1/*************************************************************************************** 2* Copyright (c) 2020-2021 Institute of Computing Technology, Chinese Academy of Sciences 3* Copyright (c) 2020-2021 Peng Cheng Laboratory 4* 5* XiangShan is licensed under Mulan PSL v2. 6* You can use this software according to the terms and conditions of the Mulan PSL v2. 7* You may obtain a copy of Mulan PSL v2 at: 8* http://license.coscl.org.cn/MulanPSL2 9* 10* THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND, 11* EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT, 12* MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE. 13* 14* See the Mulan PSL v2 for more details. 15***************************************************************************************/ 16 17package xiangshan.mem 18 19import chisel3._ 20import chisel3.util._ 21import difftest._ 22import difftest.common.DifftestMem 23import org.chipsalliance.cde.config.Parameters 24import utility._ 25import utils._ 26import xiangshan._ 27import xiangshan.backend.rob.RobLsqIO 28import xiangshan.cache._ 29 30class SqPtr(implicit p: Parameters) extends CircularQueuePtr[SqPtr]( 31 p => p(XSCoreParamsKey).StoreQueueSize 32){ 33} 34 35object SqPtr { 36 def apply(f: Bool, v: UInt)(implicit p: Parameters): SqPtr = { 37 val ptr = Wire(new SqPtr) 38 ptr.flag := f 39 ptr.value := v 40 ptr 41 } 42} 43 44class SqEnqIO(implicit p: Parameters) extends XSBundle { 45 val canAccept = Output(Bool()) 46 val lqCanAccept = Input(Bool()) 47 val needAlloc = Vec(exuParameters.LsExuCnt, Input(Bool())) 48 val req = Vec(exuParameters.LsExuCnt, Flipped(ValidIO(new MicroOp))) 49 val resp = Vec(exuParameters.LsExuCnt, Output(new SqPtr)) 50} 51 52class DataBufferEntry (implicit p: Parameters) extends DCacheBundle { 53 val addr = UInt(PAddrBits.W) 54 val vaddr = UInt(VAddrBits.W) 55 val data = UInt(VLEN.W) 56 val mask = UInt((VLEN/8).W) 57 val wline = Bool() 58 val sqPtr = new SqPtr 59 val prefetch = Bool() 60} 61 62// Store Queue 63class StoreQueue(implicit p: Parameters) extends XSModule 64 with HasDCacheParameters with HasCircularQueuePtrHelper with HasPerfEvents { 65 val io = IO(new Bundle() { 66 val hartId = Input(UInt(hartIdLen.W)) 67 val enq = new SqEnqIO 68 val brqRedirect = Flipped(ValidIO(new Redirect)) 69 val storeAddrIn = Vec(StorePipelineWidth, Flipped(Valid(new LsPipelineBundle))) // store addr, data is not included 70 val storeAddrInRe = Vec(StorePipelineWidth, Input(new LsPipelineBundle())) // store more mmio and exception 71 val storeDataIn = Vec(StorePipelineWidth, Flipped(Valid(new ExuOutput))) // store data, send to sq from rs 72 val storeMaskIn = Vec(StorePipelineWidth, Flipped(Valid(new StoreMaskBundle))) // store mask, send to sq from rs 73 val sbuffer = Vec(EnsbufferWidth, Decoupled(new DCacheWordReqWithVaddrAndPfFlag)) // write committed store to sbuffer 74 val uncacheOutstanding = Input(Bool()) 75 val mmioStout = DecoupledIO(new ExuOutput) // writeback uncached store 76 val forward = Vec(LoadPipelineWidth, Flipped(new PipeLoadForwardQueryIO)) 77 val rob = Flipped(new RobLsqIO) 78 val uncache = new UncacheWordIO 79 // val refill = Flipped(Valid(new DCacheLineReq )) 80 val exceptionAddr = new ExceptionAddrIO 81 val sqEmpty = Output(Bool()) 82 val stAddrReadySqPtr = Output(new SqPtr) 83 val stAddrReadyVec = Output(Vec(StoreQueueSize, Bool())) 84 val stDataReadySqPtr = Output(new SqPtr) 85 val stDataReadyVec = Output(Vec(StoreQueueSize, Bool())) 86 val stIssuePtr = Output(new SqPtr) 87 val sqDeqPtr = Output(new SqPtr) 88 val sqFull = Output(Bool()) 89 val sqCancelCnt = Output(UInt(log2Up(StoreQueueSize + 1).W)) 90 val sqDeq = Output(UInt(log2Ceil(EnsbufferWidth + 1).W)) 91 val force_write = Output(Bool()) 92 }) 93 94 println("StoreQueue: size:" + StoreQueueSize) 95 96 // data modules 97 val uop = Reg(Vec(StoreQueueSize, new MicroOp)) 98 // val data = Reg(Vec(StoreQueueSize, new LsqEntry)) 99 val dataModule = Module(new SQDataModule( 100 numEntries = StoreQueueSize, 101 numRead = EnsbufferWidth, 102 numWrite = StorePipelineWidth, 103 numForward = StorePipelineWidth 104 )) 105 dataModule.io := DontCare 106 val paddrModule = Module(new SQAddrModule( 107 dataWidth = PAddrBits, 108 numEntries = StoreQueueSize, 109 numRead = EnsbufferWidth, 110 numWrite = StorePipelineWidth, 111 numForward = StorePipelineWidth 112 )) 113 paddrModule.io := DontCare 114 val vaddrModule = Module(new SQAddrModule( 115 dataWidth = VAddrBits, 116 numEntries = StoreQueueSize, 117 numRead = EnsbufferWidth + 1, // sbuffer + badvaddr 1 (TODO) 118 numWrite = StorePipelineWidth, 119 numForward = StorePipelineWidth 120 )) 121 vaddrModule.io := DontCare 122 val dataBuffer = Module(new DatamoduleResultBuffer(new DataBufferEntry)) 123 val debug_paddr = Reg(Vec(StoreQueueSize, UInt((PAddrBits).W))) 124 val debug_vaddr = Reg(Vec(StoreQueueSize, UInt((VAddrBits).W))) 125 val debug_data = Reg(Vec(StoreQueueSize, UInt((XLEN).W))) 126 127 // state & misc 128 val allocated = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // sq entry has been allocated 129 val addrvalid = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // non-mmio addr is valid 130 val datavalid = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // non-mmio data is valid 131 val allvalid = VecInit((0 until StoreQueueSize).map(i => addrvalid(i) && datavalid(i))) // non-mmio data & addr is valid 132 val committed = Reg(Vec(StoreQueueSize, Bool())) // inst has been committed by rob 133 val pending = Reg(Vec(StoreQueueSize, Bool())) // mmio pending: inst is an mmio inst, it will not be executed until it reachs the end of rob 134 val mmio = Reg(Vec(StoreQueueSize, Bool())) // mmio: inst is an mmio inst 135 val atomic = Reg(Vec(StoreQueueSize, Bool())) 136 val prefetch = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // need prefetch when committing this store to sbuffer? 137 138 // ptr 139 val enqPtrExt = RegInit(VecInit((0 until io.enq.req.length).map(_.U.asTypeOf(new SqPtr)))) 140 val rdataPtrExt = RegInit(VecInit((0 until EnsbufferWidth).map(_.U.asTypeOf(new SqPtr)))) 141 val deqPtrExt = RegInit(VecInit((0 until EnsbufferWidth).map(_.U.asTypeOf(new SqPtr)))) 142 val cmtPtrExt = RegInit(VecInit((0 until CommitWidth).map(_.U.asTypeOf(new SqPtr)))) 143 val addrReadyPtrExt = RegInit(0.U.asTypeOf(new SqPtr)) 144 val dataReadyPtrExt = RegInit(0.U.asTypeOf(new SqPtr)) 145 val validCounter = RegInit(0.U(log2Ceil(VirtualLoadQueueSize + 1).W)) 146 147 val enqPtr = enqPtrExt(0).value 148 val deqPtr = deqPtrExt(0).value 149 val cmtPtr = cmtPtrExt(0).value 150 151 val validCount = distanceBetween(enqPtrExt(0), deqPtrExt(0)) 152 val allowEnqueue = validCount <= (StoreQueueSize - StorePipelineWidth).U 153 154 val deqMask = UIntToMask(deqPtr, StoreQueueSize) 155 val enqMask = UIntToMask(enqPtr, StoreQueueSize) 156 157 val commitCount = RegNext(io.rob.scommit) 158 159 // store can be committed by ROB 160 io.rob.mmio := DontCare 161 io.rob.uop := DontCare 162 163 // Read dataModule 164 assert(EnsbufferWidth <= 2) 165 // rdataPtrExtNext and rdataPtrExtNext+1 entry will be read from dataModule 166 val rdataPtrExtNext = WireInit(Mux(dataBuffer.io.enq(1).fire, 167 VecInit(rdataPtrExt.map(_ + 2.U)), 168 Mux(dataBuffer.io.enq(0).fire || io.mmioStout.fire, 169 VecInit(rdataPtrExt.map(_ + 1.U)), 170 rdataPtrExt 171 ) 172 )) 173 174 // deqPtrExtNext traces which inst is about to leave store queue 175 // 176 // io.sbuffer(i).fire is RegNexted, as sbuffer data write takes 2 cycles. 177 // Before data write finish, sbuffer is unable to provide store to load 178 // forward data. As an workaround, deqPtrExt and allocated flag update 179 // is delayed so that load can get the right data from store queue. 180 // 181 // Modify deqPtrExtNext and io.sqDeq with care! 182 val deqPtrExtNext = Mux(RegNext(io.sbuffer(1).fire), 183 VecInit(deqPtrExt.map(_ + 2.U)), 184 Mux(RegNext(io.sbuffer(0).fire) || io.mmioStout.fire, 185 VecInit(deqPtrExt.map(_ + 1.U)), 186 deqPtrExt 187 ) 188 ) 189 io.sqDeq := RegNext(Mux(RegNext(io.sbuffer(1).fire), 2.U, 190 Mux(RegNext(io.sbuffer(0).fire) || io.mmioStout.fire, 1.U, 0.U) 191 )) 192 assert(!RegNext(RegNext(io.sbuffer(0).fire) && io.mmioStout.fire)) 193 194 for (i <- 0 until EnsbufferWidth) { 195 dataModule.io.raddr(i) := rdataPtrExtNext(i).value 196 paddrModule.io.raddr(i) := rdataPtrExtNext(i).value 197 vaddrModule.io.raddr(i) := rdataPtrExtNext(i).value 198 } 199 200 // no inst will be committed 1 cycle before tval update 201 vaddrModule.io.raddr(EnsbufferWidth) := (cmtPtrExt(0) + commitCount).value 202 203 /** 204 * Enqueue at dispatch 205 * 206 * Currently, StoreQueue only allows enqueue when #emptyEntries > EnqWidth 207 */ 208 io.enq.canAccept := allowEnqueue 209 val canEnqueue = io.enq.req.map(_.valid) 210 val enqCancel = io.enq.req.map(_.bits.robIdx.needFlush(io.brqRedirect)) 211 for (i <- 0 until io.enq.req.length) { 212 val offset = if (i == 0) 0.U else PopCount(io.enq.needAlloc.take(i)) 213 val sqIdx = enqPtrExt(offset) 214 val index = io.enq.req(i).bits.sqIdx.value 215 when (canEnqueue(i) && !enqCancel(i)) { 216 uop(index) := io.enq.req(i).bits 217 // NOTE: the index will be used when replay 218 uop(index).sqIdx := sqIdx 219 allocated(index) := true.B 220 datavalid(index) := false.B 221 addrvalid(index) := false.B 222 committed(index) := false.B 223 pending(index) := false.B 224 prefetch(index) := false.B 225 mmio(index) := false.B 226 227 XSError(!io.enq.canAccept || !io.enq.lqCanAccept, s"must accept $i\n") 228 XSError(index =/= sqIdx.value, s"must be the same entry $i\n") 229 } 230 io.enq.resp(i) := sqIdx 231 } 232 XSDebug(p"(ready, valid): ${io.enq.canAccept}, ${Binary(Cat(io.enq.req.map(_.valid)))}\n") 233 234 /** 235 * Update addr/dataReadyPtr when issue from rs 236 */ 237 // update issuePtr 238 val IssuePtrMoveStride = 4 239 require(IssuePtrMoveStride >= 2) 240 241 val addrReadyLookupVec = (0 until IssuePtrMoveStride).map(addrReadyPtrExt + _.U) 242 val addrReadyLookup = addrReadyLookupVec.map(ptr => allocated(ptr.value) && (mmio(ptr.value) || addrvalid(ptr.value)) && ptr =/= enqPtrExt(0)) 243 val nextAddrReadyPtr = addrReadyPtrExt + PriorityEncoder(VecInit(addrReadyLookup.map(!_) :+ true.B)) 244 addrReadyPtrExt := nextAddrReadyPtr 245 246 (0 until StoreQueueSize).map(i => { 247 io.stAddrReadyVec(i) := RegNext(allocated(i) && (mmio(i) || addrvalid(i))) 248 }) 249 250 when (io.brqRedirect.valid) { 251 addrReadyPtrExt := Mux( 252 isAfter(cmtPtrExt(0), deqPtrExt(0)), 253 cmtPtrExt(0), 254 deqPtrExtNext(0) // for mmio insts, deqPtr may be ahead of cmtPtr 255 ) 256 } 257 258 io.stAddrReadySqPtr := addrReadyPtrExt 259 260 // update 261 val dataReadyLookupVec = (0 until IssuePtrMoveStride).map(dataReadyPtrExt + _.U) 262 val dataReadyLookup = dataReadyLookupVec.map(ptr => allocated(ptr.value) && (mmio(ptr.value) || datavalid(ptr.value)) && ptr =/= enqPtrExt(0)) 263 val nextDataReadyPtr = dataReadyPtrExt + PriorityEncoder(VecInit(dataReadyLookup.map(!_) :+ true.B)) 264 dataReadyPtrExt := nextDataReadyPtr 265 266 (0 until StoreQueueSize).map(i => { 267 io.stDataReadyVec(i) := RegNext(allocated(i) && (mmio(i) || datavalid(i))) 268 }) 269 270 when (io.brqRedirect.valid) { 271 dataReadyPtrExt := Mux( 272 isAfter(cmtPtrExt(0), deqPtrExt(0)), 273 cmtPtrExt(0), 274 deqPtrExtNext(0) // for mmio insts, deqPtr may be ahead of cmtPtr 275 ) 276 } 277 278 io.stDataReadySqPtr := dataReadyPtrExt 279 io.stIssuePtr := enqPtrExt(0) 280 io.sqDeqPtr := deqPtrExt(0) 281 282 /** 283 * Writeback store from store units 284 * 285 * Most store instructions writeback to regfile in the previous cycle. 286 * However, 287 * (1) For an mmio instruction with exceptions, we need to mark it as addrvalid 288 * (in this way it will trigger an exception when it reaches ROB's head) 289 * instead of pending to avoid sending them to lower level. 290 * (2) For an mmio instruction without exceptions, we mark it as pending. 291 * When the instruction reaches ROB's head, StoreQueue sends it to uncache channel. 292 * Upon receiving the response, StoreQueue writes back the instruction 293 * through arbiter with store units. It will later commit as normal. 294 */ 295 296 // Write addr to sq 297 for (i <- 0 until StorePipelineWidth) { 298 paddrModule.io.wen(i) := false.B 299 vaddrModule.io.wen(i) := false.B 300 dataModule.io.mask.wen(i) := false.B 301 val stWbIndex = io.storeAddrIn(i).bits.uop.sqIdx.value 302 when (io.storeAddrIn(i).fire) { 303 val addr_valid = !io.storeAddrIn(i).bits.miss 304 addrvalid(stWbIndex) := addr_valid //!io.storeAddrIn(i).bits.mmio 305 // pending(stWbIndex) := io.storeAddrIn(i).bits.mmio 306 307 paddrModule.io.waddr(i) := stWbIndex 308 paddrModule.io.wdata(i) := io.storeAddrIn(i).bits.paddr 309 paddrModule.io.wmask(i) := io.storeAddrIn(i).bits.mask 310 paddrModule.io.wlineflag(i) := io.storeAddrIn(i).bits.wlineflag 311 paddrModule.io.wen(i) := true.B 312 313 vaddrModule.io.waddr(i) := stWbIndex 314 vaddrModule.io.wdata(i) := io.storeAddrIn(i).bits.vaddr 315 vaddrModule.io.wmask(i) := io.storeAddrIn(i).bits.mask 316 vaddrModule.io.wlineflag(i) := io.storeAddrIn(i).bits.wlineflag 317 vaddrModule.io.wen(i) := true.B 318 319 debug_paddr(paddrModule.io.waddr(i)) := paddrModule.io.wdata(i) 320 321 // mmio(stWbIndex) := io.storeAddrIn(i).bits.mmio 322 323 uop(stWbIndex).ctrl := io.storeAddrIn(i).bits.uop.ctrl 324 uop(stWbIndex).debugInfo := io.storeAddrIn(i).bits.uop.debugInfo 325 XSInfo("store addr write to sq idx %d pc 0x%x miss:%d vaddr %x paddr %x mmio %x\n", 326 io.storeAddrIn(i).bits.uop.sqIdx.value, 327 io.storeAddrIn(i).bits.uop.cf.pc, 328 io.storeAddrIn(i).bits.miss, 329 io.storeAddrIn(i).bits.vaddr, 330 io.storeAddrIn(i).bits.paddr, 331 io.storeAddrIn(i).bits.mmio 332 ) 333 } 334 335 // re-replinish mmio, for pma/pmp will get mmio one cycle later 336 val storeAddrInFireReg = RegNext(io.storeAddrIn(i).fire && !io.storeAddrIn(i).bits.miss) 337 val stWbIndexReg = RegNext(stWbIndex) 338 when (storeAddrInFireReg) { 339 pending(stWbIndexReg) := io.storeAddrInRe(i).mmio 340 mmio(stWbIndexReg) := io.storeAddrInRe(i).mmio 341 atomic(stWbIndexReg) := io.storeAddrInRe(i).atomic 342 } 343 // dcache miss info (one cycle later than storeIn) 344 // if dcache report a miss in sta pipeline, this store will trigger a prefetch when committing to sbuffer (if EnableAtCommitMissTrigger) 345 when (storeAddrInFireReg) { 346 prefetch(stWbIndexReg) := io.storeAddrInRe(i).miss 347 } 348 349 when(vaddrModule.io.wen(i)){ 350 debug_vaddr(vaddrModule.io.waddr(i)) := vaddrModule.io.wdata(i) 351 } 352 } 353 354 // Write data to sq 355 // Now store data pipeline is actually 2 stages 356 for (i <- 0 until StorePipelineWidth) { 357 dataModule.io.data.wen(i) := false.B 358 val stWbIndex = io.storeDataIn(i).bits.uop.sqIdx.value 359 // sq data write takes 2 cycles: 360 // sq data write s0 361 when (io.storeDataIn(i).fire) { 362 // send data write req to data module 363 dataModule.io.data.waddr(i) := stWbIndex 364 dataModule.io.data.wdata(i) := Mux(io.storeDataIn(i).bits.uop.ctrl.fuOpType === LSUOpType.cbo_zero, 365 0.U, 366 genWdata(io.storeDataIn(i).bits.data, io.storeDataIn(i).bits.uop.ctrl.fuOpType(1,0)) 367 ) 368 dataModule.io.data.wen(i) := true.B 369 370 debug_data(dataModule.io.data.waddr(i)) := dataModule.io.data.wdata(i) 371 372 XSInfo("store data write to sq idx %d pc 0x%x data %x -> %x\n", 373 io.storeDataIn(i).bits.uop.sqIdx.value, 374 io.storeDataIn(i).bits.uop.cf.pc, 375 io.storeDataIn(i).bits.data, 376 dataModule.io.data.wdata(i) 377 ) 378 } 379 // sq data write s1 380 when ( 381 RegNext(io.storeDataIn(i).fire) 382 // && !RegNext(io.storeDataIn(i).bits.uop).robIdx.needFlush(io.brqRedirect) 383 ) { 384 datavalid(RegNext(stWbIndex)) := true.B 385 } 386 } 387 388 // Write mask to sq 389 for (i <- 0 until StorePipelineWidth) { 390 // sq mask write s0 391 when (io.storeMaskIn(i).fire) { 392 // send data write req to data module 393 dataModule.io.mask.waddr(i) := io.storeMaskIn(i).bits.sqIdx.value 394 dataModule.io.mask.wdata(i) := io.storeMaskIn(i).bits.mask 395 dataModule.io.mask.wen(i) := true.B 396 } 397 } 398 399 /** 400 * load forward query 401 * 402 * Check store queue for instructions that is older than the load. 403 * The response will be valid at the next cycle after req. 404 */ 405 // check over all lq entries and forward data from the first matched store 406 for (i <- 0 until LoadPipelineWidth) { 407 // Compare deqPtr (deqPtr) and forward.sqIdx, we have two cases: 408 // (1) if they have the same flag, we need to check range(tail, sqIdx) 409 // (2) if they have different flags, we need to check range(tail, VirtualLoadQueueSize) and range(0, sqIdx) 410 // Forward1: Mux(same_flag, range(tail, sqIdx), range(tail, VirtualLoadQueueSize)) 411 // Forward2: Mux(same_flag, 0.U, range(0, sqIdx) ) 412 // i.e. forward1 is the target entries with the same flag bits and forward2 otherwise 413 val differentFlag = deqPtrExt(0).flag =/= io.forward(i).sqIdx.flag 414 val forwardMask = io.forward(i).sqIdxMask 415 // all addrvalid terms need to be checked 416 val addrValidVec = WireInit(VecInit((0 until StoreQueueSize).map(i => addrvalid(i) && allocated(i)))) 417 val dataValidVec = WireInit(VecInit((0 until StoreQueueSize).map(i => datavalid(i)))) 418 val allValidVec = WireInit(VecInit((0 until StoreQueueSize).map(i => addrvalid(i) && datavalid(i) && allocated(i)))) 419 420 val storeSetHitVec = 421 if (LFSTEnable) { 422 WireInit(VecInit((0 until StoreQueueSize).map(j => io.forward(i).uop.cf.loadWaitBit && uop(j).robIdx === io.forward(i).uop.cf.waitForRobIdx))) 423 } else { 424 WireInit(VecInit((0 until StoreQueueSize).map(j => uop(j).cf.storeSetHit && uop(j).cf.ssid === io.forward(i).uop.cf.ssid))) 425 } 426 427 val forwardMask1 = Mux(differentFlag, ~deqMask, deqMask ^ forwardMask) 428 val forwardMask2 = Mux(differentFlag, forwardMask, 0.U(StoreQueueSize.W)) 429 val canForward1 = forwardMask1 & allValidVec.asUInt 430 val canForward2 = forwardMask2 & allValidVec.asUInt 431 val needForward = Mux(differentFlag, ~deqMask | forwardMask, deqMask ^ forwardMask) 432 433 XSDebug(p"$i f1 ${Binary(canForward1)} f2 ${Binary(canForward2)} " + 434 p"sqIdx ${io.forward(i).sqIdx} pa ${Hexadecimal(io.forward(i).paddr)}\n" 435 ) 436 437 // do real fwd query (cam lookup in load_s1) 438 dataModule.io.needForward(i)(0) := canForward1 & vaddrModule.io.forwardMmask(i).asUInt 439 dataModule.io.needForward(i)(1) := canForward2 & vaddrModule.io.forwardMmask(i).asUInt 440 441 vaddrModule.io.forwardMdata(i) := io.forward(i).vaddr 442 vaddrModule.io.forwardDataMask(i) := io.forward(i).mask 443 paddrModule.io.forwardMdata(i) := io.forward(i).paddr 444 paddrModule.io.forwardDataMask(i) := io.forward(i).mask 445 446 447 // vaddr cam result does not equal to paddr cam result 448 // replay needed 449 // val vpmaskNotEqual = ((paddrModule.io.forwardMmask(i).asUInt ^ vaddrModule.io.forwardMmask(i).asUInt) & needForward) =/= 0.U 450 // val vaddrMatchFailed = vpmaskNotEqual && io.forward(i).valid 451 val vpmaskNotEqual = ( 452 (RegNext(paddrModule.io.forwardMmask(i).asUInt) ^ RegNext(vaddrModule.io.forwardMmask(i).asUInt)) & 453 RegNext(needForward) & 454 RegNext(addrValidVec.asUInt) 455 ) =/= 0.U 456 val vaddrMatchFailed = vpmaskNotEqual && RegNext(io.forward(i).valid) 457 when (vaddrMatchFailed) { 458 XSInfo("vaddrMatchFailed: pc %x pmask %x vmask %x\n", 459 RegNext(io.forward(i).uop.cf.pc), 460 RegNext(needForward & paddrModule.io.forwardMmask(i).asUInt), 461 RegNext(needForward & vaddrModule.io.forwardMmask(i).asUInt) 462 ); 463 } 464 XSPerfAccumulate("vaddr_match_failed", vpmaskNotEqual) 465 XSPerfAccumulate("vaddr_match_really_failed", vaddrMatchFailed) 466 467 // Fast forward mask will be generated immediately (load_s1) 468 io.forward(i).forwardMaskFast := dataModule.io.forwardMaskFast(i) 469 470 // Forward result will be generated 1 cycle later (load_s2) 471 io.forward(i).forwardMask := dataModule.io.forwardMask(i) 472 io.forward(i).forwardData := dataModule.io.forwardData(i) 473 // If addr match, data not ready, mark it as dataInvalid 474 // load_s1: generate dataInvalid in load_s1 to set fastUop 475 val dataInvalidMask1 = (addrValidVec.asUInt & ~dataValidVec.asUInt & vaddrModule.io.forwardMmask(i).asUInt & forwardMask1.asUInt) 476 val dataInvalidMask2 = (addrValidVec.asUInt & ~dataValidVec.asUInt & vaddrModule.io.forwardMmask(i).asUInt & forwardMask2.asUInt) 477 val dataInvalidMask = dataInvalidMask1 | dataInvalidMask2 478 io.forward(i).dataInvalidFast := dataInvalidMask.orR 479 480 // make chisel happy 481 val dataInvalidMask1Reg = Wire(UInt(StoreQueueSize.W)) 482 dataInvalidMask1Reg := RegNext(dataInvalidMask1) 483 // make chisel happy 484 val dataInvalidMask2Reg = Wire(UInt(StoreQueueSize.W)) 485 dataInvalidMask2Reg := RegNext(dataInvalidMask2) 486 val dataInvalidMaskReg = dataInvalidMask1Reg | dataInvalidMask2Reg 487 488 // If SSID match, address not ready, mark it as addrInvalid 489 // load_s2: generate addrInvalid 490 val addrInvalidMask1 = (~addrValidVec.asUInt & storeSetHitVec.asUInt & forwardMask1.asUInt) 491 val addrInvalidMask2 = (~addrValidVec.asUInt & storeSetHitVec.asUInt & forwardMask2.asUInt) 492 // make chisel happy 493 val addrInvalidMask1Reg = Wire(UInt(StoreQueueSize.W)) 494 addrInvalidMask1Reg := RegNext(addrInvalidMask1) 495 // make chisel happy 496 val addrInvalidMask2Reg = Wire(UInt(StoreQueueSize.W)) 497 addrInvalidMask2Reg := RegNext(addrInvalidMask2) 498 val addrInvalidMaskReg = addrInvalidMask1Reg | addrInvalidMask2Reg 499 500 // load_s2 501 io.forward(i).dataInvalid := RegNext(io.forward(i).dataInvalidFast) 502 // check if vaddr forward mismatched 503 io.forward(i).matchInvalid := vaddrMatchFailed 504 505 // data invalid sq index 506 // check whether false fail 507 // check flag 508 val s2_differentFlag = RegNext(differentFlag) 509 val s2_enqPtrExt = RegNext(enqPtrExt(0)) 510 val s2_deqPtrExt = RegNext(deqPtrExt(0)) 511 512 // addr invalid sq index 513 // make chisel happy 514 val addrInvalidMaskRegWire = Wire(UInt(StoreQueueSize.W)) 515 addrInvalidMaskRegWire := addrInvalidMaskReg 516 val addrInvalidFlag = addrInvalidMaskRegWire.orR 517 val hasInvalidAddr = (~addrValidVec.asUInt & needForward).orR 518 519 val addrInvalidSqIdx1 = OHToUInt(Reverse(PriorityEncoderOH(Reverse(addrInvalidMask1Reg)))) 520 val addrInvalidSqIdx2 = OHToUInt(Reverse(PriorityEncoderOH(Reverse(addrInvalidMask2Reg)))) 521 val addrInvalidSqIdx = Mux(addrInvalidMask2Reg.orR, addrInvalidSqIdx2, addrInvalidSqIdx1) 522 523 // store-set content management 524 // +-----------------------+ 525 // | Search a SSID for the | 526 // | load operation | 527 // +-----------------------+ 528 // | 529 // V 530 // +-------------------+ 531 // | load wait strict? | 532 // +-------------------+ 533 // | 534 // V 535 // +----------------------+ 536 // Set| |Clean 537 // V V 538 // +------------------------+ +------------------------------+ 539 // | Waiting for all older | | Wait until the corresponding | 540 // | stores operations | | older store operations | 541 // +------------------------+ +------------------------------+ 542 543 544 545 when (RegNext(io.forward(i).uop.cf.loadWaitStrict)) { 546 io.forward(i).addrInvalidSqIdx := RegNext(io.forward(i).uop.sqIdx - 1.U) 547 } .elsewhen (addrInvalidFlag) { 548 io.forward(i).addrInvalidSqIdx.flag := Mux(!s2_differentFlag || addrInvalidSqIdx >= s2_deqPtrExt.value, s2_deqPtrExt.flag, s2_enqPtrExt.flag) 549 io.forward(i).addrInvalidSqIdx.value := addrInvalidSqIdx 550 } .otherwise { 551 // may be store inst has been written to sbuffer already. 552 io.forward(i).addrInvalidSqIdx := RegNext(io.forward(i).uop.sqIdx) 553 } 554 io.forward(i).addrInvalid := Mux(RegNext(io.forward(i).uop.cf.loadWaitStrict), RegNext(hasInvalidAddr), addrInvalidFlag) 555 556 // data invalid sq index 557 // make chisel happy 558 val dataInvalidMaskRegWire = Wire(UInt(StoreQueueSize.W)) 559 dataInvalidMaskRegWire := dataInvalidMaskReg 560 val dataInvalidFlag = dataInvalidMaskRegWire.orR 561 562 val dataInvalidSqIdx1 = OHToUInt(Reverse(PriorityEncoderOH(Reverse(dataInvalidMask1Reg)))) 563 val dataInvalidSqIdx2 = OHToUInt(Reverse(PriorityEncoderOH(Reverse(dataInvalidMask2Reg)))) 564 val dataInvalidSqIdx = Mux(dataInvalidMask2Reg.orR, dataInvalidSqIdx2, dataInvalidSqIdx1) 565 566 when (dataInvalidFlag) { 567 io.forward(i).dataInvalidSqIdx.flag := Mux(!s2_differentFlag || dataInvalidSqIdx >= s2_deqPtrExt.value, s2_deqPtrExt.flag, s2_enqPtrExt.flag) 568 io.forward(i).dataInvalidSqIdx.value := dataInvalidSqIdx 569 } .otherwise { 570 // may be store inst has been written to sbuffer already. 571 io.forward(i).dataInvalidSqIdx := RegNext(io.forward(i).uop.sqIdx) 572 } 573 } 574 575 /** 576 * Memory mapped IO / other uncached operations 577 * 578 * States: 579 * (1) writeback from store units: mark as pending 580 * (2) when they reach ROB's head, they can be sent to uncache channel 581 * (3) response from uncache channel: mark as datavalidmask.wen 582 * (4) writeback to ROB (and other units): mark as writebacked 583 * (5) ROB commits the instruction: same as normal instructions 584 */ 585 //(2) when they reach ROB's head, they can be sent to uncache channel 586 val s_idle :: s_req :: s_resp :: s_wb :: s_wait :: Nil = Enum(5) 587 val uncacheState = RegInit(s_idle) 588 switch(uncacheState) { 589 is(s_idle) { 590 when(RegNext(io.rob.pendingst && pending(deqPtr) && allocated(deqPtr) && datavalid(deqPtr) && addrvalid(deqPtr))) { 591 uncacheState := s_req 592 } 593 } 594 is(s_req) { 595 when (io.uncache.req.fire) { 596 when (io.uncacheOutstanding) { 597 uncacheState := s_wb 598 } .otherwise { 599 uncacheState := s_resp 600 } 601 } 602 } 603 is(s_resp) { 604 when(io.uncache.resp.fire) { 605 uncacheState := s_wb 606 } 607 } 608 is(s_wb) { 609 when (io.mmioStout.fire) { 610 uncacheState := s_wait 611 } 612 } 613 is(s_wait) { 614 when(commitCount > 0.U) { 615 uncacheState := s_idle // ready for next mmio 616 } 617 } 618 } 619 io.uncache.req.valid := uncacheState === s_req 620 621 io.uncache.req.bits := DontCare 622 io.uncache.req.bits.cmd := MemoryOpConstants.M_XWR 623 io.uncache.req.bits.addr := paddrModule.io.rdata(0) // data(deqPtr) -> rdata(0) 624 io.uncache.req.bits.data := shiftDataToLow(paddrModule.io.rdata(0), dataModule.io.rdata(0).data) 625 io.uncache.req.bits.mask := shiftMaskToLow(paddrModule.io.rdata(0), dataModule.io.rdata(0).mask) 626 627 // CBO op type check can be delayed for 1 cycle, 628 // as uncache op will not start in s_idle 629 val cbo_mmio_addr = paddrModule.io.rdata(0) >> 2 << 2 // clear lowest 2 bits for op 630 val cbo_mmio_op = 0.U //TODO 631 val cbo_mmio_data = cbo_mmio_addr | cbo_mmio_op 632 when(RegNext(LSUOpType.isCbo(uop(deqPtr).ctrl.fuOpType))){ 633 io.uncache.req.bits.addr := DontCare // TODO 634 io.uncache.req.bits.data := paddrModule.io.rdata(0) 635 io.uncache.req.bits.mask := DontCare // TODO 636 } 637 638 io.uncache.req.bits.atomic := atomic(RegNext(rdataPtrExtNext(0)).value) 639 640 when(io.uncache.req.fire){ 641 // mmio store should not be committed until uncache req is sent 642 pending(deqPtr) := false.B 643 644 XSDebug( 645 p"uncache req: pc ${Hexadecimal(uop(deqPtr).cf.pc)} " + 646 p"addr ${Hexadecimal(io.uncache.req.bits.addr)} " + 647 p"data ${Hexadecimal(io.uncache.req.bits.data)} " + 648 p"op ${Hexadecimal(io.uncache.req.bits.cmd)} " + 649 p"mask ${Hexadecimal(io.uncache.req.bits.mask)}\n" 650 ) 651 } 652 653 // (3) response from uncache channel: mark as datavalid 654 io.uncache.resp.ready := true.B 655 656 // (4) writeback to ROB (and other units): mark as writebacked 657 io.mmioStout.valid := uncacheState === s_wb 658 io.mmioStout.bits.uop := uop(deqPtr) 659 io.mmioStout.bits.uop.sqIdx := deqPtrExt(0) 660 io.mmioStout.bits.data := shiftDataToLow(paddrModule.io.rdata(0), dataModule.io.rdata(0).data) // dataModule.io.rdata.read(deqPtr) 661 io.mmioStout.bits.redirectValid := false.B 662 io.mmioStout.bits.redirect := DontCare 663 io.mmioStout.bits.debug.isMMIO := true.B 664 io.mmioStout.bits.debug.paddr := DontCare 665 io.mmioStout.bits.debug.isPerfCnt := false.B 666 io.mmioStout.bits.fflags := DontCare 667 io.mmioStout.bits.debug.vaddr := DontCare 668 // Remove MMIO inst from store queue after MMIO request is being sent 669 // That inst will be traced by uncache state machine 670 when (io.mmioStout.fire) { 671 allocated(deqPtr) := false.B 672 } 673 674 /** 675 * ROB commits store instructions (mark them as committed) 676 * 677 * (1) When store commits, mark it as committed. 678 * (2) They will not be cancelled and can be sent to lower level. 679 */ 680 XSError(uncacheState =/= s_idle && uncacheState =/= s_wait && commitCount > 0.U, 681 "should not commit instruction when MMIO has not been finished\n") 682 for (i <- 0 until CommitWidth) { 683 when (commitCount > i.U) { // MMIO inst is not in progress 684 if(i == 0){ 685 // MMIO inst should not update committed flag 686 // Note that commit count has been delayed for 1 cycle 687 when(uncacheState === s_idle){ 688 committed(cmtPtrExt(0).value) := true.B 689 } 690 } else { 691 committed(cmtPtrExt(i).value) := true.B 692 } 693 } 694 } 695 cmtPtrExt := cmtPtrExt.map(_ + commitCount) 696 697 // committed stores will not be cancelled and can be sent to lower level. 698 // remove retired insts from sq, add retired store to sbuffer 699 700 // Read data from data module 701 // As store queue grows larger and larger, time needed to read data from data 702 // module keeps growing higher. Now we give data read a whole cycle. 703 704 val mmioStall = mmio(rdataPtrExt(0).value) 705 for (i <- 0 until EnsbufferWidth) { 706 val ptr = rdataPtrExt(i).value 707 dataBuffer.io.enq(i).valid := allocated(ptr) && committed(ptr) && !mmioStall 708 // Note that store data/addr should both be valid after store's commit 709 assert(!dataBuffer.io.enq(i).valid || allvalid(ptr)) 710 dataBuffer.io.enq(i).bits.addr := paddrModule.io.rdata(i) 711 dataBuffer.io.enq(i).bits.vaddr := vaddrModule.io.rdata(i) 712 dataBuffer.io.enq(i).bits.data := dataModule.io.rdata(i).data 713 dataBuffer.io.enq(i).bits.mask := dataModule.io.rdata(i).mask 714 dataBuffer.io.enq(i).bits.wline := paddrModule.io.rlineflag(i) 715 dataBuffer.io.enq(i).bits.sqPtr := rdataPtrExt(i) 716 dataBuffer.io.enq(i).bits.prefetch := prefetch(ptr) 717 } 718 719 // Send data stored in sbufferReqBitsReg to sbuffer 720 for (i <- 0 until EnsbufferWidth) { 721 io.sbuffer(i).valid := dataBuffer.io.deq(i).valid 722 dataBuffer.io.deq(i).ready := io.sbuffer(i).ready 723 // Write line request should have all 1 mask 724 assert(!(io.sbuffer(i).valid && io.sbuffer(i).bits.wline && !io.sbuffer(i).bits.mask.andR)) 725 io.sbuffer(i).bits := DontCare 726 io.sbuffer(i).bits.cmd := MemoryOpConstants.M_XWR 727 io.sbuffer(i).bits.addr := dataBuffer.io.deq(i).bits.addr 728 io.sbuffer(i).bits.vaddr := dataBuffer.io.deq(i).bits.vaddr 729 io.sbuffer(i).bits.data := dataBuffer.io.deq(i).bits.data 730 io.sbuffer(i).bits.mask := dataBuffer.io.deq(i).bits.mask 731 io.sbuffer(i).bits.wline := dataBuffer.io.deq(i).bits.wline 732 io.sbuffer(i).bits.prefetch := dataBuffer.io.deq(i).bits.prefetch 733 734 // io.sbuffer(i).fire is RegNexted, as sbuffer data write takes 2 cycles. 735 // Before data write finish, sbuffer is unable to provide store to load 736 // forward data. As an workaround, deqPtrExt and allocated flag update 737 // is delayed so that load can get the right data from store queue. 738 val ptr = dataBuffer.io.deq(i).bits.sqPtr.value 739 when (RegNext(io.sbuffer(i).fire)) { 740 allocated(RegEnable(ptr, io.sbuffer(i).fire)) := false.B 741 XSDebug("sbuffer "+i+" fire: ptr %d\n", ptr) 742 } 743 } 744 (1 until EnsbufferWidth).foreach(i => when(io.sbuffer(i).fire) { assert(io.sbuffer(i - 1).fire) }) 745 if (coreParams.dcacheParametersOpt.isEmpty) { 746 for (i <- 0 until EnsbufferWidth) { 747 val ptr = deqPtrExt(i).value 748 val ram = DifftestMem(64L * 1024 * 1024 * 1024, 8) 749 val wen = allocated(ptr) && committed(ptr) && !mmio(ptr) 750 val waddr = ((paddrModule.io.rdata(i) - "h80000000".U) >> 3).asUInt 751 val wdata = Mux(paddrModule.io.rdata(i)(3), dataModule.io.rdata(i).data(127, 64), dataModule.io.rdata(i).data(63, 0)) 752 val wmask = Mux(paddrModule.io.rdata(i)(3), dataModule.io.rdata(i).mask(15, 8), dataModule.io.rdata(i).mask(7, 0)) 753 when (wen) { 754 ram.write(waddr, wdata.asTypeOf(Vec(8, UInt(8.W))), wmask.asBools) 755 } 756 } 757 } 758 759 if (env.EnableDifftest) { 760 for (i <- 0 until EnsbufferWidth) { 761 val storeCommit = io.sbuffer(i).fire 762 val waddr = ZeroExt(Cat(io.sbuffer(i).bits.addr(PAddrBits - 1, 3), 0.U(3.W)), 64) 763 val sbufferMask = shiftMaskToLow(io.sbuffer(i).bits.addr, io.sbuffer(i).bits.mask) 764 val sbufferData = shiftDataToLow(io.sbuffer(i).bits.addr, io.sbuffer(i).bits.data) 765 val wmask = sbufferMask 766 val wdata = sbufferData & MaskExpand(sbufferMask) 767 768 val difftest = DifftestModule(new DiffStoreEvent, delay = 2) 769 difftest.coreid := io.hartId 770 difftest.index := i.U 771 difftest.valid := storeCommit 772 difftest.addr := waddr 773 difftest.data := wdata 774 difftest.mask := wmask 775 } 776 } 777 778 // Read vaddr for mem exception 779 io.exceptionAddr.vaddr := vaddrModule.io.rdata(EnsbufferWidth) 780 781 // misprediction recovery / exception redirect 782 // invalidate sq term using robIdx 783 val needCancel = Wire(Vec(StoreQueueSize, Bool())) 784 for (i <- 0 until StoreQueueSize) { 785 needCancel(i) := uop(i).robIdx.needFlush(io.brqRedirect) && allocated(i) && !committed(i) 786 when (needCancel(i)) { 787 allocated(i) := false.B 788 } 789 } 790 791 /** 792* update pointers 793**/ 794 val lastEnqCancel = PopCount(RegNext(VecInit(canEnqueue.zip(enqCancel).map(x => x._1 && x._2)))) // 1 cycle after redirect 795 val lastCycleCancelCount = PopCount(RegNext(needCancel)) // 1 cycle after redirect 796 val lastCycleRedirect = RegNext(io.brqRedirect.valid) // 1 cycle after redirect 797 val enqNumber = Mux(!lastCycleRedirect&&io.enq.canAccept && io.enq.lqCanAccept, PopCount(io.enq.req.map(_.valid)), 0.U) // 1 cycle after redirect 798 799 val lastlastCycleRedirect=RegNext(lastCycleRedirect)// 2 cycle after redirect 800 val redirectCancelCount = RegEnable(lastCycleCancelCount + lastEnqCancel, lastCycleRedirect) // 2 cycle after redirect 801 802 when (lastlastCycleRedirect) { 803 // we recover the pointers in 2 cycle after redirect for better timing 804 enqPtrExt := VecInit(enqPtrExt.map(_ - redirectCancelCount)) 805 }.otherwise { 806 // lastCycleRedirect.valid or nornal case 807 // when lastCycleRedirect.valid, enqNumber === 0.U, enqPtrExt will not change 808 enqPtrExt := VecInit(enqPtrExt.map(_ + enqNumber)) 809 } 810 assert(!(lastCycleRedirect && enqNumber =/= 0.U)) 811 812 deqPtrExt := deqPtrExtNext 813 rdataPtrExt := rdataPtrExtNext 814 815 // val dequeueCount = Mux(io.sbuffer(1).fire, 2.U, Mux(io.sbuffer(0).fire || io.mmioStout.fire, 1.U, 0.U)) 816 817 // If redirect at T0, sqCancelCnt is at T2 818 io.sqCancelCnt := redirectCancelCount 819 val ForceWriteUpper = Wire(UInt(log2Up(StoreQueueSize + 1).W)) 820 ForceWriteUpper := Constantin.createRecord("ForceWriteUpper_"+p(XSCoreParamsKey).HartId.toString(), initValue = 60.U) 821 val ForceWriteLower = Wire(UInt(log2Up(StoreQueueSize + 1).W)) 822 ForceWriteLower := Constantin.createRecord("ForceWriteLower_"+p(XSCoreParamsKey).HartId.toString(), initValue = 55.U) 823 824 val valid_cnt = PopCount(allocated) 825 io.force_write := RegNext(Mux(valid_cnt >= ForceWriteUpper, true.B, valid_cnt >= ForceWriteLower && io.force_write), init = false.B) 826 827 // io.sqempty will be used by sbuffer 828 // We delay it for 1 cycle for better timing 829 // When sbuffer need to check if it is empty, the pipeline is blocked, which means delay io.sqempty 830 // for 1 cycle will also promise that sq is empty in that cycle 831 io.sqEmpty := RegNext( 832 enqPtrExt(0).value === deqPtrExt(0).value && 833 enqPtrExt(0).flag === deqPtrExt(0).flag 834 ) 835 // perf counter 836 QueuePerf(StoreQueueSize, validCount, !allowEnqueue) 837 io.sqFull := !allowEnqueue 838 XSPerfAccumulate("mmioCycle", uncacheState =/= s_idle) // lq is busy dealing with uncache req 839 XSPerfAccumulate("mmioCnt", io.uncache.req.fire) 840 XSPerfAccumulate("mmio_wb_success", io.mmioStout.fire) 841 XSPerfAccumulate("mmio_wb_blocked", io.mmioStout.valid && !io.mmioStout.ready) 842 XSPerfAccumulate("validEntryCnt", distanceBetween(enqPtrExt(0), deqPtrExt(0))) 843 XSPerfAccumulate("cmtEntryCnt", distanceBetween(cmtPtrExt(0), deqPtrExt(0))) 844 XSPerfAccumulate("nCmtEntryCnt", distanceBetween(enqPtrExt(0), cmtPtrExt(0))) 845 846 val perfValidCount = distanceBetween(enqPtrExt(0), deqPtrExt(0)) 847 val perfEvents = Seq( 848 ("mmioCycle ", uncacheState =/= s_idle), 849 ("mmioCnt ", io.uncache.req.fire), 850 ("mmio_wb_success", io.mmioStout.fire), 851 ("mmio_wb_blocked", io.mmioStout.valid && !io.mmioStout.ready), 852 ("stq_1_4_valid ", (perfValidCount < (StoreQueueSize.U/4.U))), 853 ("stq_2_4_valid ", (perfValidCount > (StoreQueueSize.U/4.U)) & (perfValidCount <= (StoreQueueSize.U/2.U))), 854 ("stq_3_4_valid ", (perfValidCount > (StoreQueueSize.U/2.U)) & (perfValidCount <= (StoreQueueSize.U*3.U/4.U))), 855 ("stq_4_4_valid ", (perfValidCount > (StoreQueueSize.U*3.U/4.U))), 856 ) 857 generatePerfEvent() 858 859 // debug info 860 XSDebug("enqPtrExt %d:%d deqPtrExt %d:%d\n", enqPtrExt(0).flag, enqPtr, deqPtrExt(0).flag, deqPtr) 861 862 def PrintFlag(flag: Bool, name: String): Unit = { 863 when(flag) { 864 XSDebug(false, true.B, name) 865 }.otherwise { 866 XSDebug(false, true.B, " ") 867 } 868 } 869 870 for (i <- 0 until StoreQueueSize) { 871 XSDebug(i + ": pc %x va %x pa %x data %x ", 872 uop(i).cf.pc, 873 debug_vaddr(i), 874 debug_paddr(i), 875 debug_data(i) 876 ) 877 PrintFlag(allocated(i), "a") 878 PrintFlag(allocated(i) && addrvalid(i), "a") 879 PrintFlag(allocated(i) && datavalid(i), "d") 880 PrintFlag(allocated(i) && committed(i), "c") 881 PrintFlag(allocated(i) && pending(i), "p") 882 PrintFlag(allocated(i) && mmio(i), "m") 883 XSDebug(false, true.B, "\n") 884 } 885 886} 887