1/*************************************************************************************** 2* Copyright (c) 2020-2021 Institute of Computing Technology, Chinese Academy of Sciences 3* 4* XiangShan is licensed under Mulan PSL v2. 5* You can use this software according to the terms and conditions of the Mulan PSL v2. 6* You may obtain a copy of Mulan PSL v2 at: 7* http://license.coscl.org.cn/MulanPSL2 8* 9* THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND, 10* EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT, 11* MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE. 12* 13* See the Mulan PSL v2 for more details. 14***************************************************************************************/ 15 16package xiangshan.mem 17 18import chipsalliance.rocketchip.config.Parameters 19import chisel3._ 20import chisel3.util._ 21import utils._ 22import xiangshan._ 23import xiangshan.cache._ 24import xiangshan.cache.{DCacheWordIO, DCacheLineIO, TlbRequestIO, MemoryOpConstants} 25import xiangshan.backend.roq.{RoqLsqIO, RoqPtr} 26import difftest._ 27import device.RAMHelper 28 29class SqPtr(implicit p: Parameters) extends CircularQueuePtr[SqPtr]( 30 p => p(XSCoreParamsKey).StoreQueueSize 31){ 32 override def cloneType = (new SqPtr).asInstanceOf[this.type] 33} 34 35object SqPtr { 36 def apply(f: Bool, v: UInt)(implicit p: Parameters): SqPtr = { 37 val ptr = Wire(new SqPtr) 38 ptr.flag := f 39 ptr.value := v 40 ptr 41 } 42} 43 44class SqEnqIO(implicit p: Parameters) extends XSBundle { 45 val canAccept = Output(Bool()) 46 val lqCanAccept = Input(Bool()) 47 val needAlloc = Vec(RenameWidth, Input(Bool())) 48 val req = Vec(RenameWidth, Flipped(ValidIO(new MicroOp))) 49 val resp = Vec(RenameWidth, Output(new SqPtr)) 50} 51 52// Store Queue 53class StoreQueue(implicit p: Parameters) extends XSModule with HasDCacheParameters with HasCircularQueuePtrHelper { 54 val io = IO(new Bundle() { 55 val enq = new SqEnqIO 56 val brqRedirect = Flipped(ValidIO(new Redirect)) 57 val flush = Input(Bool()) 58 val storeIn = Vec(StorePipelineWidth, Flipped(Valid(new LsPipelineBundle))) // store addr, data is not included 59 val storeDataIn = Vec(StorePipelineWidth, Flipped(Valid(new StoreDataBundle))) // store data, send to sq from rs 60 val sbuffer = Vec(StorePipelineWidth, Decoupled(new DCacheWordReq)) // write commited store to sbuffer 61 val mmioStout = DecoupledIO(new ExuOutput) // writeback uncached store 62 val forward = Vec(LoadPipelineWidth, Flipped(new PipeLoadForwardQueryIO)) 63 val roq = Flipped(new RoqLsqIO) 64 val uncache = new DCacheWordIO 65 // val refill = Flipped(Valid(new DCacheLineReq )) 66 val exceptionAddr = new ExceptionAddrIO 67 val sqempty = Output(Bool()) 68 val issuePtrExt = Output(new SqPtr) // used to wake up delayed load/store 69 val storeIssue = Vec(StorePipelineWidth, Flipped(Valid(new ExuInput))) // used to update issuePtrExt 70 val sqFull = Output(Bool()) 71 }) 72 73 println("StoreQueue: size:" + StoreQueueSize) 74 75 // data modules 76 val uop = Reg(Vec(StoreQueueSize, new MicroOp)) 77 // val data = Reg(Vec(StoreQueueSize, new LsqEntry)) 78 val dataModule = Module(new SQDataModule(StoreQueueSize, numRead = StorePipelineWidth, numWrite = StorePipelineWidth, numForward = StorePipelineWidth)) 79 dataModule.io := DontCare 80 val paddrModule = Module(new SQPaddrModule(StoreQueueSize, numRead = StorePipelineWidth, numWrite = StorePipelineWidth, numForward = StorePipelineWidth)) 81 paddrModule.io := DontCare 82 val vaddrModule = Module(new SyncDataModuleTemplate(UInt(VAddrBits.W), StoreQueueSize, numRead = 1, numWrite = StorePipelineWidth)) 83 vaddrModule.io := DontCare 84 85 // state & misc 86 val allocated = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // sq entry has been allocated 87 val addrvalid = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // non-mmio addr is valid 88 val datavalid = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // non-mmio data is valid 89 val allvalid = VecInit((0 until StoreQueueSize).map(i => addrvalid(i) && datavalid(i))) // non-mmio data & addr is valid 90 val issued = Reg(Vec(StoreQueueSize, Bool())) // inst has been issued by rs 91 val commited = Reg(Vec(StoreQueueSize, Bool())) // inst has been commited by roq 92 val pending = Reg(Vec(StoreQueueSize, Bool())) // mmio pending: inst is an mmio inst, it will not be executed until it reachs the end of roq 93 val mmio = Reg(Vec(StoreQueueSize, Bool())) // mmio: inst is an mmio inst 94 95 // ptr 96 require(StoreQueueSize > RenameWidth) 97 val enqPtrExt = RegInit(VecInit((0 until RenameWidth).map(_.U.asTypeOf(new SqPtr)))) 98 val deqPtrExt = RegInit(VecInit((0 until StorePipelineWidth).map(_.U.asTypeOf(new SqPtr)))) 99 val cmtPtrExt = RegInit(VecInit((0 until CommitWidth).map(_.U.asTypeOf(new SqPtr)))) 100 val issuePtrExt = RegInit(0.U.asTypeOf(new SqPtr)) 101 val validCounter = RegInit(0.U(log2Ceil(LoadQueueSize + 1).W)) 102 val allowEnqueue = RegInit(true.B) 103 104 val enqPtr = enqPtrExt(0).value 105 val deqPtr = deqPtrExt(0).value 106 val cmtPtr = cmtPtrExt(0).value 107 108 val deqMask = UIntToMask(deqPtr, StoreQueueSize) 109 val enqMask = UIntToMask(enqPtr, StoreQueueSize) 110 111 val commitCount = RegNext(io.roq.scommit) 112 113 // Read dataModule 114 // deqPtrExtNext and deqPtrExtNext+1 entry will be read from dataModule 115 // if !sbuffer.fire(), read the same ptr 116 // if sbuffer.fire(), read next 117 val deqPtrExtNext = WireInit(Mux(io.sbuffer(1).fire(), 118 VecInit(deqPtrExt.map(_ + 2.U)), 119 Mux(io.sbuffer(0).fire() || io.mmioStout.fire(), 120 VecInit(deqPtrExt.map(_ + 1.U)), 121 deqPtrExt 122 ) 123 )) 124 for (i <- 0 until StorePipelineWidth) { 125 dataModule.io.raddr(i) := deqPtrExtNext(i).value 126 paddrModule.io.raddr(i) := deqPtrExtNext(i).value 127 } 128 129 // no inst will be commited 1 cycle before tval update 130 vaddrModule.io.raddr(0) := (cmtPtrExt(0) + commitCount).value 131 132 /** 133 * Enqueue at dispatch 134 * 135 * Currently, StoreQueue only allows enqueue when #emptyEntries > RenameWidth(EnqWidth) 136 */ 137 io.enq.canAccept := allowEnqueue 138 for (i <- 0 until RenameWidth) { 139 val offset = if (i == 0) 0.U else PopCount(io.enq.needAlloc.take(i)) 140 val sqIdx = enqPtrExt(offset) 141 val index = sqIdx.value 142 when (io.enq.req(i).valid && io.enq.canAccept && io.enq.lqCanAccept && !(io.brqRedirect.valid || io.flush)) { 143 uop(index) := io.enq.req(i).bits 144 allocated(index) := true.B 145 datavalid(index) := false.B 146 addrvalid(index) := false.B 147 issued(index) := false.B 148 commited(index) := false.B 149 pending(index) := false.B 150 } 151 io.enq.resp(i) := sqIdx 152 } 153 XSDebug(p"(ready, valid): ${io.enq.canAccept}, ${Binary(Cat(io.enq.req.map(_.valid)))}\n") 154 155 /** 156 * Update issuePtr when issue from rs 157 */ 158 159 // update state bit issued 160 for (i <- 0 until StorePipelineWidth) { 161 when (io.storeIssue(i).valid) { 162 issued(io.storeIssue(i).bits.uop.sqIdx.value) := true.B 163 } 164 } 165 166 // update issuePtr 167 val IssuePtrMoveStride = 4 168 require(IssuePtrMoveStride >= 2) 169 170 val issueLookupVec = (0 until IssuePtrMoveStride).map(issuePtrExt + _.U) 171 val issueLookup = issueLookupVec.map(ptr => allocated(ptr.value) && issued(ptr.value) && ptr =/= enqPtrExt(0)) 172 val nextIssuePtr = issuePtrExt + PriorityEncoder(VecInit(issueLookup.map(!_) :+ true.B)) 173 issuePtrExt := nextIssuePtr 174 175 when (io.brqRedirect.valid || io.flush) { 176 issuePtrExt := Mux( 177 isAfter(cmtPtrExt(0), deqPtrExt(0)), 178 cmtPtrExt(0), 179 deqPtrExtNext(0) // for mmio insts, deqPtr may be ahead of cmtPtr 180 ) 181 } 182 // send issuePtrExt to rs 183 // io.issuePtrExt := cmtPtrExt(0) 184 io.issuePtrExt := issuePtrExt 185 186 /** 187 * Writeback store from store units 188 * 189 * Most store instructions writeback to regfile in the previous cycle. 190 * However, 191 * (1) For an mmio instruction with exceptions, we need to mark it as addrvalid 192 * (in this way it will trigger an exception when it reaches ROB's head) 193 * instead of pending to avoid sending them to lower level. 194 * (2) For an mmio instruction without exceptions, we mark it as pending. 195 * When the instruction reaches ROB's head, StoreQueue sends it to uncache channel. 196 * Upon receiving the response, StoreQueue writes back the instruction 197 * through arbiter with store units. It will later commit as normal. 198 */ 199 200 // Write addr to sq 201 for (i <- 0 until StorePipelineWidth) { 202 paddrModule.io.wen(i) := false.B 203 dataModule.io.mask.wen(i) := false.B 204 val stWbIndex = io.storeIn(i).bits.uop.sqIdx.value 205 when (io.storeIn(i).fire()) { 206 addrvalid(stWbIndex) := true.B//!io.storeIn(i).bits.mmio 207 pending(stWbIndex) := io.storeIn(i).bits.mmio 208 209 dataModule.io.mask.waddr(i) := stWbIndex 210 dataModule.io.mask.wdata(i) := io.storeIn(i).bits.mask 211 dataModule.io.mask.wen(i) := true.B 212 213 paddrModule.io.waddr(i) := stWbIndex 214 paddrModule.io.wdata(i) := io.storeIn(i).bits.paddr 215 paddrModule.io.wen(i) := true.B 216 217 mmio(stWbIndex) := io.storeIn(i).bits.mmio 218 219 XSInfo("store addr write to sq idx %d pc 0x%x vaddr %x paddr %x mmio %x\n", 220 io.storeIn(i).bits.uop.sqIdx.value, 221 io.storeIn(i).bits.uop.cf.pc, 222 io.storeIn(i).bits.vaddr, 223 io.storeIn(i).bits.paddr, 224 io.storeIn(i).bits.mmio 225 ) 226 } 227 // vaddrModule write is delayed, as vaddrModule will not be read right after write 228 vaddrModule.io.waddr(i) := RegNext(stWbIndex) 229 vaddrModule.io.wdata(i) := RegNext(io.storeIn(i).bits.vaddr) 230 vaddrModule.io.wen(i) := RegNext(io.storeIn(i).fire()) 231 } 232 233 // Write data to sq 234 for (i <- 0 until StorePipelineWidth) { 235 dataModule.io.data.wen(i) := false.B 236 io.roq.storeDataRoqWb(i).valid := false.B 237 io.roq.storeDataRoqWb(i).bits := DontCare 238 val stWbIndex = io.storeDataIn(i).bits.uop.sqIdx.value 239 when (io.storeDataIn(i).fire()) { 240 datavalid(stWbIndex) := true.B 241 242 dataModule.io.data.waddr(i) := stWbIndex 243 dataModule.io.data.wdata(i) := genWdata(io.storeDataIn(i).bits.data, io.storeDataIn(i).bits.uop.ctrl.fuOpType(1,0)) 244 dataModule.io.data.wen(i) := true.B 245 246 io.roq.storeDataRoqWb(i).valid := true.B 247 io.roq.storeDataRoqWb(i).bits := io.storeDataIn(i).bits.uop.roqIdx 248 249 XSInfo("store data write to sq idx %d pc 0x%x data %x -> %x\n", 250 io.storeDataIn(i).bits.uop.sqIdx.value, 251 io.storeDataIn(i).bits.uop.cf.pc, 252 io.storeDataIn(i).bits.data, 253 dataModule.io.data.wdata(i) 254 ) 255 } 256 } 257 258 /** 259 * load forward query 260 * 261 * Check store queue for instructions that is older than the load. 262 * The response will be valid at the next cycle after req. 263 */ 264 // check over all lq entries and forward data from the first matched store 265 for (i <- 0 until LoadPipelineWidth) { 266 io.forward(i).forwardMask := 0.U(8.W).asBools 267 io.forward(i).forwardData := DontCare 268 269 // Compare deqPtr (deqPtr) and forward.sqIdx, we have two cases: 270 // (1) if they have the same flag, we need to check range(tail, sqIdx) 271 // (2) if they have different flags, we need to check range(tail, LoadQueueSize) and range(0, sqIdx) 272 // Forward1: Mux(same_flag, range(tail, sqIdx), range(tail, LoadQueueSize)) 273 // Forward2: Mux(same_flag, 0.U, range(0, sqIdx) ) 274 // i.e. forward1 is the target entries with the same flag bits and forward2 otherwise 275 val differentFlag = deqPtrExt(0).flag =/= io.forward(i).sqIdx.flag 276 val forwardMask = io.forward(i).sqIdxMask 277 // all addrvalid terms need to be checked 278 val addrValidVec = WireInit(VecInit((0 until StoreQueueSize).map(i => addrvalid(i) && allocated(i)))) 279 val dataValidVec = WireInit(VecInit((0 until StoreQueueSize).map(i => datavalid(i)))) 280 val allValidVec = WireInit(VecInit((0 until StoreQueueSize).map(i => addrvalid(i) && datavalid(i) && allocated(i)))) 281 val canForward1 = Mux(differentFlag, ~deqMask, deqMask ^ forwardMask) & allValidVec.asUInt 282 val canForward2 = Mux(differentFlag, forwardMask, 0.U(StoreQueueSize.W)) & allValidVec.asUInt 283 val needForward = Mux(differentFlag, ~deqMask | forwardMask, deqMask ^ forwardMask) 284 285 XSDebug(p"$i f1 ${Binary(canForward1)} f2 ${Binary(canForward2)} " + 286 p"sqIdx ${io.forward(i).sqIdx} pa ${Hexadecimal(io.forward(i).paddr)}\n" 287 ) 288 289 // do real fwd query (cam lookup in load_s1) 290 dataModule.io.needForward(i)(0) := canForward1 & paddrModule.io.forwardMmask(i).asUInt 291 dataModule.io.needForward(i)(1) := canForward2 & paddrModule.io.forwardMmask(i).asUInt 292 293 paddrModule.io.forwardMdata(i) := io.forward(i).paddr 294 295 // Forward result will be generated 1 cycle later (load_s2) 296 io.forward(i).forwardMask := dataModule.io.forwardMask(i) 297 io.forward(i).forwardData := dataModule.io.forwardData(i) 298 299 // If addr match, data not ready, mark it as dataInvalid 300 // load_s1: generate dataInvalid in load_s1 to set fastUop to 301 io.forward(i).dataInvalidFast := (addrValidVec.asUInt & ~dataValidVec.asUInt & paddrModule.io.forwardMmask(i).asUInt & needForward).orR 302 // load_s2 303 io.forward(i).dataInvalid := RegNext(io.forward(i).dataInvalidFast) 304 } 305 306 /** 307 * Memory mapped IO / other uncached operations 308 * 309 * States: 310 * (1) writeback from store units: mark as pending 311 * (2) when they reach ROB's head, they can be sent to uncache channel 312 * (3) response from uncache channel: mark as datavalidmask.wen 313 * (4) writeback to ROB (and other units): mark as writebacked 314 * (5) ROB commits the instruction: same as normal instructions 315 */ 316 //(2) when they reach ROB's head, they can be sent to uncache channel 317 val s_idle :: s_req :: s_resp :: s_wb :: s_wait :: Nil = Enum(5) 318 val uncacheState = RegInit(s_idle) 319 switch(uncacheState) { 320 is(s_idle) { 321 when(io.roq.pendingst && pending(deqPtr) && allocated(deqPtr) && datavalid(deqPtr) && addrvalid(deqPtr)) { 322 uncacheState := s_req 323 } 324 } 325 is(s_req) { 326 when(io.uncache.req.fire()) { 327 uncacheState := s_resp 328 } 329 } 330 is(s_resp) { 331 when(io.uncache.resp.fire()) { 332 uncacheState := s_wb 333 } 334 } 335 is(s_wb) { 336 when (io.mmioStout.fire()) { 337 uncacheState := s_wait 338 } 339 } 340 is(s_wait) { 341 when(io.roq.commit) { 342 uncacheState := s_idle // ready for next mmio 343 } 344 } 345 } 346 io.uncache.req.valid := uncacheState === s_req 347 348 io.uncache.req.bits.cmd := MemoryOpConstants.M_XWR 349 io.uncache.req.bits.addr := paddrModule.io.rdata(0) // data(deqPtr) -> rdata(0) 350 io.uncache.req.bits.data := dataModule.io.rdata(0).data 351 io.uncache.req.bits.mask := dataModule.io.rdata(0).mask 352 353 io.uncache.req.bits.id := DontCare 354 355 when(io.uncache.req.fire()){ 356 // mmio store should not be committed until uncache req is sent 357 pending(deqPtr) := false.B 358 359 XSDebug( 360 p"uncache req: pc ${Hexadecimal(uop(deqPtr).cf.pc)} " + 361 p"addr ${Hexadecimal(io.uncache.req.bits.addr)} " + 362 p"data ${Hexadecimal(io.uncache.req.bits.data)} " + 363 p"op ${Hexadecimal(io.uncache.req.bits.cmd)} " + 364 p"mask ${Hexadecimal(io.uncache.req.bits.mask)}\n" 365 ) 366 } 367 368 // (3) response from uncache channel: mark as datavalid 369 io.uncache.resp.ready := true.B 370 371 // (4) writeback to ROB (and other units): mark as writebacked 372 io.mmioStout.valid := uncacheState === s_wb 373 io.mmioStout.bits.uop := uop(deqPtr) 374 io.mmioStout.bits.uop.sqIdx := deqPtrExt(0) 375 io.mmioStout.bits.data := dataModule.io.rdata(0).data // dataModule.io.rdata.read(deqPtr) 376 io.mmioStout.bits.redirectValid := false.B 377 io.mmioStout.bits.redirect := DontCare 378 io.mmioStout.bits.debug.isMMIO := true.B 379 io.mmioStout.bits.debug.paddr := DontCare 380 io.mmioStout.bits.debug.isPerfCnt := false.B 381 io.mmioStout.bits.fflags := DontCare 382 when (io.mmioStout.fire()) { 383 allocated(deqPtr) := false.B 384 } 385 386 /** 387 * ROB commits store instructions (mark them as commited) 388 * 389 * (1) When store commits, mark it as commited. 390 * (2) They will not be cancelled and can be sent to lower level. 391 */ 392 for (i <- 0 until CommitWidth) { 393 when (commitCount > i.U) { 394 commited(cmtPtrExt(i).value) := true.B 395 } 396 } 397 cmtPtrExt := cmtPtrExt.map(_ + commitCount) 398 399 // Commited stores will not be cancelled and can be sent to lower level. 400 // remove retired insts from sq, add retired store to sbuffer 401 for (i <- 0 until StorePipelineWidth) { 402 // We use RegNext to prepare data for sbuffer 403 val ptr = deqPtrExt(i).value 404 // if !sbuffer.fire(), read the same ptr 405 // if sbuffer.fire(), read next 406 io.sbuffer(i).valid := allocated(ptr) && commited(ptr) && !mmio(ptr) 407 // Note that store data/addr should both be valid after store's commit 408 assert(!io.sbuffer(i).valid || allvalid(ptr)) 409 io.sbuffer(i).bits.cmd := MemoryOpConstants.M_XWR 410 io.sbuffer(i).bits.addr := paddrModule.io.rdata(i) 411 io.sbuffer(i).bits.data := dataModule.io.rdata(i).data 412 io.sbuffer(i).bits.mask := dataModule.io.rdata(i).mask 413 io.sbuffer(i).bits.id := DontCare 414 415 when (io.sbuffer(i).fire()) { 416 allocated(ptr) := false.B 417 XSDebug("sbuffer "+i+" fire: ptr %d\n", ptr) 418 } 419 } 420 when (io.sbuffer(1).fire()) { 421 assert(io.sbuffer(0).fire()) 422 } 423 if (useFakeDCache) { 424 for (i <- 0 until StorePipelineWidth) { 425 val ptr = deqPtrExt(i).value 426 val fakeRAM = Module(new RAMHelper(64L * 1024 * 1024 * 1024)) 427 fakeRAM.io.clk := clock 428 fakeRAM.io.en := allocated(ptr) && commited(ptr) && !mmio(ptr) 429 fakeRAM.io.rIdx := 0.U 430 fakeRAM.io.wIdx := (paddrModule.io.rdata(i) - "h80000000".U) >> 3 431 fakeRAM.io.wdata := dataModule.io.rdata(i).data 432 fakeRAM.io.wmask := MaskExpand(dataModule.io.rdata(i).mask) 433 fakeRAM.io.wen := allocated(ptr) && commited(ptr) && !mmio(ptr) 434 } 435 } 436 437 if (!env.FPGAPlatform) { 438 for (i <- 0 until StorePipelineWidth) { 439 val storeCommit = io.sbuffer(i).fire() 440 val waddr = SignExt(io.sbuffer(i).bits.addr, 64) 441 val wdata = io.sbuffer(i).bits.data & MaskExpand(io.sbuffer(i).bits.mask) 442 val wmask = io.sbuffer(i).bits.mask 443 444 val difftest = Module(new DifftestStoreEvent) 445 difftest.io.clock := clock 446 difftest.io.coreid := hardId.U 447 difftest.io.index := i.U 448 difftest.io.valid := storeCommit 449 difftest.io.storeAddr := waddr 450 difftest.io.storeData := wdata 451 difftest.io.storeMask := wmask 452 } 453 } 454 455 // Read vaddr for mem exception 456 io.exceptionAddr.vaddr := vaddrModule.io.rdata(0) 457 458 // misprediction recovery / exception redirect 459 // invalidate sq term using robIdx 460 val needCancel = Wire(Vec(StoreQueueSize, Bool())) 461 for (i <- 0 until StoreQueueSize) { 462 needCancel(i) := uop(i).roqIdx.needFlush(io.brqRedirect, io.flush) && allocated(i) && !commited(i) 463 when (needCancel(i)) { 464 allocated(i) := false.B 465 } 466 } 467 468 /** 469 * update pointers 470 */ 471 val lastCycleRedirect = RegNext(io.brqRedirect.valid) 472 val lastCycleFlush = RegNext(io.flush) 473 val lastCycleCancelCount = PopCount(RegNext(needCancel)) 474 // when io.brqRedirect.valid, we don't allow eneuque even though it may fire. 475 val enqNumber = Mux(io.enq.canAccept && io.enq.lqCanAccept && !(io.brqRedirect.valid || io.flush), PopCount(io.enq.req.map(_.valid)), 0.U) 476 when (lastCycleRedirect || lastCycleFlush) { 477 // we recover the pointers in the next cycle after redirect 478 enqPtrExt := VecInit(enqPtrExt.map(_ - lastCycleCancelCount)) 479 }.otherwise { 480 enqPtrExt := VecInit(enqPtrExt.map(_ + enqNumber)) 481 } 482 483 deqPtrExt := deqPtrExtNext 484 485 val dequeueCount = Mux(io.sbuffer(1).fire(), 2.U, Mux(io.sbuffer(0).fire() || io.mmioStout.fire(), 1.U, 0.U)) 486 val validCount = distanceBetween(enqPtrExt(0), deqPtrExt(0)) 487 488 allowEnqueue := validCount + enqNumber <= (StoreQueueSize - RenameWidth).U 489 490 // io.sqempty will be used by sbuffer 491 // We delay it for 1 cycle for better timing 492 // When sbuffer need to check if it is empty, the pipeline is blocked, which means delay io.sqempty 493 // for 1 cycle will also promise that sq is empty in that cycle 494 io.sqempty := RegNext(enqPtrExt(0).value === deqPtrExt(0).value && enqPtrExt(0).flag === deqPtrExt(0).flag) 495 496 // perf counter 497 QueuePerf(StoreQueueSize, validCount, !allowEnqueue) 498 io.sqFull := !allowEnqueue 499 XSPerfAccumulate("mmioCycle", uncacheState =/= s_idle) // lq is busy dealing with uncache req 500 XSPerfAccumulate("mmioCnt", io.uncache.req.fire()) 501 XSPerfAccumulate("mmio_wb_success", io.mmioStout.fire()) 502 XSPerfAccumulate("mmio_wb_blocked", io.mmioStout.valid && !io.mmioStout.ready) 503 XSPerfAccumulate("validEntryCnt", distanceBetween(enqPtrExt(0), deqPtrExt(0))) 504 XSPerfAccumulate("cmtEntryCnt", distanceBetween(cmtPtrExt(0), deqPtrExt(0))) 505 XSPerfAccumulate("nCmtEntryCnt", distanceBetween(enqPtrExt(0), cmtPtrExt(0))) 506 507 // debug info 508 XSDebug("enqPtrExt %d:%d deqPtrExt %d:%d\n", enqPtrExt(0).flag, enqPtr, deqPtrExt(0).flag, deqPtr) 509 510 def PrintFlag(flag: Bool, name: String): Unit = { 511 when(flag) { 512 XSDebug(false, true.B, name) 513 }.otherwise { 514 XSDebug(false, true.B, " ") 515 } 516 } 517 518 for (i <- 0 until StoreQueueSize) { 519 if (i % 4 == 0) XSDebug("") 520 XSDebug(false, true.B, "%x ", uop(i).cf.pc) 521 PrintFlag(allocated(i), "a") 522 PrintFlag(allocated(i) && addrvalid(i), "a") 523 PrintFlag(allocated(i) && datavalid(i), "d") 524 PrintFlag(allocated(i) && commited(i), "c") 525 PrintFlag(allocated(i) && pending(i), "p") 526 PrintFlag(allocated(i) && mmio(i), "m") 527 XSDebug(false, true.B, " ") 528 if (i % 4 == 3 || i == StoreQueueSize - 1) XSDebug(false, true.B, "\n") 529 } 530 531} 532