xref: /XiangShan/src/main/scala/xiangshan/mem/lsqueue/StoreQueue.scala (revision f4b2089a918d093dcd57da84f0b8b6319ef987f9)
1/***************************************************************************************
2* Copyright (c) 2020-2021 Institute of Computing Technology, Chinese Academy of Sciences
3* Copyright (c) 2020-2021 Peng Cheng Laboratory
4*
5* XiangShan is licensed under Mulan PSL v2.
6* You can use this software according to the terms and conditions of the Mulan PSL v2.
7* You may obtain a copy of Mulan PSL v2 at:
8*          http://license.coscl.org.cn/MulanPSL2
9*
10* THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND,
11* EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT,
12* MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE.
13*
14* See the Mulan PSL v2 for more details.
15***************************************************************************************/
16
17package xiangshan.mem
18
19import chipsalliance.rocketchip.config.Parameters
20import chisel3._
21import chisel3.util._
22import utils._
23import xiangshan._
24import xiangshan.cache._
25import xiangshan.cache.{DCacheWordIO, DCacheLineIO, MemoryOpConstants}
26import xiangshan.backend.rob.{RobLsqIO, RobPtr}
27import difftest._
28import device.RAMHelper
29
30class SqPtr(implicit p: Parameters) extends CircularQueuePtr[SqPtr](
31  p => p(XSCoreParamsKey).StoreQueueSize
32){
33  override def cloneType = (new SqPtr).asInstanceOf[this.type]
34}
35
36object SqPtr {
37  def apply(f: Bool, v: UInt)(implicit p: Parameters): SqPtr = {
38    val ptr = Wire(new SqPtr)
39    ptr.flag := f
40    ptr.value := v
41    ptr
42  }
43}
44
45class SqEnqIO(implicit p: Parameters) extends XSBundle {
46  val canAccept = Output(Bool())
47  val lqCanAccept = Input(Bool())
48  val needAlloc = Vec(RenameWidth, Input(Bool()))
49  val req = Vec(RenameWidth, Flipped(ValidIO(new MicroOp)))
50  val resp = Vec(RenameWidth, Output(new SqPtr))
51}
52
53// Store Queue
54class StoreQueue(implicit p: Parameters) extends XSModule with HasDCacheParameters with HasCircularQueuePtrHelper {
55  val io = IO(new Bundle() {
56    val enq = new SqEnqIO
57    val brqRedirect = Flipped(ValidIO(new Redirect))
58    val storeIn = Vec(StorePipelineWidth, Flipped(Valid(new LsPipelineBundle))) // store addr, data is not included
59    val storeDataIn = Vec(StorePipelineWidth, Flipped(Valid(new StoreDataBundle))) // store data, send to sq from rs
60    val sbuffer = Vec(StorePipelineWidth, Decoupled(new DCacheWordReqWithVaddr)) // write commited store to sbuffer
61    val mmioStout = DecoupledIO(new ExuOutput) // writeback uncached store
62    val forward = Vec(LoadPipelineWidth, Flipped(new PipeLoadForwardQueryIO))
63    val rob = Flipped(new RobLsqIO)
64    val uncache = new DCacheWordIO
65    // val refill = Flipped(Valid(new DCacheLineReq ))
66    val exceptionAddr = new ExceptionAddrIO
67    val sqempty = Output(Bool())
68    val issuePtrExt = Output(new SqPtr) // used to wake up delayed load/store
69    val sqFull = Output(Bool())
70  })
71
72  println("StoreQueue: size:" + StoreQueueSize)
73
74  // data modules
75  val uop = Reg(Vec(StoreQueueSize, new MicroOp))
76  // val data = Reg(Vec(StoreQueueSize, new LsqEntry))
77  val dataModule = Module(new SQDataModule(
78    numEntries = StoreQueueSize,
79    numRead = StorePipelineWidth,
80    numWrite = StorePipelineWidth,
81    numForward = StorePipelineWidth
82  ))
83  dataModule.io := DontCare
84  val paddrModule = Module(new SQAddrModule(
85    dataWidth = PAddrBits,
86    numEntries = StoreQueueSize,
87    numRead = StorePipelineWidth,
88    numWrite = StorePipelineWidth,
89    numForward = StorePipelineWidth
90  ))
91  paddrModule.io := DontCare
92  val vaddrModule = Module(new SQAddrModule(
93    dataWidth = VAddrBits,
94    numEntries = StoreQueueSize,
95    numRead = StorePipelineWidth + 1, // sbuffer 2 + badvaddr 1 (TODO)
96    numWrite = StorePipelineWidth,
97    numForward = StorePipelineWidth
98  ))
99  vaddrModule.io := DontCare
100  val debug_paddr = Reg(Vec(StoreQueueSize, UInt((PAddrBits).W)))
101  val debug_vaddr = Reg(Vec(StoreQueueSize, UInt((VAddrBits).W)))
102  val debug_data = Reg(Vec(StoreQueueSize, UInt((XLEN).W)))
103
104  // state & misc
105  val allocated = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // sq entry has been allocated
106  val addrvalid = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // non-mmio addr is valid
107  val datavalid = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // non-mmio data is valid
108  val allvalid  = VecInit((0 until StoreQueueSize).map(i => addrvalid(i) && datavalid(i))) // non-mmio data & addr is valid
109  val commited = Reg(Vec(StoreQueueSize, Bool())) // inst has been commited by rob
110  val pending = Reg(Vec(StoreQueueSize, Bool())) // mmio pending: inst is an mmio inst, it will not be executed until it reachs the end of rob
111  val mmio = Reg(Vec(StoreQueueSize, Bool())) // mmio: inst is an mmio inst
112
113  // ptr
114  require(StoreQueueSize > RenameWidth)
115  val enqPtrExt = RegInit(VecInit((0 until RenameWidth).map(_.U.asTypeOf(new SqPtr))))
116  val deqPtrExt = RegInit(VecInit((0 until StorePipelineWidth).map(_.U.asTypeOf(new SqPtr))))
117  val cmtPtrExt = RegInit(VecInit((0 until CommitWidth).map(_.U.asTypeOf(new SqPtr))))
118  val issuePtrExt = RegInit(0.U.asTypeOf(new SqPtr))
119  val validCounter = RegInit(0.U(log2Ceil(LoadQueueSize + 1).W))
120  val allowEnqueue = RegInit(true.B)
121
122  val enqPtr = enqPtrExt(0).value
123  val deqPtr = deqPtrExt(0).value
124  val cmtPtr = cmtPtrExt(0).value
125
126  val deqMask = UIntToMask(deqPtr, StoreQueueSize)
127  val enqMask = UIntToMask(enqPtr, StoreQueueSize)
128
129  val commitCount = RegNext(io.rob.scommit)
130
131  // Read dataModule
132  // deqPtrExtNext and deqPtrExtNext+1 entry will be read from dataModule
133  // if !sbuffer.fire(), read the same ptr
134  // if sbuffer.fire(), read next
135  val deqPtrExtNext = WireInit(Mux(io.sbuffer(1).fire(),
136    VecInit(deqPtrExt.map(_ + 2.U)),
137    Mux(io.sbuffer(0).fire() || io.mmioStout.fire(),
138      VecInit(deqPtrExt.map(_ + 1.U)),
139      deqPtrExt
140    )
141  ))
142  for (i <- 0 until StorePipelineWidth) {
143    dataModule.io.raddr(i) := deqPtrExtNext(i).value
144    paddrModule.io.raddr(i) := deqPtrExtNext(i).value
145    vaddrModule.io.raddr(i) := deqPtrExtNext(i).value
146  }
147
148  // no inst will be commited 1 cycle before tval update
149  vaddrModule.io.raddr(StorePipelineWidth) := (cmtPtrExt(0) + commitCount).value
150
151  /**
152    * Enqueue at dispatch
153    *
154    * Currently, StoreQueue only allows enqueue when #emptyEntries > RenameWidth(EnqWidth)
155    */
156  io.enq.canAccept := allowEnqueue
157  for (i <- 0 until RenameWidth) {
158    val offset = if (i == 0) 0.U else PopCount(io.enq.needAlloc.take(i))
159    val sqIdx = enqPtrExt(offset)
160    val index = sqIdx.value
161    when (io.enq.req(i).valid && io.enq.canAccept && io.enq.lqCanAccept && !io.brqRedirect.valid) {
162      uop(index) := io.enq.req(i).bits
163      allocated(index) := true.B
164      datavalid(index) := false.B
165      addrvalid(index) := false.B
166      commited(index) := false.B
167      pending(index) := false.B
168    }
169    io.enq.resp(i) := sqIdx
170  }
171  XSDebug(p"(ready, valid): ${io.enq.canAccept}, ${Binary(Cat(io.enq.req.map(_.valid)))}\n")
172
173  /**
174    * Update issuePtr when issue from rs
175    */
176  // update issuePtr
177  val IssuePtrMoveStride = 4
178  require(IssuePtrMoveStride >= 2)
179
180  val issueLookupVec = (0 until IssuePtrMoveStride).map(issuePtrExt + _.U)
181  val issueLookup = issueLookupVec.map(ptr => allocated(ptr.value) && addrvalid(ptr.value) && datavalid(ptr.value) && ptr =/= enqPtrExt(0))
182  val nextIssuePtr = issuePtrExt + PriorityEncoder(VecInit(issueLookup.map(!_) :+ true.B))
183  issuePtrExt := nextIssuePtr
184
185  when (io.brqRedirect.valid) {
186    issuePtrExt := Mux(
187      isAfter(cmtPtrExt(0), deqPtrExt(0)),
188      cmtPtrExt(0),
189      deqPtrExtNext(0) // for mmio insts, deqPtr may be ahead of cmtPtr
190    )
191  }
192  // send issuePtrExt to rs
193  // io.issuePtrExt := cmtPtrExt(0)
194  io.issuePtrExt := issuePtrExt
195
196  /**
197    * Writeback store from store units
198    *
199    * Most store instructions writeback to regfile in the previous cycle.
200    * However,
201    *   (1) For an mmio instruction with exceptions, we need to mark it as addrvalid
202    * (in this way it will trigger an exception when it reaches ROB's head)
203    * instead of pending to avoid sending them to lower level.
204    *   (2) For an mmio instruction without exceptions, we mark it as pending.
205    * When the instruction reaches ROB's head, StoreQueue sends it to uncache channel.
206    * Upon receiving the response, StoreQueue writes back the instruction
207    * through arbiter with store units. It will later commit as normal.
208    */
209
210  // Write addr to sq
211  for (i <- 0 until StorePipelineWidth) {
212    paddrModule.io.wen(i) := false.B
213    vaddrModule.io.wen(i) := false.B
214    dataModule.io.mask.wen(i) := false.B
215    val stWbIndex = io.storeIn(i).bits.uop.sqIdx.value
216    when (io.storeIn(i).fire()) {
217      addrvalid(stWbIndex) := true.B//!io.storeIn(i).bits.mmio
218      pending(stWbIndex) := io.storeIn(i).bits.mmio
219
220      dataModule.io.mask.waddr(i) := stWbIndex
221      dataModule.io.mask.wdata(i) := io.storeIn(i).bits.mask
222      dataModule.io.mask.wen(i) := true.B
223
224      paddrModule.io.waddr(i) := stWbIndex
225      paddrModule.io.wdata(i) := io.storeIn(i).bits.paddr
226      paddrModule.io.wen(i) := true.B
227
228      vaddrModule.io.waddr(i) := stWbIndex
229      vaddrModule.io.wdata(i) := io.storeIn(i).bits.vaddr
230      vaddrModule.io.wen(i) := true.B
231
232      debug_paddr(paddrModule.io.waddr(i)) := paddrModule.io.wdata(i)
233
234      mmio(stWbIndex) := io.storeIn(i).bits.mmio
235
236      uop(stWbIndex).debugInfo := io.storeIn(i).bits.uop.debugInfo
237      XSInfo("store addr write to sq idx %d pc 0x%x vaddr %x paddr %x mmio %x\n",
238        io.storeIn(i).bits.uop.sqIdx.value,
239        io.storeIn(i).bits.uop.cf.pc,
240        io.storeIn(i).bits.vaddr,
241        io.storeIn(i).bits.paddr,
242        io.storeIn(i).bits.mmio
243      )
244    }
245
246    when(vaddrModule.io.wen(i)){
247      debug_vaddr(vaddrModule.io.waddr(i)) := vaddrModule.io.wdata(i)
248    }
249  }
250
251  // Write data to sq
252  for (i <- 0 until StorePipelineWidth) {
253    dataModule.io.data.wen(i) := false.B
254    io.rob.storeDataRobWb(i).valid := false.B
255    io.rob.storeDataRobWb(i).bits := DontCare
256    val stWbIndex = io.storeDataIn(i).bits.uop.sqIdx.value
257    when (io.storeDataIn(i).fire()) {
258      datavalid(stWbIndex) := true.B
259
260      dataModule.io.data.waddr(i) := stWbIndex
261      dataModule.io.data.wdata(i) := genWdata(io.storeDataIn(i).bits.data, io.storeDataIn(i).bits.uop.ctrl.fuOpType(1,0))
262      dataModule.io.data.wen(i) := true.B
263
264      debug_data(dataModule.io.data.waddr(i)) := dataModule.io.data.wdata(i)
265
266      io.rob.storeDataRobWb(i).valid := true.B
267      io.rob.storeDataRobWb(i).bits := io.storeDataIn(i).bits.uop.robIdx
268
269      XSInfo("store data write to sq idx %d pc 0x%x data %x -> %x\n",
270        io.storeDataIn(i).bits.uop.sqIdx.value,
271        io.storeDataIn(i).bits.uop.cf.pc,
272        io.storeDataIn(i).bits.data,
273        dataModule.io.data.wdata(i)
274      )
275    }
276  }
277
278  /**
279    * load forward query
280    *
281    * Check store queue for instructions that is older than the load.
282    * The response will be valid at the next cycle after req.
283    */
284  // check over all lq entries and forward data from the first matched store
285  for (i <- 0 until LoadPipelineWidth) {
286    // Compare deqPtr (deqPtr) and forward.sqIdx, we have two cases:
287    // (1) if they have the same flag, we need to check range(tail, sqIdx)
288    // (2) if they have different flags, we need to check range(tail, LoadQueueSize) and range(0, sqIdx)
289    // Forward1: Mux(same_flag, range(tail, sqIdx), range(tail, LoadQueueSize))
290    // Forward2: Mux(same_flag, 0.U,                   range(0, sqIdx)    )
291    // i.e. forward1 is the target entries with the same flag bits and forward2 otherwise
292    val differentFlag = deqPtrExt(0).flag =/= io.forward(i).sqIdx.flag
293    val forwardMask = io.forward(i).sqIdxMask
294    // all addrvalid terms need to be checked
295    val addrValidVec = WireInit(VecInit((0 until StoreQueueSize).map(i => addrvalid(i) && allocated(i))))
296    val dataValidVec = WireInit(VecInit((0 until StoreQueueSize).map(i => datavalid(i))))
297    val allValidVec = WireInit(VecInit((0 until StoreQueueSize).map(i => addrvalid(i) && datavalid(i) && allocated(i))))
298    val canForward1 = Mux(differentFlag, ~deqMask, deqMask ^ forwardMask) & allValidVec.asUInt
299    val canForward2 = Mux(differentFlag, forwardMask, 0.U(StoreQueueSize.W)) & allValidVec.asUInt
300    val needForward = Mux(differentFlag, ~deqMask | forwardMask, deqMask ^ forwardMask)
301
302    XSDebug(p"$i f1 ${Binary(canForward1)} f2 ${Binary(canForward2)} " +
303      p"sqIdx ${io.forward(i).sqIdx} pa ${Hexadecimal(io.forward(i).paddr)}\n"
304    )
305
306    // do real fwd query (cam lookup in load_s1)
307    dataModule.io.needForward(i)(0) := canForward1 & vaddrModule.io.forwardMmask(i).asUInt
308    dataModule.io.needForward(i)(1) := canForward2 & vaddrModule.io.forwardMmask(i).asUInt
309
310    vaddrModule.io.forwardMdata(i) := io.forward(i).vaddr
311    paddrModule.io.forwardMdata(i) := io.forward(i).paddr
312
313    // vaddr cam result does not equal to paddr cam result
314    // replay needed
315    // val vpmaskNotEqual = ((paddrModule.io.forwardMmask(i).asUInt ^ vaddrModule.io.forwardMmask(i).asUInt) & needForward) =/= 0.U
316    // val vaddrMatchFailed = vpmaskNotEqual && io.forward(i).valid
317    val vpmaskNotEqual = ((RegNext(paddrModule.io.forwardMmask(i).asUInt) ^ RegNext(vaddrModule.io.forwardMmask(i).asUInt)) & RegNext(needForward)) =/= 0.U
318    val vaddrMatchFailed = vpmaskNotEqual && RegNext(io.forward(i).valid)
319    when (vaddrMatchFailed) {
320      XSInfo("vaddrMatchFailed: pc %x pmask %x vmask %x\n",
321        RegNext(io.forward(i).uop.cf.pc),
322        RegNext(needForward & paddrModule.io.forwardMmask(i).asUInt),
323        RegNext(needForward & vaddrModule.io.forwardMmask(i).asUInt)
324      );
325    }
326    XSPerfAccumulate("vaddr_match_failed", vpmaskNotEqual)
327    XSPerfAccumulate("vaddr_match_really_failed", vaddrMatchFailed)
328
329    // Fast forward mask will be generated immediately (load_s1)
330    io.forward(i).forwardMaskFast := dataModule.io.forwardMaskFast(i)
331
332    // Forward result will be generated 1 cycle later (load_s2)
333    io.forward(i).forwardMask := dataModule.io.forwardMask(i)
334    io.forward(i).forwardData := dataModule.io.forwardData(i)
335
336    // If addr match, data not ready, mark it as dataInvalid
337    // load_s1: generate dataInvalid in load_s1 to set fastUop
338    io.forward(i).dataInvalidFast := (addrValidVec.asUInt & ~dataValidVec.asUInt & vaddrModule.io.forwardMmask(i).asUInt & needForward).orR
339    val dataInvalidSqIdxReg = RegNext(OHToUInt(addrValidVec.asUInt & ~dataValidVec.asUInt & vaddrModule.io.forwardMmask(i).asUInt & needForward))
340    // load_s2
341    io.forward(i).dataInvalid := RegNext(io.forward(i).dataInvalidFast)
342
343    // load_s2
344    // check if vaddr forward mismatched
345    io.forward(i).matchInvalid := vaddrMatchFailed
346    io.forward(i).dataInvalidSqIdx := dataInvalidSqIdxReg
347  }
348
349  /**
350    * Memory mapped IO / other uncached operations
351    *
352    * States:
353    * (1) writeback from store units: mark as pending
354    * (2) when they reach ROB's head, they can be sent to uncache channel
355    * (3) response from uncache channel: mark as datavalidmask.wen
356    * (4) writeback to ROB (and other units): mark as writebacked
357    * (5) ROB commits the instruction: same as normal instructions
358    */
359  //(2) when they reach ROB's head, they can be sent to uncache channel
360  val s_idle :: s_req :: s_resp :: s_wb :: s_wait :: Nil = Enum(5)
361  val uncacheState = RegInit(s_idle)
362  switch(uncacheState) {
363    is(s_idle) {
364      when(io.rob.pendingst && pending(deqPtr) && allocated(deqPtr) && datavalid(deqPtr) && addrvalid(deqPtr)) {
365        uncacheState := s_req
366      }
367    }
368    is(s_req) {
369      when(io.uncache.req.fire()) {
370        uncacheState := s_resp
371      }
372    }
373    is(s_resp) {
374      when(io.uncache.resp.fire()) {
375        uncacheState := s_wb
376      }
377    }
378    is(s_wb) {
379      when (io.mmioStout.fire()) {
380        uncacheState := s_wait
381      }
382    }
383    is(s_wait) {
384      when(io.rob.commit) {
385        uncacheState := s_idle // ready for next mmio
386      }
387    }
388  }
389  io.uncache.req.valid := uncacheState === s_req
390
391  io.uncache.req.bits.cmd  := MemoryOpConstants.M_XWR
392  io.uncache.req.bits.addr := paddrModule.io.rdata(0) // data(deqPtr) -> rdata(0)
393  io.uncache.req.bits.data := dataModule.io.rdata(0).data
394  io.uncache.req.bits.mask := dataModule.io.rdata(0).mask
395
396  io.uncache.req.bits.id   := DontCare
397  io.uncache.req.bits.instrtype   := DontCare
398
399  when(io.uncache.req.fire()){
400    // mmio store should not be committed until uncache req is sent
401    pending(deqPtr) := false.B
402
403    XSDebug(
404      p"uncache req: pc ${Hexadecimal(uop(deqPtr).cf.pc)} " +
405      p"addr ${Hexadecimal(io.uncache.req.bits.addr)} " +
406      p"data ${Hexadecimal(io.uncache.req.bits.data)} " +
407      p"op ${Hexadecimal(io.uncache.req.bits.cmd)} " +
408      p"mask ${Hexadecimal(io.uncache.req.bits.mask)}\n"
409    )
410  }
411
412  // (3) response from uncache channel: mark as datavalid
413  io.uncache.resp.ready := true.B
414
415  // (4) writeback to ROB (and other units): mark as writebacked
416  io.mmioStout.valid := uncacheState === s_wb
417  io.mmioStout.bits.uop := uop(deqPtr)
418  io.mmioStout.bits.uop.sqIdx := deqPtrExt(0)
419  io.mmioStout.bits.data := dataModule.io.rdata(0).data // dataModule.io.rdata.read(deqPtr)
420  io.mmioStout.bits.redirectValid := false.B
421  io.mmioStout.bits.redirect := DontCare
422  io.mmioStout.bits.debug.isMMIO := true.B
423  io.mmioStout.bits.debug.paddr := DontCare
424  io.mmioStout.bits.debug.isPerfCnt := false.B
425  io.mmioStout.bits.fflags := DontCare
426  // Remove MMIO inst from store queue after MMIO request is being sent
427  // That inst will be traced by uncache state machine
428  when (io.mmioStout.fire()) {
429    allocated(deqPtr) := false.B
430  }
431
432  /**
433    * ROB commits store instructions (mark them as commited)
434    *
435    * (1) When store commits, mark it as commited.
436    * (2) They will not be cancelled and can be sent to lower level.
437    */
438  XSError(uncacheState === s_wait && commitCount > 1.U, "should only commit one instruction when there's an MMIO\n")
439  XSError(uncacheState =/= s_idle && uncacheState =/= s_wait && commitCount > 0.U,
440   "should not commit instruction when MMIO has not been finished\n")
441  for (i <- 0 until CommitWidth) {
442    when (commitCount > i.U && uncacheState === s_idle) { // MMIO inst is not in progress
443      commited(cmtPtrExt(i).value) := true.B
444    }
445  }
446  cmtPtrExt := cmtPtrExt.map(_ + commitCount)
447
448  // Commited stores will not be cancelled and can be sent to lower level.
449  // remove retired insts from sq, add retired store to sbuffer
450  for (i <- 0 until StorePipelineWidth) {
451    // We use RegNext to prepare data for sbuffer
452    val ptr = deqPtrExt(i).value
453    // if !sbuffer.fire(), read the same ptr
454    // if sbuffer.fire(), read next
455    io.sbuffer(i).valid := allocated(ptr) && commited(ptr) && !mmio(ptr)
456    // Note that store data/addr should both be valid after store's commit
457    assert(!io.sbuffer(i).valid || allvalid(ptr))
458    io.sbuffer(i).bits.cmd   := MemoryOpConstants.M_XWR
459    io.sbuffer(i).bits.addr  := paddrModule.io.rdata(i)
460    io.sbuffer(i).bits.vaddr := vaddrModule.io.rdata(i)
461    io.sbuffer(i).bits.data  := dataModule.io.rdata(i).data
462    io.sbuffer(i).bits.mask  := dataModule.io.rdata(i).mask
463    io.sbuffer(i).bits.id    := DontCare
464    io.sbuffer(i).bits.instrtype    := DontCare
465
466    when (io.sbuffer(i).fire()) {
467      allocated(ptr) := false.B
468      XSDebug("sbuffer "+i+" fire: ptr %d\n", ptr)
469    }
470  }
471  when (io.sbuffer(1).fire()) {
472    assert(io.sbuffer(0).fire())
473  }
474  if (coreParams.dcacheParametersOpt.isEmpty) {
475    for (i <- 0 until StorePipelineWidth) {
476      val ptr = deqPtrExt(i).value
477      val fakeRAM = Module(new RAMHelper(64L * 1024 * 1024 * 1024))
478      fakeRAM.clk   := clock
479      fakeRAM.en    := allocated(ptr) && commited(ptr) && !mmio(ptr)
480      fakeRAM.rIdx  := 0.U
481      fakeRAM.wIdx  := (paddrModule.io.rdata(i) - "h80000000".U) >> 3
482      fakeRAM.wdata := dataModule.io.rdata(i).data
483      fakeRAM.wmask := MaskExpand(dataModule.io.rdata(i).mask)
484      fakeRAM.wen   := allocated(ptr) && commited(ptr) && !mmio(ptr)
485    }
486  }
487
488  if (!env.FPGAPlatform) {
489    for (i <- 0 until StorePipelineWidth) {
490      val storeCommit = io.sbuffer(i).fire()
491      val waddr = SignExt(io.sbuffer(i).bits.addr, 64)
492      val wdata = io.sbuffer(i).bits.data & MaskExpand(io.sbuffer(i).bits.mask)
493      val wmask = io.sbuffer(i).bits.mask
494
495      val difftest = Module(new DifftestStoreEvent)
496      difftest.io.clock       := clock
497      difftest.io.coreid      := hardId.U
498      difftest.io.index       := i.U
499      difftest.io.valid       := storeCommit
500      difftest.io.storeAddr   := waddr
501      difftest.io.storeData   := wdata
502      difftest.io.storeMask   := wmask
503    }
504  }
505
506  // Read vaddr for mem exception
507  io.exceptionAddr.vaddr := vaddrModule.io.rdata(StorePipelineWidth)
508
509  // misprediction recovery / exception redirect
510  // invalidate sq term using robIdx
511  val needCancel = Wire(Vec(StoreQueueSize, Bool()))
512  for (i <- 0 until StoreQueueSize) {
513    needCancel(i) := uop(i).robIdx.needFlush(io.brqRedirect) && allocated(i) && !commited(i)
514    when (needCancel(i)) {
515        allocated(i) := false.B
516    }
517  }
518
519  /**
520    * update pointers
521    */
522  val lastCycleRedirect = RegNext(io.brqRedirect.valid)
523  val lastCycleCancelCount = PopCount(RegNext(needCancel))
524  // when io.brqRedirect.valid, we don't allow eneuque even though it may fire.
525  val enqNumber = Mux(io.enq.canAccept && io.enq.lqCanAccept && !io.brqRedirect.valid, PopCount(io.enq.req.map(_.valid)), 0.U)
526  when (lastCycleRedirect) {
527    // we recover the pointers in the next cycle after redirect
528    enqPtrExt := VecInit(enqPtrExt.map(_ - lastCycleCancelCount))
529  }.otherwise {
530    enqPtrExt := VecInit(enqPtrExt.map(_ + enqNumber))
531  }
532
533  deqPtrExt := deqPtrExtNext
534
535  val dequeueCount = Mux(io.sbuffer(1).fire(), 2.U, Mux(io.sbuffer(0).fire() || io.mmioStout.fire(), 1.U, 0.U))
536  val validCount = distanceBetween(enqPtrExt(0), deqPtrExt(0))
537
538  allowEnqueue := validCount + enqNumber <= (StoreQueueSize - RenameWidth).U
539
540  // io.sqempty will be used by sbuffer
541  // We delay it for 1 cycle for better timing
542  // When sbuffer need to check if it is empty, the pipeline is blocked, which means delay io.sqempty
543  // for 1 cycle will also promise that sq is empty in that cycle
544  io.sqempty := RegNext(enqPtrExt(0).value === deqPtrExt(0).value && enqPtrExt(0).flag === deqPtrExt(0).flag)
545
546  // perf counter
547  QueuePerf(StoreQueueSize, validCount, !allowEnqueue)
548  io.sqFull := !allowEnqueue
549  XSPerfAccumulate("mmioCycle", uncacheState =/= s_idle) // lq is busy dealing with uncache req
550  XSPerfAccumulate("mmioCnt", io.uncache.req.fire())
551  XSPerfAccumulate("mmio_wb_success", io.mmioStout.fire())
552  XSPerfAccumulate("mmio_wb_blocked", io.mmioStout.valid && !io.mmioStout.ready)
553  XSPerfAccumulate("validEntryCnt", distanceBetween(enqPtrExt(0), deqPtrExt(0)))
554  XSPerfAccumulate("cmtEntryCnt", distanceBetween(cmtPtrExt(0), deqPtrExt(0)))
555  XSPerfAccumulate("nCmtEntryCnt", distanceBetween(enqPtrExt(0), cmtPtrExt(0)))
556
557  // debug info
558  XSDebug("enqPtrExt %d:%d deqPtrExt %d:%d\n", enqPtrExt(0).flag, enqPtr, deqPtrExt(0).flag, deqPtr)
559
560  def PrintFlag(flag: Bool, name: String): Unit = {
561    when(flag) {
562      XSDebug(false, true.B, name)
563    }.otherwise {
564      XSDebug(false, true.B, " ")
565    }
566  }
567
568  for (i <- 0 until StoreQueueSize) {
569    XSDebug(i + ": pc %x va %x pa %x data %x ",
570      uop(i).cf.pc,
571      debug_vaddr(i),
572      debug_paddr(i),
573      debug_data(i)
574    )
575    PrintFlag(allocated(i), "a")
576    PrintFlag(allocated(i) && addrvalid(i), "a")
577    PrintFlag(allocated(i) && datavalid(i), "d")
578    PrintFlag(allocated(i) && commited(i), "c")
579    PrintFlag(allocated(i) && pending(i), "p")
580    PrintFlag(allocated(i) && mmio(i), "m")
581    XSDebug(false, true.B, "\n")
582  }
583
584}
585