1/*************************************************************************************** 2* Copyright (c) 2020-2021 Institute of Computing Technology, Chinese Academy of Sciences 3* Copyright (c) 2020-2021 Peng Cheng Laboratory 4* 5* XiangShan is licensed under Mulan PSL v2. 6* You can use this software according to the terms and conditions of the Mulan PSL v2. 7* You may obtain a copy of Mulan PSL v2 at: 8* http://license.coscl.org.cn/MulanPSL2 9* 10* THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND, 11* EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT, 12* MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE. 13* 14* See the Mulan PSL v2 for more details. 15***************************************************************************************/ 16 17package xiangshan.mem 18 19import chisel3._ 20import chisel3.util._ 21import difftest._ 22import difftest.common.DifftestMem 23import org.chipsalliance.cde.config.Parameters 24import utility._ 25import utils._ 26import xiangshan._ 27import xiangshan.backend.rob.RobLsqIO 28import xiangshan.cache._ 29 30class SqPtr(implicit p: Parameters) extends CircularQueuePtr[SqPtr]( 31 p => p(XSCoreParamsKey).StoreQueueSize 32){ 33} 34 35object SqPtr { 36 def apply(f: Bool, v: UInt)(implicit p: Parameters): SqPtr = { 37 val ptr = Wire(new SqPtr) 38 ptr.flag := f 39 ptr.value := v 40 ptr 41 } 42} 43 44class SqEnqIO(implicit p: Parameters) extends XSBundle { 45 val canAccept = Output(Bool()) 46 val lqCanAccept = Input(Bool()) 47 val needAlloc = Vec(exuParameters.LsExuCnt, Input(Bool())) 48 val req = Vec(exuParameters.LsExuCnt, Flipped(ValidIO(new MicroOp))) 49 val resp = Vec(exuParameters.LsExuCnt, Output(new SqPtr)) 50} 51 52class DataBufferEntry (implicit p: Parameters) extends DCacheBundle { 53 val addr = UInt(PAddrBits.W) 54 val vaddr = UInt(VAddrBits.W) 55 val data = UInt(VLEN.W) 56 val mask = UInt((VLEN/8).W) 57 val wline = Bool() 58 val sqPtr = new SqPtr 59 val prefetch = Bool() 60} 61 62// Store Queue 63class StoreQueue(implicit p: Parameters) extends XSModule 64 with HasDCacheParameters with HasCircularQueuePtrHelper with HasPerfEvents { 65 val io = IO(new Bundle() { 66 val hartId = Input(UInt(hartIdLen.W)) 67 val enq = new SqEnqIO 68 val brqRedirect = Flipped(ValidIO(new Redirect)) 69 val storeAddrIn = Vec(StorePipelineWidth, Flipped(Valid(new LsPipelineBundle))) // store addr, data is not included 70 val storeAddrInRe = Vec(StorePipelineWidth, Input(new LsPipelineBundle())) // store more mmio and exception 71 val storeDataIn = Vec(StorePipelineWidth, Flipped(Valid(new ExuOutput))) // store data, send to sq from rs 72 val storeMaskIn = Vec(StorePipelineWidth, Flipped(Valid(new StoreMaskBundle))) // store mask, send to sq from rs 73 val sbuffer = Vec(EnsbufferWidth, Decoupled(new DCacheWordReqWithVaddrAndPfFlag)) // write committed store to sbuffer 74 val uncacheOutstanding = Input(Bool()) 75 val mmioStout = DecoupledIO(new ExuOutput) // writeback uncached store 76 val forward = Vec(LoadPipelineWidth, Flipped(new PipeLoadForwardQueryIO)) 77 val rob = Flipped(new RobLsqIO) 78 val uncache = new UncacheWordIO 79 // val refill = Flipped(Valid(new DCacheLineReq )) 80 val exceptionAddr = new ExceptionAddrIO 81 val sqEmpty = Output(Bool()) 82 val stAddrReadySqPtr = Output(new SqPtr) 83 val stAddrReadyVec = Output(Vec(StoreQueueSize, Bool())) 84 val stDataReadySqPtr = Output(new SqPtr) 85 val stDataReadyVec = Output(Vec(StoreQueueSize, Bool())) 86 val stIssuePtr = Output(new SqPtr) 87 val sqDeqPtr = Output(new SqPtr) 88 val sqFull = Output(Bool()) 89 val sqCancelCnt = Output(UInt(log2Up(StoreQueueSize + 1).W)) 90 val sqDeq = Output(UInt(log2Ceil(EnsbufferWidth + 1).W)) 91 val force_write = Output(Bool()) 92 }) 93 94 println("StoreQueue: size:" + StoreQueueSize) 95 96 // data modules 97 val uop = Reg(Vec(StoreQueueSize, new MicroOp)) 98 // val data = Reg(Vec(StoreQueueSize, new LsqEntry)) 99 val dataModule = Module(new SQDataModule( 100 numEntries = StoreQueueSize, 101 numRead = EnsbufferWidth, 102 numWrite = StorePipelineWidth, 103 numForward = StorePipelineWidth 104 )) 105 dataModule.io := DontCare 106 val paddrModule = Module(new SQAddrModule( 107 dataWidth = PAddrBits, 108 numEntries = StoreQueueSize, 109 numRead = EnsbufferWidth, 110 numWrite = StorePipelineWidth, 111 numForward = StorePipelineWidth 112 )) 113 paddrModule.io := DontCare 114 val vaddrModule = Module(new SQAddrModule( 115 dataWidth = VAddrBits, 116 numEntries = StoreQueueSize, 117 numRead = EnsbufferWidth + 1, // sbuffer + badvaddr 1 (TODO) 118 numWrite = StorePipelineWidth, 119 numForward = StorePipelineWidth 120 )) 121 val gpaddrModule = Module(new SQAddrModule( 122 dataWidth = GPAddrBits, 123 numEntries = StoreQueueSize, 124 numRead = EnsbufferWidth + 1, 125 numWrite = StorePipelineWidth, 126 numForward = StorePipelineWidth 127 )) 128 vaddrModule.io := DontCare 129 val dataBuffer = Module(new DatamoduleResultBuffer(new DataBufferEntry)) 130 val debug_paddr = Reg(Vec(StoreQueueSize, UInt((PAddrBits).W))) 131 val debug_vaddr = Reg(Vec(StoreQueueSize, UInt((VAddrBits).W))) 132 val debug_data = Reg(Vec(StoreQueueSize, UInt((XLEN).W))) 133 134 // state & misc 135 val allocated = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // sq entry has been allocated 136 val addrvalid = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // non-mmio addr is valid 137 val datavalid = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // non-mmio data is valid 138 val allvalid = VecInit((0 until StoreQueueSize).map(i => addrvalid(i) && datavalid(i))) // non-mmio data & addr is valid 139 val committed = Reg(Vec(StoreQueueSize, Bool())) // inst has been committed by rob 140 val pending = Reg(Vec(StoreQueueSize, Bool())) // mmio pending: inst is an mmio inst, it will not be executed until it reachs the end of rob 141 val mmio = Reg(Vec(StoreQueueSize, Bool())) // mmio: inst is an mmio inst 142 val atomic = Reg(Vec(StoreQueueSize, Bool())) 143 val prefetch = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // need prefetch when committing this store to sbuffer? 144 145 // ptr 146 val enqPtrExt = RegInit(VecInit((0 until io.enq.req.length).map(_.U.asTypeOf(new SqPtr)))) 147 val rdataPtrExt = RegInit(VecInit((0 until EnsbufferWidth).map(_.U.asTypeOf(new SqPtr)))) 148 val deqPtrExt = RegInit(VecInit((0 until EnsbufferWidth).map(_.U.asTypeOf(new SqPtr)))) 149 val cmtPtrExt = RegInit(VecInit((0 until CommitWidth).map(_.U.asTypeOf(new SqPtr)))) 150 val addrReadyPtrExt = RegInit(0.U.asTypeOf(new SqPtr)) 151 val dataReadyPtrExt = RegInit(0.U.asTypeOf(new SqPtr)) 152 val validCounter = RegInit(0.U(log2Ceil(VirtualLoadQueueSize + 1).W)) 153 154 val enqPtr = enqPtrExt(0).value 155 val deqPtr = deqPtrExt(0).value 156 val cmtPtr = cmtPtrExt(0).value 157 158 val validCount = distanceBetween(enqPtrExt(0), deqPtrExt(0)) 159 val allowEnqueue = validCount <= (StoreQueueSize - StorePipelineWidth).U 160 161 val deqMask = UIntToMask(deqPtr, StoreQueueSize) 162 val enqMask = UIntToMask(enqPtr, StoreQueueSize) 163 164 val commitCount = RegNext(io.rob.scommit) 165 166 // store can be committed by ROB 167 io.rob.mmio := DontCare 168 io.rob.uop := DontCare 169 170 // Read dataModule 171 assert(EnsbufferWidth <= 2) 172 // rdataPtrExtNext and rdataPtrExtNext+1 entry will be read from dataModule 173 val rdataPtrExtNext = WireInit(Mux(dataBuffer.io.enq(1).fire, 174 VecInit(rdataPtrExt.map(_ + 2.U)), 175 Mux(dataBuffer.io.enq(0).fire || io.mmioStout.fire, 176 VecInit(rdataPtrExt.map(_ + 1.U)), 177 rdataPtrExt 178 ) 179 )) 180 181 // deqPtrExtNext traces which inst is about to leave store queue 182 // 183 // io.sbuffer(i).fire is RegNexted, as sbuffer data write takes 2 cycles. 184 // Before data write finish, sbuffer is unable to provide store to load 185 // forward data. As an workaround, deqPtrExt and allocated flag update 186 // is delayed so that load can get the right data from store queue. 187 // 188 // Modify deqPtrExtNext and io.sqDeq with care! 189 val deqPtrExtNext = Mux(RegNext(io.sbuffer(1).fire), 190 VecInit(deqPtrExt.map(_ + 2.U)), 191 Mux(RegNext(io.sbuffer(0).fire) || io.mmioStout.fire, 192 VecInit(deqPtrExt.map(_ + 1.U)), 193 deqPtrExt 194 ) 195 ) 196 io.sqDeq := RegNext(Mux(RegNext(io.sbuffer(1).fire), 2.U, 197 Mux(RegNext(io.sbuffer(0).fire) || io.mmioStout.fire, 1.U, 0.U) 198 )) 199 assert(!RegNext(RegNext(io.sbuffer(0).fire) && io.mmioStout.fire)) 200 201 for (i <- 0 until EnsbufferWidth) { 202 dataModule.io.raddr(i) := rdataPtrExtNext(i).value 203 paddrModule.io.raddr(i) := rdataPtrExtNext(i).value 204 vaddrModule.io.raddr(i) := rdataPtrExtNext(i).value 205 gpaddrModule.io.raddr(i) := rdataPtrExtNext(i).value 206 } 207 208 // no inst will be committed 1 cycle before tval update 209 vaddrModule.io.raddr(EnsbufferWidth) := (cmtPtrExt(0) + commitCount).value 210 gpaddrModule.io.raddr(EnsbufferWidth) := (cmtPtrExt(0) + commitCount).value 211 /** 212 * Enqueue at dispatch 213 * 214 * Currently, StoreQueue only allows enqueue when #emptyEntries > EnqWidth 215 */ 216 io.enq.canAccept := allowEnqueue 217 val canEnqueue = io.enq.req.map(_.valid) 218 val enqCancel = io.enq.req.map(_.bits.robIdx.needFlush(io.brqRedirect)) 219 for (i <- 0 until io.enq.req.length) { 220 val offset = if (i == 0) 0.U else PopCount(io.enq.needAlloc.take(i)) 221 val sqIdx = enqPtrExt(offset) 222 val index = io.enq.req(i).bits.sqIdx.value 223 when (canEnqueue(i) && !enqCancel(i)) { 224 uop(index) := io.enq.req(i).bits 225 // NOTE: the index will be used when replay 226 uop(index).sqIdx := sqIdx 227 allocated(index) := true.B 228 datavalid(index) := false.B 229 addrvalid(index) := false.B 230 committed(index) := false.B 231 pending(index) := false.B 232 prefetch(index) := false.B 233 mmio(index) := false.B 234 235 XSError(!io.enq.canAccept || !io.enq.lqCanAccept, s"must accept $i\n") 236 XSError(index =/= sqIdx.value, s"must be the same entry $i\n") 237 } 238 io.enq.resp(i) := sqIdx 239 } 240 XSDebug(p"(ready, valid): ${io.enq.canAccept}, ${Binary(Cat(io.enq.req.map(_.valid)))}\n") 241 242 /** 243 * Update addr/dataReadyPtr when issue from rs 244 */ 245 // update issuePtr 246 val IssuePtrMoveStride = 4 247 require(IssuePtrMoveStride >= 2) 248 249 val addrReadyLookupVec = (0 until IssuePtrMoveStride).map(addrReadyPtrExt + _.U) 250 val addrReadyLookup = addrReadyLookupVec.map(ptr => allocated(ptr.value) && (mmio(ptr.value) || addrvalid(ptr.value)) && ptr =/= enqPtrExt(0)) 251 val nextAddrReadyPtr = addrReadyPtrExt + PriorityEncoder(VecInit(addrReadyLookup.map(!_) :+ true.B)) 252 addrReadyPtrExt := nextAddrReadyPtr 253 254 (0 until StoreQueueSize).map(i => { 255 io.stAddrReadyVec(i) := RegNext(allocated(i) && (mmio(i) || addrvalid(i))) 256 }) 257 258 when (io.brqRedirect.valid) { 259 addrReadyPtrExt := Mux( 260 isAfter(cmtPtrExt(0), deqPtrExt(0)), 261 cmtPtrExt(0), 262 deqPtrExtNext(0) // for mmio insts, deqPtr may be ahead of cmtPtr 263 ) 264 } 265 266 io.stAddrReadySqPtr := addrReadyPtrExt 267 268 // update 269 val dataReadyLookupVec = (0 until IssuePtrMoveStride).map(dataReadyPtrExt + _.U) 270 val dataReadyLookup = dataReadyLookupVec.map(ptr => allocated(ptr.value) && (mmio(ptr.value) || datavalid(ptr.value)) && ptr =/= enqPtrExt(0)) 271 val nextDataReadyPtr = dataReadyPtrExt + PriorityEncoder(VecInit(dataReadyLookup.map(!_) :+ true.B)) 272 dataReadyPtrExt := nextDataReadyPtr 273 274 (0 until StoreQueueSize).map(i => { 275 io.stDataReadyVec(i) := RegNext(allocated(i) && (mmio(i) || datavalid(i))) 276 }) 277 278 when (io.brqRedirect.valid) { 279 dataReadyPtrExt := Mux( 280 isAfter(cmtPtrExt(0), deqPtrExt(0)), 281 cmtPtrExt(0), 282 deqPtrExtNext(0) // for mmio insts, deqPtr may be ahead of cmtPtr 283 ) 284 } 285 286 io.stDataReadySqPtr := dataReadyPtrExt 287 io.stIssuePtr := enqPtrExt(0) 288 io.sqDeqPtr := deqPtrExt(0) 289 290 /** 291 * Writeback store from store units 292 * 293 * Most store instructions writeback to regfile in the previous cycle. 294 * However, 295 * (1) For an mmio instruction with exceptions, we need to mark it as addrvalid 296 * (in this way it will trigger an exception when it reaches ROB's head) 297 * instead of pending to avoid sending them to lower level. 298 * (2) For an mmio instruction without exceptions, we mark it as pending. 299 * When the instruction reaches ROB's head, StoreQueue sends it to uncache channel. 300 * Upon receiving the response, StoreQueue writes back the instruction 301 * through arbiter with store units. It will later commit as normal. 302 */ 303 304 // Write addr to sq 305 for (i <- 0 until StorePipelineWidth) { 306 paddrModule.io.wen(i) := false.B 307 vaddrModule.io.wen(i) := false.B 308 gpaddrModule.io.wen(i) := false.B 309 dataModule.io.mask.wen(i) := false.B 310 val stWbIndex = io.storeAddrIn(i).bits.uop.sqIdx.value 311 when (io.storeAddrIn(i).fire) { 312 val addr_valid = !io.storeAddrIn(i).bits.miss 313 addrvalid(stWbIndex) := addr_valid //!io.storeAddrIn(i).bits.mmio 314 // pending(stWbIndex) := io.storeAddrIn(i).bits.mmio 315 316 paddrModule.io.waddr(i) := stWbIndex 317 paddrModule.io.wdata(i) := io.storeAddrIn(i).bits.paddr 318 paddrModule.io.wmask(i) := io.storeAddrIn(i).bits.mask 319 paddrModule.io.wlineflag(i) := io.storeAddrIn(i).bits.wlineflag 320 paddrModule.io.wen(i) := true.B 321 322 vaddrModule.io.waddr(i) := stWbIndex 323 vaddrModule.io.wdata(i) := io.storeAddrIn(i).bits.vaddr 324 vaddrModule.io.wmask(i) := io.storeAddrIn(i).bits.mask 325 vaddrModule.io.wlineflag(i) := io.storeAddrIn(i).bits.wlineflag 326 vaddrModule.io.wen(i) := true.B 327 328 gpaddrModule.io.waddr(i) := stWbIndex 329 gpaddrModule.io.wdata(i) := io.storeIn(i).bits.gpaddr 330 gpaddrModule.io.wlineflag(i) := io.storeIn(i).bits.wlineflag 331 gpaddrModule.io.wen(i) := true.B 332 333 debug_paddr(paddrModule.io.waddr(i)) := paddrModule.io.wdata(i) 334 335 // mmio(stWbIndex) := io.storeAddrIn(i).bits.mmio 336 337 uop(stWbIndex).ctrl := io.storeAddrIn(i).bits.uop.ctrl 338 uop(stWbIndex).debugInfo := io.storeAddrIn(i).bits.uop.debugInfo 339 XSInfo("store addr write to sq idx %d pc 0x%x miss:%d vaddr %x paddr %x mmio %x\n", 340 io.storeAddrIn(i).bits.uop.sqIdx.value, 341 io.storeAddrIn(i).bits.uop.cf.pc, 342 io.storeAddrIn(i).bits.miss, 343 io.storeAddrIn(i).bits.vaddr, 344 io.storeAddrIn(i).bits.paddr, 345 io.storeAddrIn(i).bits.mmio 346 ) 347 } 348 349 // re-replinish mmio, for pma/pmp will get mmio one cycle later 350 val storeAddrInFireReg = RegNext(io.storeAddrIn(i).fire && !io.storeAddrIn(i).bits.miss) 351 val stWbIndexReg = RegNext(stWbIndex) 352 when (storeAddrInFireReg) { 353 pending(stWbIndexReg) := io.storeAddrInRe(i).mmio 354 mmio(stWbIndexReg) := io.storeAddrInRe(i).mmio 355 atomic(stWbIndexReg) := io.storeAddrInRe(i).atomic 356 } 357 // dcache miss info (one cycle later than storeIn) 358 // if dcache report a miss in sta pipeline, this store will trigger a prefetch when committing to sbuffer (if EnableAtCommitMissTrigger) 359 when (storeAddrInFireReg) { 360 prefetch(stWbIndexReg) := io.storeAddrInRe(i).miss 361 } 362 363 when(vaddrModule.io.wen(i)){ 364 debug_vaddr(vaddrModule.io.waddr(i)) := vaddrModule.io.wdata(i) 365 } 366 } 367 368 // Write data to sq 369 // Now store data pipeline is actually 2 stages 370 for (i <- 0 until StorePipelineWidth) { 371 dataModule.io.data.wen(i) := false.B 372 val stWbIndex = io.storeDataIn(i).bits.uop.sqIdx.value 373 // sq data write takes 2 cycles: 374 // sq data write s0 375 when (io.storeDataIn(i).fire) { 376 // send data write req to data module 377 dataModule.io.data.waddr(i) := stWbIndex 378 dataModule.io.data.wdata(i) := Mux(io.storeDataIn(i).bits.uop.ctrl.fuOpType === LSUOpType.cbo_zero, 379 0.U, 380 genWdata(io.storeDataIn(i).bits.data, io.storeDataIn(i).bits.uop.ctrl.fuOpType(1,0)) 381 ) 382 dataModule.io.data.wen(i) := true.B 383 384 debug_data(dataModule.io.data.waddr(i)) := dataModule.io.data.wdata(i) 385 386 XSInfo("store data write to sq idx %d pc 0x%x data %x -> %x\n", 387 io.storeDataIn(i).bits.uop.sqIdx.value, 388 io.storeDataIn(i).bits.uop.cf.pc, 389 io.storeDataIn(i).bits.data, 390 dataModule.io.data.wdata(i) 391 ) 392 } 393 // sq data write s1 394 when ( 395 RegNext(io.storeDataIn(i).fire) 396 // && !RegNext(io.storeDataIn(i).bits.uop).robIdx.needFlush(io.brqRedirect) 397 ) { 398 datavalid(RegNext(stWbIndex)) := true.B 399 } 400 } 401 402 // Write mask to sq 403 for (i <- 0 until StorePipelineWidth) { 404 // sq mask write s0 405 when (io.storeMaskIn(i).fire) { 406 // send data write req to data module 407 dataModule.io.mask.waddr(i) := io.storeMaskIn(i).bits.sqIdx.value 408 dataModule.io.mask.wdata(i) := io.storeMaskIn(i).bits.mask 409 dataModule.io.mask.wen(i) := true.B 410 } 411 } 412 413 /** 414 * load forward query 415 * 416 * Check store queue for instructions that is older than the load. 417 * The response will be valid at the next cycle after req. 418 */ 419 // check over all lq entries and forward data from the first matched store 420 for (i <- 0 until LoadPipelineWidth) { 421 // Compare deqPtr (deqPtr) and forward.sqIdx, we have two cases: 422 // (1) if they have the same flag, we need to check range(tail, sqIdx) 423 // (2) if they have different flags, we need to check range(tail, VirtualLoadQueueSize) and range(0, sqIdx) 424 // Forward1: Mux(same_flag, range(tail, sqIdx), range(tail, VirtualLoadQueueSize)) 425 // Forward2: Mux(same_flag, 0.U, range(0, sqIdx) ) 426 // i.e. forward1 is the target entries with the same flag bits and forward2 otherwise 427 val differentFlag = deqPtrExt(0).flag =/= io.forward(i).sqIdx.flag 428 val forwardMask = io.forward(i).sqIdxMask 429 // all addrvalid terms need to be checked 430 val addrValidVec = WireInit(VecInit((0 until StoreQueueSize).map(i => addrvalid(i) && allocated(i)))) 431 val dataValidVec = WireInit(VecInit((0 until StoreQueueSize).map(i => datavalid(i)))) 432 val allValidVec = WireInit(VecInit((0 until StoreQueueSize).map(i => addrvalid(i) && datavalid(i) && allocated(i)))) 433 434 val storeSetHitVec = 435 if (LFSTEnable) { 436 WireInit(VecInit((0 until StoreQueueSize).map(j => io.forward(i).uop.cf.loadWaitBit && uop(j).robIdx === io.forward(i).uop.cf.waitForRobIdx))) 437 } else { 438 WireInit(VecInit((0 until StoreQueueSize).map(j => uop(j).cf.storeSetHit && uop(j).cf.ssid === io.forward(i).uop.cf.ssid))) 439 } 440 441 val forwardMask1 = Mux(differentFlag, ~deqMask, deqMask ^ forwardMask) 442 val forwardMask2 = Mux(differentFlag, forwardMask, 0.U(StoreQueueSize.W)) 443 val canForward1 = forwardMask1 & allValidVec.asUInt 444 val canForward2 = forwardMask2 & allValidVec.asUInt 445 val needForward = Mux(differentFlag, ~deqMask | forwardMask, deqMask ^ forwardMask) 446 447 XSDebug(p"$i f1 ${Binary(canForward1)} f2 ${Binary(canForward2)} " + 448 p"sqIdx ${io.forward(i).sqIdx} pa ${Hexadecimal(io.forward(i).paddr)}\n" 449 ) 450 451 // do real fwd query (cam lookup in load_s1) 452 dataModule.io.needForward(i)(0) := canForward1 & vaddrModule.io.forwardMmask(i).asUInt 453 dataModule.io.needForward(i)(1) := canForward2 & vaddrModule.io.forwardMmask(i).asUInt 454 455 vaddrModule.io.forwardMdata(i) := io.forward(i).vaddr 456 vaddrModule.io.forwardDataMask(i) := io.forward(i).mask 457 paddrModule.io.forwardMdata(i) := io.forward(i).paddr 458 paddrModule.io.forwardDataMask(i) := io.forward(i).mask 459 460 461 // vaddr cam result does not equal to paddr cam result 462 // replay needed 463 // val vpmaskNotEqual = ((paddrModule.io.forwardMmask(i).asUInt ^ vaddrModule.io.forwardMmask(i).asUInt) & needForward) =/= 0.U 464 // val vaddrMatchFailed = vpmaskNotEqual && io.forward(i).valid 465 val vpmaskNotEqual = ( 466 (RegNext(paddrModule.io.forwardMmask(i).asUInt) ^ RegNext(vaddrModule.io.forwardMmask(i).asUInt)) & 467 RegNext(needForward) & 468 RegNext(addrValidVec.asUInt) 469 ) =/= 0.U 470 val vaddrMatchFailed = vpmaskNotEqual && RegNext(io.forward(i).valid) 471 when (vaddrMatchFailed) { 472 XSInfo("vaddrMatchFailed: pc %x pmask %x vmask %x\n", 473 RegNext(io.forward(i).uop.cf.pc), 474 RegNext(needForward & paddrModule.io.forwardMmask(i).asUInt), 475 RegNext(needForward & vaddrModule.io.forwardMmask(i).asUInt) 476 ); 477 } 478 XSPerfAccumulate("vaddr_match_failed", vpmaskNotEqual) 479 XSPerfAccumulate("vaddr_match_really_failed", vaddrMatchFailed) 480 481 // Fast forward mask will be generated immediately (load_s1) 482 io.forward(i).forwardMaskFast := dataModule.io.forwardMaskFast(i) 483 484 // Forward result will be generated 1 cycle later (load_s2) 485 io.forward(i).forwardMask := dataModule.io.forwardMask(i) 486 io.forward(i).forwardData := dataModule.io.forwardData(i) 487 // If addr match, data not ready, mark it as dataInvalid 488 // load_s1: generate dataInvalid in load_s1 to set fastUop 489 val dataInvalidMask1 = (addrValidVec.asUInt & ~dataValidVec.asUInt & vaddrModule.io.forwardMmask(i).asUInt & forwardMask1.asUInt) 490 val dataInvalidMask2 = (addrValidVec.asUInt & ~dataValidVec.asUInt & vaddrModule.io.forwardMmask(i).asUInt & forwardMask2.asUInt) 491 val dataInvalidMask = dataInvalidMask1 | dataInvalidMask2 492 io.forward(i).dataInvalidFast := dataInvalidMask.orR 493 494 // make chisel happy 495 val dataInvalidMask1Reg = Wire(UInt(StoreQueueSize.W)) 496 dataInvalidMask1Reg := RegNext(dataInvalidMask1) 497 // make chisel happy 498 val dataInvalidMask2Reg = Wire(UInt(StoreQueueSize.W)) 499 dataInvalidMask2Reg := RegNext(dataInvalidMask2) 500 val dataInvalidMaskReg = dataInvalidMask1Reg | dataInvalidMask2Reg 501 502 // If SSID match, address not ready, mark it as addrInvalid 503 // load_s2: generate addrInvalid 504 val addrInvalidMask1 = (~addrValidVec.asUInt & storeSetHitVec.asUInt & forwardMask1.asUInt) 505 val addrInvalidMask2 = (~addrValidVec.asUInt & storeSetHitVec.asUInt & forwardMask2.asUInt) 506 // make chisel happy 507 val addrInvalidMask1Reg = Wire(UInt(StoreQueueSize.W)) 508 addrInvalidMask1Reg := RegNext(addrInvalidMask1) 509 // make chisel happy 510 val addrInvalidMask2Reg = Wire(UInt(StoreQueueSize.W)) 511 addrInvalidMask2Reg := RegNext(addrInvalidMask2) 512 val addrInvalidMaskReg = addrInvalidMask1Reg | addrInvalidMask2Reg 513 514 // load_s2 515 io.forward(i).dataInvalid := RegNext(io.forward(i).dataInvalidFast) 516 // check if vaddr forward mismatched 517 io.forward(i).matchInvalid := vaddrMatchFailed 518 519 // data invalid sq index 520 // check whether false fail 521 // check flag 522 val s2_differentFlag = RegNext(differentFlag) 523 val s2_enqPtrExt = RegNext(enqPtrExt(0)) 524 val s2_deqPtrExt = RegNext(deqPtrExt(0)) 525 526 // addr invalid sq index 527 // make chisel happy 528 val addrInvalidMaskRegWire = Wire(UInt(StoreQueueSize.W)) 529 addrInvalidMaskRegWire := addrInvalidMaskReg 530 val addrInvalidFlag = addrInvalidMaskRegWire.orR 531 val hasInvalidAddr = (~addrValidVec.asUInt & needForward).orR 532 533 val addrInvalidSqIdx1 = OHToUInt(Reverse(PriorityEncoderOH(Reverse(addrInvalidMask1Reg)))) 534 val addrInvalidSqIdx2 = OHToUInt(Reverse(PriorityEncoderOH(Reverse(addrInvalidMask2Reg)))) 535 val addrInvalidSqIdx = Mux(addrInvalidMask2Reg.orR, addrInvalidSqIdx2, addrInvalidSqIdx1) 536 537 // store-set content management 538 // +-----------------------+ 539 // | Search a SSID for the | 540 // | load operation | 541 // +-----------------------+ 542 // | 543 // V 544 // +-------------------+ 545 // | load wait strict? | 546 // +-------------------+ 547 // | 548 // V 549 // +----------------------+ 550 // Set| |Clean 551 // V V 552 // +------------------------+ +------------------------------+ 553 // | Waiting for all older | | Wait until the corresponding | 554 // | stores operations | | older store operations | 555 // +------------------------+ +------------------------------+ 556 557 558 559 when (RegNext(io.forward(i).uop.cf.loadWaitStrict)) { 560 io.forward(i).addrInvalidSqIdx := RegNext(io.forward(i).uop.sqIdx - 1.U) 561 } .elsewhen (addrInvalidFlag) { 562 io.forward(i).addrInvalidSqIdx.flag := Mux(!s2_differentFlag || addrInvalidSqIdx >= s2_deqPtrExt.value, s2_deqPtrExt.flag, s2_enqPtrExt.flag) 563 io.forward(i).addrInvalidSqIdx.value := addrInvalidSqIdx 564 } .otherwise { 565 // may be store inst has been written to sbuffer already. 566 io.forward(i).addrInvalidSqIdx := RegNext(io.forward(i).uop.sqIdx) 567 } 568 io.forward(i).addrInvalid := Mux(RegNext(io.forward(i).uop.cf.loadWaitStrict), RegNext(hasInvalidAddr), addrInvalidFlag) 569 570 // data invalid sq index 571 // make chisel happy 572 val dataInvalidMaskRegWire = Wire(UInt(StoreQueueSize.W)) 573 dataInvalidMaskRegWire := dataInvalidMaskReg 574 val dataInvalidFlag = dataInvalidMaskRegWire.orR 575 576 val dataInvalidSqIdx1 = OHToUInt(Reverse(PriorityEncoderOH(Reverse(dataInvalidMask1Reg)))) 577 val dataInvalidSqIdx2 = OHToUInt(Reverse(PriorityEncoderOH(Reverse(dataInvalidMask2Reg)))) 578 val dataInvalidSqIdx = Mux(dataInvalidMask2Reg.orR, dataInvalidSqIdx2, dataInvalidSqIdx1) 579 580 when (dataInvalidFlag) { 581 io.forward(i).dataInvalidSqIdx.flag := Mux(!s2_differentFlag || dataInvalidSqIdx >= s2_deqPtrExt.value, s2_deqPtrExt.flag, s2_enqPtrExt.flag) 582 io.forward(i).dataInvalidSqIdx.value := dataInvalidSqIdx 583 } .otherwise { 584 // may be store inst has been written to sbuffer already. 585 io.forward(i).dataInvalidSqIdx := RegNext(io.forward(i).uop.sqIdx) 586 } 587 } 588 589 /** 590 * Memory mapped IO / other uncached operations 591 * 592 * States: 593 * (1) writeback from store units: mark as pending 594 * (2) when they reach ROB's head, they can be sent to uncache channel 595 * (3) response from uncache channel: mark as datavalidmask.wen 596 * (4) writeback to ROB (and other units): mark as writebacked 597 * (5) ROB commits the instruction: same as normal instructions 598 */ 599 //(2) when they reach ROB's head, they can be sent to uncache channel 600 val s_idle :: s_req :: s_resp :: s_wb :: s_wait :: Nil = Enum(5) 601 val uncacheState = RegInit(s_idle) 602 switch(uncacheState) { 603 is(s_idle) { 604 when(RegNext(io.rob.pendingst && pending(deqPtr) && allocated(deqPtr) && datavalid(deqPtr) && addrvalid(deqPtr))) { 605 uncacheState := s_req 606 } 607 } 608 is(s_req) { 609 when (io.uncache.req.fire) { 610 when (io.uncacheOutstanding) { 611 uncacheState := s_wb 612 } .otherwise { 613 uncacheState := s_resp 614 } 615 } 616 } 617 is(s_resp) { 618 when(io.uncache.resp.fire) { 619 uncacheState := s_wb 620 } 621 } 622 is(s_wb) { 623 when (io.mmioStout.fire) { 624 uncacheState := s_wait 625 } 626 } 627 is(s_wait) { 628 when(commitCount > 0.U) { 629 uncacheState := s_idle // ready for next mmio 630 } 631 } 632 } 633 io.uncache.req.valid := uncacheState === s_req 634 635 io.uncache.req.bits := DontCare 636 io.uncache.req.bits.cmd := MemoryOpConstants.M_XWR 637 io.uncache.req.bits.addr := paddrModule.io.rdata(0) // data(deqPtr) -> rdata(0) 638 io.uncache.req.bits.data := shiftDataToLow(paddrModule.io.rdata(0), dataModule.io.rdata(0).data) 639 io.uncache.req.bits.mask := shiftMaskToLow(paddrModule.io.rdata(0), dataModule.io.rdata(0).mask) 640 641 // CBO op type check can be delayed for 1 cycle, 642 // as uncache op will not start in s_idle 643 val cbo_mmio_addr = paddrModule.io.rdata(0) >> 2 << 2 // clear lowest 2 bits for op 644 val cbo_mmio_op = 0.U //TODO 645 val cbo_mmio_data = cbo_mmio_addr | cbo_mmio_op 646 when(RegNext(LSUOpType.isCbo(uop(deqPtr).ctrl.fuOpType))){ 647 io.uncache.req.bits.addr := DontCare // TODO 648 io.uncache.req.bits.data := paddrModule.io.rdata(0) 649 io.uncache.req.bits.mask := DontCare // TODO 650 } 651 652 io.uncache.req.bits.atomic := atomic(RegNext(rdataPtrExtNext(0)).value) 653 654 when(io.uncache.req.fire){ 655 // mmio store should not be committed until uncache req is sent 656 pending(deqPtr) := false.B 657 658 XSDebug( 659 p"uncache req: pc ${Hexadecimal(uop(deqPtr).cf.pc)} " + 660 p"addr ${Hexadecimal(io.uncache.req.bits.addr)} " + 661 p"data ${Hexadecimal(io.uncache.req.bits.data)} " + 662 p"op ${Hexadecimal(io.uncache.req.bits.cmd)} " + 663 p"mask ${Hexadecimal(io.uncache.req.bits.mask)}\n" 664 ) 665 } 666 667 // (3) response from uncache channel: mark as datavalid 668 io.uncache.resp.ready := true.B 669 670 // (4) writeback to ROB (and other units): mark as writebacked 671 io.mmioStout.valid := uncacheState === s_wb 672 io.mmioStout.bits.uop := uop(deqPtr) 673 io.mmioStout.bits.uop.sqIdx := deqPtrExt(0) 674 io.mmioStout.bits.data := shiftDataToLow(paddrModule.io.rdata(0), dataModule.io.rdata(0).data) // dataModule.io.rdata.read(deqPtr) 675 io.mmioStout.bits.redirectValid := false.B 676 io.mmioStout.bits.redirect := DontCare 677 io.mmioStout.bits.debug.isMMIO := true.B 678 io.mmioStout.bits.debug.paddr := DontCare 679 io.mmioStout.bits.debug.isPerfCnt := false.B 680 io.mmioStout.bits.fflags := DontCare 681 io.mmioStout.bits.debug.vaddr := DontCare 682 // Remove MMIO inst from store queue after MMIO request is being sent 683 // That inst will be traced by uncache state machine 684 when (io.mmioStout.fire) { 685 allocated(deqPtr) := false.B 686 } 687 688 /** 689 * ROB commits store instructions (mark them as committed) 690 * 691 * (1) When store commits, mark it as committed. 692 * (2) They will not be cancelled and can be sent to lower level. 693 */ 694 XSError(uncacheState =/= s_idle && uncacheState =/= s_wait && commitCount > 0.U, 695 "should not commit instruction when MMIO has not been finished\n") 696 for (i <- 0 until CommitWidth) { 697 when (commitCount > i.U) { // MMIO inst is not in progress 698 if(i == 0){ 699 // MMIO inst should not update committed flag 700 // Note that commit count has been delayed for 1 cycle 701 when(uncacheState === s_idle){ 702 committed(cmtPtrExt(0).value) := true.B 703 } 704 } else { 705 committed(cmtPtrExt(i).value) := true.B 706 } 707 } 708 } 709 cmtPtrExt := cmtPtrExt.map(_ + commitCount) 710 711 // committed stores will not be cancelled and can be sent to lower level. 712 // remove retired insts from sq, add retired store to sbuffer 713 714 // Read data from data module 715 // As store queue grows larger and larger, time needed to read data from data 716 // module keeps growing higher. Now we give data read a whole cycle. 717 718 val mmioStall = mmio(rdataPtrExt(0).value) 719 for (i <- 0 until EnsbufferWidth) { 720 val ptr = rdataPtrExt(i).value 721 dataBuffer.io.enq(i).valid := allocated(ptr) && committed(ptr) && !mmioStall 722 // Note that store data/addr should both be valid after store's commit 723 assert(!dataBuffer.io.enq(i).valid || allvalid(ptr)) 724 dataBuffer.io.enq(i).bits.addr := paddrModule.io.rdata(i) 725 dataBuffer.io.enq(i).bits.vaddr := vaddrModule.io.rdata(i) 726 dataBuffer.io.enq(i).bits.data := dataModule.io.rdata(i).data 727 dataBuffer.io.enq(i).bits.mask := dataModule.io.rdata(i).mask 728 dataBuffer.io.enq(i).bits.wline := paddrModule.io.rlineflag(i) 729 dataBuffer.io.enq(i).bits.sqPtr := rdataPtrExt(i) 730 dataBuffer.io.enq(i).bits.prefetch := prefetch(ptr) 731 } 732 733 // Send data stored in sbufferReqBitsReg to sbuffer 734 for (i <- 0 until EnsbufferWidth) { 735 io.sbuffer(i).valid := dataBuffer.io.deq(i).valid 736 dataBuffer.io.deq(i).ready := io.sbuffer(i).ready 737 // Write line request should have all 1 mask 738 assert(!(io.sbuffer(i).valid && io.sbuffer(i).bits.wline && !io.sbuffer(i).bits.mask.andR)) 739 io.sbuffer(i).bits := DontCare 740 io.sbuffer(i).bits.cmd := MemoryOpConstants.M_XWR 741 io.sbuffer(i).bits.addr := dataBuffer.io.deq(i).bits.addr 742 io.sbuffer(i).bits.vaddr := dataBuffer.io.deq(i).bits.vaddr 743 io.sbuffer(i).bits.data := dataBuffer.io.deq(i).bits.data 744 io.sbuffer(i).bits.mask := dataBuffer.io.deq(i).bits.mask 745 io.sbuffer(i).bits.wline := dataBuffer.io.deq(i).bits.wline 746 io.sbuffer(i).bits.prefetch := dataBuffer.io.deq(i).bits.prefetch 747 748 // io.sbuffer(i).fire is RegNexted, as sbuffer data write takes 2 cycles. 749 // Before data write finish, sbuffer is unable to provide store to load 750 // forward data. As an workaround, deqPtrExt and allocated flag update 751 // is delayed so that load can get the right data from store queue. 752 val ptr = dataBuffer.io.deq(i).bits.sqPtr.value 753 when (RegNext(io.sbuffer(i).fire)) { 754 allocated(RegEnable(ptr, io.sbuffer(i).fire)) := false.B 755 XSDebug("sbuffer "+i+" fire: ptr %d\n", ptr) 756 } 757 } 758 (1 until EnsbufferWidth).foreach(i => when(io.sbuffer(i).fire) { assert(io.sbuffer(i - 1).fire) }) 759 if (coreParams.dcacheParametersOpt.isEmpty) { 760 for (i <- 0 until EnsbufferWidth) { 761 val ptr = deqPtrExt(i).value 762 val ram = DifftestMem(64L * 1024 * 1024 * 1024, 8) 763 val wen = allocated(ptr) && committed(ptr) && !mmio(ptr) 764 val waddr = ((paddrModule.io.rdata(i) - "h80000000".U) >> 3).asUInt 765 val wdata = Mux(paddrModule.io.rdata(i)(3), dataModule.io.rdata(i).data(127, 64), dataModule.io.rdata(i).data(63, 0)) 766 val wmask = Mux(paddrModule.io.rdata(i)(3), dataModule.io.rdata(i).mask(15, 8), dataModule.io.rdata(i).mask(7, 0)) 767 when (wen) { 768 ram.write(waddr, wdata.asTypeOf(Vec(8, UInt(8.W))), wmask.asBools) 769 } 770 } 771 } 772 773 if (env.EnableDifftest) { 774 for (i <- 0 until EnsbufferWidth) { 775 val storeCommit = io.sbuffer(i).fire 776 val waddr = ZeroExt(Cat(io.sbuffer(i).bits.addr(PAddrBits - 1, 3), 0.U(3.W)), 64) 777 val sbufferMask = shiftMaskToLow(io.sbuffer(i).bits.addr, io.sbuffer(i).bits.mask) 778 val sbufferData = shiftDataToLow(io.sbuffer(i).bits.addr, io.sbuffer(i).bits.data) 779 val wmask = sbufferMask 780 val wdata = sbufferData & MaskExpand(sbufferMask) 781 782 val difftest = DifftestModule(new DiffStoreEvent, delay = 2) 783 difftest.coreid := io.hartId 784 difftest.index := i.U 785 difftest.valid := storeCommit 786 difftest.addr := waddr 787 difftest.data := wdata 788 difftest.mask := wmask 789 } 790 } 791 792 // Read vaddr for mem exception 793 io.exceptionAddr.vaddr := vaddrModule.io.rdata(EnsbufferWidth) 794 io.exceptionAddr.gpaddr := gpaddrModule.io.rdata(EnsbufferWidth) 795 // misprediction recovery / exception redirect 796 // invalidate sq term using robIdx 797 val needCancel = Wire(Vec(StoreQueueSize, Bool())) 798 for (i <- 0 until StoreQueueSize) { 799 needCancel(i) := uop(i).robIdx.needFlush(io.brqRedirect) && allocated(i) && !committed(i) 800 when (needCancel(i)) { 801 allocated(i) := false.B 802 } 803 } 804 805 /** 806* update pointers 807**/ 808 val lastEnqCancel = PopCount(RegNext(VecInit(canEnqueue.zip(enqCancel).map(x => x._1 && x._2)))) // 1 cycle after redirect 809 val lastCycleCancelCount = PopCount(RegNext(needCancel)) // 1 cycle after redirect 810 val lastCycleRedirect = RegNext(io.brqRedirect.valid) // 1 cycle after redirect 811 val enqNumber = Mux(!lastCycleRedirect&&io.enq.canAccept && io.enq.lqCanAccept, PopCount(io.enq.req.map(_.valid)), 0.U) // 1 cycle after redirect 812 813 val lastlastCycleRedirect=RegNext(lastCycleRedirect)// 2 cycle after redirect 814 val redirectCancelCount = RegEnable(lastCycleCancelCount + lastEnqCancel, lastCycleRedirect) // 2 cycle after redirect 815 816 when (lastlastCycleRedirect) { 817 // we recover the pointers in 2 cycle after redirect for better timing 818 enqPtrExt := VecInit(enqPtrExt.map(_ - redirectCancelCount)) 819 }.otherwise { 820 // lastCycleRedirect.valid or nornal case 821 // when lastCycleRedirect.valid, enqNumber === 0.U, enqPtrExt will not change 822 enqPtrExt := VecInit(enqPtrExt.map(_ + enqNumber)) 823 } 824 assert(!(lastCycleRedirect && enqNumber =/= 0.U)) 825 826 deqPtrExt := deqPtrExtNext 827 rdataPtrExt := rdataPtrExtNext 828 829 // val dequeueCount = Mux(io.sbuffer(1).fire, 2.U, Mux(io.sbuffer(0).fire || io.mmioStout.fire, 1.U, 0.U)) 830 831 // If redirect at T0, sqCancelCnt is at T2 832 io.sqCancelCnt := redirectCancelCount 833 val ForceWriteUpper = Wire(UInt(log2Up(StoreQueueSize + 1).W)) 834 ForceWriteUpper := Constantin.createRecord("ForceWriteUpper_"+p(XSCoreParamsKey).HartId.toString(), initValue = 60.U) 835 val ForceWriteLower = Wire(UInt(log2Up(StoreQueueSize + 1).W)) 836 ForceWriteLower := Constantin.createRecord("ForceWriteLower_"+p(XSCoreParamsKey).HartId.toString(), initValue = 55.U) 837 838 val valid_cnt = PopCount(allocated) 839 io.force_write := RegNext(Mux(valid_cnt >= ForceWriteUpper, true.B, valid_cnt >= ForceWriteLower && io.force_write), init = false.B) 840 841 // io.sqempty will be used by sbuffer 842 // We delay it for 1 cycle for better timing 843 // When sbuffer need to check if it is empty, the pipeline is blocked, which means delay io.sqempty 844 // for 1 cycle will also promise that sq is empty in that cycle 845 io.sqEmpty := RegNext( 846 enqPtrExt(0).value === deqPtrExt(0).value && 847 enqPtrExt(0).flag === deqPtrExt(0).flag 848 ) 849 // perf counter 850 QueuePerf(StoreQueueSize, validCount, !allowEnqueue) 851 io.sqFull := !allowEnqueue 852 XSPerfAccumulate("mmioCycle", uncacheState =/= s_idle) // lq is busy dealing with uncache req 853 XSPerfAccumulate("mmioCnt", io.uncache.req.fire) 854 XSPerfAccumulate("mmio_wb_success", io.mmioStout.fire) 855 XSPerfAccumulate("mmio_wb_blocked", io.mmioStout.valid && !io.mmioStout.ready) 856 XSPerfAccumulate("validEntryCnt", distanceBetween(enqPtrExt(0), deqPtrExt(0))) 857 XSPerfAccumulate("cmtEntryCnt", distanceBetween(cmtPtrExt(0), deqPtrExt(0))) 858 XSPerfAccumulate("nCmtEntryCnt", distanceBetween(enqPtrExt(0), cmtPtrExt(0))) 859 860 val perfValidCount = distanceBetween(enqPtrExt(0), deqPtrExt(0)) 861 val perfEvents = Seq( 862 ("mmioCycle ", uncacheState =/= s_idle), 863 ("mmioCnt ", io.uncache.req.fire), 864 ("mmio_wb_success", io.mmioStout.fire), 865 ("mmio_wb_blocked", io.mmioStout.valid && !io.mmioStout.ready), 866 ("stq_1_4_valid ", (perfValidCount < (StoreQueueSize.U/4.U))), 867 ("stq_2_4_valid ", (perfValidCount > (StoreQueueSize.U/4.U)) & (perfValidCount <= (StoreQueueSize.U/2.U))), 868 ("stq_3_4_valid ", (perfValidCount > (StoreQueueSize.U/2.U)) & (perfValidCount <= (StoreQueueSize.U*3.U/4.U))), 869 ("stq_4_4_valid ", (perfValidCount > (StoreQueueSize.U*3.U/4.U))), 870 ) 871 generatePerfEvent() 872 873 // debug info 874 XSDebug("enqPtrExt %d:%d deqPtrExt %d:%d\n", enqPtrExt(0).flag, enqPtr, deqPtrExt(0).flag, deqPtr) 875 876 def PrintFlag(flag: Bool, name: String): Unit = { 877 when(flag) { 878 XSDebug(false, true.B, name) 879 }.otherwise { 880 XSDebug(false, true.B, " ") 881 } 882 } 883 884 for (i <- 0 until StoreQueueSize) { 885 XSDebug(i + ": pc %x va %x pa %x data %x ", 886 uop(i).cf.pc, 887 debug_vaddr(i), 888 debug_paddr(i), 889 debug_data(i) 890 ) 891 PrintFlag(allocated(i), "a") 892 PrintFlag(allocated(i) && addrvalid(i), "a") 893 PrintFlag(allocated(i) && datavalid(i), "d") 894 PrintFlag(allocated(i) && committed(i), "c") 895 PrintFlag(allocated(i) && pending(i), "p") 896 PrintFlag(allocated(i) && mmio(i), "m") 897 XSDebug(false, true.B, "\n") 898 } 899 900} 901