid: UInt, strict: Bool) = { 214 valid_array.io.wen(SSIT_UPDATE_STORE_WRITE_PORT) := true.B 215 valid_array.io.waddr(SSIT_UPDATE_STORE_WRITE_PORT) := pc 216 valid_array.io.wdata(SSIT_UPDATE_STORE_WRITE_PORT):= valid 217 data_array.io.wen(SSIT_UPDATE_STORE_WRITE_PORT) := true.B 218 data_array.io.waddr(SSIT_UPDATE_STORE_WRITE_PORT) := pc 219 data_array.io.wdata(SSIT_UPDATE_STORE_WRITE_PORT).ssid := ssid 220 data_array.io.wdata(SSIT_UPDATE_STORE_WRITE_PORT).strict := strict 221 debug_valid(pc) := valid 222 debug_ssid(pc) := ssid 223 debug_strict(pc) := strict 224 } 225 226 when(s2_mempred_update_req_valid){ 227 switch (Cat(s2_loadAssigned, s2_storeAssigned)) { 228 // 1. "If neither the load nor the store has been assigned a store set, 229 // two are allocated and assigned to each instruction." 230 is ("b00".U(2.W)) { 231 update_ld_ssit_entry( 232 pc = s2_mempred_update_req.ldpc, 233 valid = true.B, 234 ssid = s2_ldSsidAllocate, 235 strict = false.B 236 ) 237 update_st_ssit_entry( 238 pc = s2_mempred_update_req.stpc, 239 valid = true.B, 240 ssid = s2_stSsidAllocate, 241 strict = false.B 242 ) 243 } 244 // 2. "If the load has been assigned a store set, but the store has not, 245 // one is allocated and assigned to the store instructions." 246 is ("b10".U(2.W)) { 247 update_st_ssit_entry( 248 pc = s2_mempred_update_req.stpc, 249 valid = true.B, 250 ssid = s2_stSsidAllocate, 251 strict = false.B 252 ) 253 } 254 // 3. "If the store has been assigned a store set, but the load has not, 255 // one is allocated and assigned to the load instructions." 256 is ("b01".U(2.W)) { 257 update_ld_ssit_entry( 258 pc = s2_mempred_update_req.ldpc, 259 valid = true.B, 260 ssid = s2_ldSsidAllocate, 261 strict = false.B 262 ) 263 } 264 // 4. "If both the load and the store have already been assigned store sets, 265 // one of the two store sets is declared the "winner". 266 // The instruction belonging to the loser’s store set is assigned the winner’s store set." 267 is ("b11".U(2.W)) { 268 update_ld_ssit_entry( 269 pc = s2_mempred_update_req.ldpc, 270 valid = true.B, 271 ssid = s2_winnerSSID, 272 strict = false.B 273 ) 274 update_st_ssit_entry( 275 pc = s2_mempred_update_req.stpc, 276 valid = true.B, 277 ssid = s2_winnerSSID, 278 strict = false.B 279 ) 280 when(s2_ssidIsSame){ 281 data_array.io.wdata(SSIT_UPDATE_LOAD_READ_PORT).strict := true.B 282 debug_strict(s2_mempred_update_req.ldpc) := true.B 283 } 284 } 285 } 286 } 287 288 // make SyncDataModuleTemplate happy 289 when(valid_array.io.waddr(SSIT_UPDATE_LOAD_WRITE_PORT) === valid_array.io.waddr(SSIT_UPDATE_STORE_WRITE_PORT)){ 290 valid_array.io.wen(SSIT_UPDATE_STORE_WRITE_PORT) := false.B 291 } 292 293 when(data_array.io.waddr(SSIT_UPDATE_LOAD_WRITE_PORT) === data_array.io.waddr(SSIT_UPDATE_STORE_WRITE_PORT)){ 294 data_array.io.wen(SSIT_UPDATE_STORE_WRITE_PORT) := false.B 295 } 296 297 XSPerfAccumulate("ssit_update_lxsx", s2_mempred_update_req_valid && !s2_loadAssigned && !s2_storeAssigned) 298 XSPerfAccumulate("ssit_update_lysx", s2_mempred_update_req_valid && s2_loadAssigned && !s2_storeAssigned) 299 XSPerfAccumulate("ssit_update_lxsy", s2_mempred_update_req_valid && !s2_loadAssigned && s2_storeAssigned) 300 XSPerfAccumulate("ssit_update_lysy", s2_mempred_update_req_valid && s2_loadAssigned && s2_storeAssigned) 301 XSPerfAccumulate("ssit_update_should_strict", s2_mempred_update_req_valid && s2_ssidIsSame && s2_loadAssigned && s2_storeAssigned) 302 XSPerfAccumulate("ssit_update_strict_failed", 303 s2_mempred_update_req_valid && s2_ssidIsSame && s2_loadStrict && s2_loadAssigned && s2_storeAssigned 304 ) // should be zero 305 306 // debug 307 when (s2_mempred_update_req.valid) { 308 XSDebug("%d: SSIT update: load pc %x store pc %x\n", GTimer(), s2_mempred_update_req.ldpc, s2_mempred_update_req.stpc) 309 XSDebug("%d: SSIT update: load valid %b ssid %x store valid %b ssid %x\n", GTimer(), s2_loadAssigned, s2_loadOldSSID, s2_storeAssigned, s2_storeOldSSID) 310 } 311} 312 313 314// Last Fetched Store Table Entry 315class LFSTEntry(implicit p: Parameters) extends XSBundle { 316 val valid = Bool() 317 val robIdx = new RobPtr 318} 319 320class LFSTReq(implicit p: Parameters) extends XSBundle { 321 val isstore = Bool() 322 val ssid = UInt(SSIDWidth.W) // use ssid to lookup LFST 323 val robIdx = new RobPtr 324} 325 326class LFSTResp(implicit p: Parameters) extends XSBundle { 327 val shouldWait = Bool() 328 val robIdx = new RobPtr 329} 330 331class DispatchLFSTIO(implicit p: Parameters) extends XSBundle { 332 val req = Vec(RenameWidth, Valid(new LFSTReq)) 333 val resp = Vec(RenameWidth, Flipped(Valid(new LFSTResp))) 334} 335 336// Last Fetched Store Table 337class LFST(implicit p: Parameters) extends XSModule { 338 val io = IO(new Bundle { 339 // when redirect, mark canceled store as invalid 340 val redirect = Input(Valid(new Redirect)) 341 val dispatch = Flipped(new DispatchLFSTIO) 342 // when store issued, mark store as invalid 343 val storeIssue = Vec(backendParams.StuCnt, Flipped(Valid(new DynInst))) 344 val csrCtrl = Input(new CustomCSRCtrlIO) 345 }) 346 347 val validVec = RegInit(VecInit(Seq.fill(LFSTSize)(VecInit(Seq.fill(LFSTWidth)(false.B))))) 348 val robIdxVec = Reg(Vec(LFSTSize, Vec(LFSTWidth, new RobPtr))) 349 val allocPtr = RegInit(VecInit(Seq.fill(LFSTSize)(0.U(log2Up(LFSTWidth).W)))) 350 val valid = Wire(Vec(LFSTSize, Bool())) 351 (0 until LFSTSize).map(i => { 352 valid(i) := validVec(i).asUInt.orR 353 }) 354 355 // read LFST in rename stage 356 for (i <- 0 until RenameWidth) { 357 io.dispatch.resp(i).valid := io.dispatch.req(i).valid 358 359 // If store-load pair is in the same dispatch bundle, loadWaitBit should also be set for load 360 val hitInDispatchBundleVec = if(i > 0){ 361 WireInit(VecInit((0 until i).map(j => 362 io.dispatch.req(j).valid && 363 io.dispatch.req(j).bits.isstore && 364 io.dispatch.req(j).bits.ssid === io.dispatch.req(i).bits.ssid 365 ))) 366 } else { 367 WireInit(VecInit(Seq(false.B))) // DontCare 368 } 369 val hitInDispatchBundle = hitInDispatchBundleVec.asUInt.orR 370 // Check if store set is valid in LFST 371 io.dispatch.resp(i).bits.shouldWait := ( 372 (valid(io.dispatch.req(i).bits.ssid) || hitInDispatchBundle) && 373 io.dispatch.req(i).valid && 374 (!io.dispatch.req(i).bits.isstore || io.csrCtrl.storeset_wait_store) 375 ) && !io.csrCtrl.lvpred_disable || io.csrCtrl.no_spec_load 376 io.dispatch.resp(i).bits.robIdx := robIdxVec(io.dispatch.req(i).bits.ssid)(allocPtr(io.dispatch.req(i).bits.ssid)-1.U) 377 if(i > 0){ 378 (0 until i).map(j => 379 when(hitInDispatchBundleVec(j)){ 380 io.dispatch.resp(i).bits.robIdx := io.dispatch.req(j).bits.robIdx 381 } 382 ) 383 } 384 } 385 386 // when store is issued, mark it as invalid 387 (0 until backendParams.StuCnt).map(i => { 388 // TODO: opt timing 389 (0 until LFSTWidth).map(j => { 390 when(io.storeIssue(i).valid && io.storeIssue(i).bits.storeSetHit && io.storeIssue(i).bits.robIdx.value === robIdxVec(io.storeIssue(i).bits.ssid)(j).value){ 391 validVec(io.storeIssue(i).bits.ssid)(j) := false.B 392 } 393 }) 394 }) 395 396 // when store is dispatched, mark it as valid 397 (0 until RenameWidth).map(i => { 398 when(io.dispatch.req(i).valid && io.dispatch.req(i).bits.isstore){ 399 val waddr = io.dispatch.req(i).bits.ssid 400 val wptr = allocPtr(waddr) 401 allocPtr(waddr) := allocPtr(waddr) + 1.U 402 validVec(waddr)(wptr) := true.B 403 robIdxVec(waddr)(wptr) := io.dispatch.req(i).bits.robIdx 404 } 405 }) 406 407 // when redirect, cancel store influenced 408 (0 until LFSTSize).map(i => { 409 (0 until LFSTWidth).map(j => { 410 when(validVec(i)(j) && robIdxVec(i)(j).needFlush(io.redirect)){ 411 validVec(i)(j) := false.B 412 } 413 }) 414 }) 415 416 // recover robIdx after squash 417 // behavior model, to be refactored later 418 when(RegNext(io.redirect.fire())) { 419 (0 until LFSTSize).map(i => { 420 (0 until LFSTWidth).map(j => { 421 val check_position = WireInit(allocPtr(i) + (j+1).U) 422 when(!validVec(i)(check_position)){ 423 allocPtr(i) := check_position 424 } 425 }) 426 }) 427 } 428} 429