1/*************************************************************************************** 2* Copyright (c) 2024 Beijing Institute of Open Source Chip (BOSC) 3* Copyright (c) 2020-2024 Institute of Computing Technology, Chinese Academy of Sciences 4* Copyright (c) 2020-2021 Peng Cheng Laboratory 5* 6* XiangShan is licensed under Mulan PSL v2. 7* You can use this software according to the terms and conditions of the Mulan PSL v2. 8* You may obtain a copy of Mulan PSL v2 at: 9* http://license.coscl.org.cn/MulanPSL2 10* 11* THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND, 12* EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT, 13* MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE. 14* 15* See the Mulan PSL v2 for more details. 16***************************************************************************************/ 17 18package xiangshan.mem 19 20import org.chipsalliance.cde.config.Parameters 21import chisel3._ 22import chisel3.util._ 23import utility._ 24import utils._ 25import xiangshan._ 26import xiangshan.ExceptionNO._ 27import xiangshan.backend._ 28import xiangshan.backend.rob.{RobLsqIO, RobPtr} 29import xiangshan.backend.Bundles.{DynInst, MemExuOutput} 30import xiangshan.backend.decode.isa.bitfield.{Riscv32BitInst, XSInstBitFields} 31import xiangshan.backend.fu.FuConfig._ 32import xiangshan.backend.fu.FuType 33import xiangshan.mem.Bundles._ 34import xiangshan.cache._ 35import xiangshan.cache.{CMOReq, CMOResp, DCacheLineIO, DCacheWordIO, MemoryOpConstants} 36import difftest._ 37import difftest.common.DifftestMem 38 39class SqPtr(implicit p: Parameters) extends CircularQueuePtr[SqPtr]( 40 p => p(XSCoreParamsKey).StoreQueueSize 41){ 42} 43 44object SqPtr { 45 def apply(f: Bool, v: UInt)(implicit p: Parameters): SqPtr = { 46 val ptr = Wire(new SqPtr) 47 ptr.flag := f 48 ptr.value := v 49 ptr 50 } 51} 52 53class SqEnqIO(implicit p: Parameters) extends MemBlockBundle { 54 val canAccept = Output(Bool()) 55 val lqCanAccept = Input(Bool()) 56 val needAlloc = Vec(LSQEnqWidth, Input(Bool())) 57 val req = Vec(LSQEnqWidth, Flipped(ValidIO(new DynInst))) 58 val resp = Vec(LSQEnqWidth, Output(new SqPtr)) 59} 60 61class DataBufferEntry (implicit p: Parameters) extends DCacheBundle { 62 val addr = UInt(PAddrBits.W) 63 val vaddr = UInt(VAddrBits.W) 64 val data = UInt(VLEN.W) 65 val mask = UInt((VLEN/8).W) 66 val wline = Bool() 67 val sqPtr = new SqPtr 68 val prefetch = Bool() 69 val vecValid = Bool() 70 val sqNeedDeq = Bool() 71} 72 73class StoreExceptionBuffer(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper { 74 // The 1st StorePipelineWidth ports: sta exception generated at s1, except for af 75 // The 2nd StorePipelineWidth ports: sta af generated at s2 76 // The following VecStorePipelineWidth ports: vector st exception 77 // The last port: non-data error generated in SoC 78 val enqPortNum = StorePipelineWidth * 2 + VecStorePipelineWidth + 1 79 80 val io = IO(new Bundle() { 81 val redirect = Flipped(ValidIO(new Redirect)) 82 val storeAddrIn = Vec(enqPortNum, Flipped(ValidIO(new LsPipelineBundle()))) 83 val exceptionAddr = new ExceptionAddrIO 84 }) 85 86 val req_valid = RegInit(false.B) 87 val req = Reg(new LsPipelineBundle()) 88 89 // enqueue 90 // S1: 91 val s1_req = VecInit(io.storeAddrIn.map(_.bits)) 92 val s1_valid = VecInit(io.storeAddrIn.map(x => 93 x.valid && !x.bits.uop.robIdx.needFlush(io.redirect) && ExceptionNO.selectByFu(x.bits.uop.exceptionVec, StaCfg).asUInt.orR 94 )) 95 96 // S2: delay 1 cycle 97 val s2_req = (0 until enqPortNum).map(i => 98 RegEnable(s1_req(i), s1_valid(i))) 99 val s2_valid = (0 until enqPortNum).map(i => 100 RegNext(s1_valid(i)) && !s2_req(i).uop.robIdx.needFlush(io.redirect) 101 ) 102 103 val s2_enqueue = Wire(Vec(enqPortNum, Bool())) 104 for (w <- 0 until enqPortNum) { 105 s2_enqueue(w) := s2_valid(w) 106 } 107 108 when (req_valid && req.uop.robIdx.needFlush(io.redirect)) { 109 req_valid := s2_enqueue.asUInt.orR 110 }.elsewhen (s2_enqueue.asUInt.orR) { 111 req_valid := true.B 112 } 113 114 def selectOldest[T <: LsPipelineBundle](valid: Seq[Bool], bits: Seq[T]): (Seq[Bool], Seq[T]) = { 115 assert(valid.length == bits.length) 116 if (valid.length == 0 || valid.length == 1) { 117 (valid, bits) 118 } else if (valid.length == 2) { 119 val res = Seq.fill(2)(Wire(Valid(chiselTypeOf(bits(0))))) 120 for (i <- res.indices) { 121 res(i).valid := valid(i) 122 res(i).bits := bits(i) 123 } 124 val oldest = Mux(valid(0) && valid(1), 125 Mux(isAfter(bits(0).uop.robIdx, bits(1).uop.robIdx) || 126 (bits(0).uop.robIdx === bits(1).uop.robIdx && bits(0).uop.uopIdx > bits(1).uop.uopIdx), res(1), res(0)), 127 Mux(valid(0) && !valid(1), res(0), res(1))) 128 (Seq(oldest.valid), Seq(oldest.bits)) 129 } else { 130 val left = selectOldest(valid.take(valid.length / 2), bits.take(bits.length / 2)) 131 val right = selectOldest(valid.takeRight(valid.length - (valid.length / 2)), bits.takeRight(bits.length - (bits.length / 2))) 132 selectOldest(left._1 ++ right._1, left._2 ++ right._2) 133 } 134 } 135 136 val reqSel = selectOldest(s2_enqueue, s2_req) 137 138 when (req_valid) { 139 req := Mux( 140 reqSel._1(0) && (isAfter(req.uop.robIdx, reqSel._2(0).uop.robIdx) || (isNotBefore(req.uop.robIdx, reqSel._2(0).uop.robIdx) && req.uop.uopIdx > reqSel._2(0).uop.uopIdx)), 141 reqSel._2(0), 142 req) 143 } .elsewhen (s2_enqueue.asUInt.orR) { 144 req := reqSel._2(0) 145 } 146 147 io.exceptionAddr.vaddr := req.fullva 148 io.exceptionAddr.vaNeedExt := req.vaNeedExt 149 io.exceptionAddr.isHyper := req.isHyper 150 io.exceptionAddr.gpaddr := req.gpaddr 151 io.exceptionAddr.vstart := req.uop.vpu.vstart 152 io.exceptionAddr.vl := req.uop.vpu.vl 153 io.exceptionAddr.isForVSnonLeafPTE := req.isForVSnonLeafPTE 154 155} 156 157// Store Queue 158class StoreQueue(implicit p: Parameters) extends XSModule 159 with HasDCacheParameters 160 with HasCircularQueuePtrHelper 161 with HasPerfEvents 162 with HasVLSUParameters { 163 val io = IO(new Bundle() { 164 val hartId = Input(UInt(hartIdLen.W)) 165 val enq = new SqEnqIO 166 val brqRedirect = Flipped(ValidIO(new Redirect)) 167 val vecFeedback = Vec(VecLoadPipelineWidth, Flipped(ValidIO(new FeedbackToLsqIO))) 168 val storeAddrIn = Vec(StorePipelineWidth, Flipped(Valid(new LsPipelineBundle))) // store addr, data is not included 169 val storeAddrInRe = Vec(StorePipelineWidth, Input(new LsPipelineBundle())) // store more mmio and exception 170 val storeDataIn = Vec(StorePipelineWidth, Flipped(Valid(new MemExuOutput(isVector = true)))) // store data, send to sq from rs 171 val storeMaskIn = Vec(StorePipelineWidth, Flipped(Valid(new StoreMaskBundle))) // store mask, send to sq from rs 172 val sbuffer = Vec(EnsbufferWidth, Decoupled(new DCacheWordReqWithVaddrAndPfFlag)) // write committed store to sbuffer 173 val sbufferVecDifftestInfo = Vec(EnsbufferWidth, Decoupled(new DynInst)) // The vector store difftest needs is, write committed store to sbuffer 174 val uncacheOutstanding = Input(Bool()) 175 val cmoOpReq = DecoupledIO(new CMOReq) 176 val cmoOpResp = Flipped(DecoupledIO(new CMOResp)) 177 val mmioStout = DecoupledIO(new MemExuOutput) // writeback uncached store 178 val vecmmioStout = DecoupledIO(new MemExuOutput(isVector = true)) 179 val forward = Vec(LoadPipelineWidth, Flipped(new PipeLoadForwardQueryIO)) 180 // TODO: scommit is only for scalar store 181 val rob = Flipped(new RobLsqIO) 182 val uncache = new UncacheWordIO 183 // val refill = Flipped(Valid(new DCacheLineReq )) 184 val exceptionAddr = new ExceptionAddrIO 185 val flushSbuffer = new SbufferFlushBundle 186 val sqEmpty = Output(Bool()) 187 val stAddrReadySqPtr = Output(new SqPtr) 188 val stAddrReadyVec = Output(Vec(StoreQueueSize, Bool())) 189 val stDataReadySqPtr = Output(new SqPtr) 190 val stDataReadyVec = Output(Vec(StoreQueueSize, Bool())) 191 val stIssuePtr = Output(new SqPtr) 192 val sqDeqPtr = Output(new SqPtr) 193 val sqFull = Output(Bool()) 194 val sqCancelCnt = Output(UInt(log2Up(StoreQueueSize + 1).W)) 195 val sqDeq = Output(UInt(log2Ceil(EnsbufferWidth + 1).W)) 196 val force_write = Output(Bool()) 197 val maControl = Flipped(new StoreMaBufToSqControlIO) 198 }) 199 200 println("StoreQueue: size:" + StoreQueueSize) 201 202 // data modules 203 val uop = Reg(Vec(StoreQueueSize, new DynInst)) 204 // val data = Reg(Vec(StoreQueueSize, new LsqEntry)) 205 val dataModule = Module(new SQDataModule( 206 numEntries = StoreQueueSize, 207 numRead = EnsbufferWidth, 208 numWrite = StorePipelineWidth, 209 numForward = LoadPipelineWidth 210 )) 211 dataModule.io := DontCare 212 val paddrModule = Module(new SQAddrModule( 213 dataWidth = PAddrBits, 214 numEntries = StoreQueueSize, 215 numRead = EnsbufferWidth, 216 numWrite = StorePipelineWidth, 217 numForward = LoadPipelineWidth 218 )) 219 paddrModule.io := DontCare 220 val vaddrModule = Module(new SQAddrModule( 221 dataWidth = VAddrBits, 222 numEntries = StoreQueueSize, 223 numRead = EnsbufferWidth, // sbuffer; badvaddr will be sent from exceptionBuffer 224 numWrite = StorePipelineWidth, 225 numForward = LoadPipelineWidth 226 )) 227 vaddrModule.io := DontCare 228 val dataBuffer = Module(new DatamoduleResultBuffer(new DataBufferEntry)) 229 val difftestBuffer = if (env.EnableDifftest) Some(Module(new DatamoduleResultBuffer(new DynInst))) else None 230 val exceptionBuffer = Module(new StoreExceptionBuffer) 231 exceptionBuffer.io.redirect := io.brqRedirect 232 exceptionBuffer.io.exceptionAddr.isStore := DontCare 233 // vlsu exception! 234 for (i <- 0 until VecStorePipelineWidth) { 235 exceptionBuffer.io.storeAddrIn(StorePipelineWidth * 2 + i).valid := io.vecFeedback(i).valid && io.vecFeedback(i).bits.feedback(VecFeedbacks.FLUSH) // have exception 236 exceptionBuffer.io.storeAddrIn(StorePipelineWidth * 2 + i).bits := DontCare 237 exceptionBuffer.io.storeAddrIn(StorePipelineWidth * 2 + i).bits.fullva := io.vecFeedback(i).bits.vaddr 238 exceptionBuffer.io.storeAddrIn(StorePipelineWidth * 2 + i).bits.vaNeedExt := io.vecFeedback(i).bits.vaNeedExt 239 exceptionBuffer.io.storeAddrIn(StorePipelineWidth * 2 + i).bits.gpaddr := io.vecFeedback(i).bits.gpaddr 240 exceptionBuffer.io.storeAddrIn(StorePipelineWidth * 2 + i).bits.uop.uopIdx := io.vecFeedback(i).bits.uopidx 241 exceptionBuffer.io.storeAddrIn(StorePipelineWidth * 2 + i).bits.uop.robIdx := io.vecFeedback(i).bits.robidx 242 exceptionBuffer.io.storeAddrIn(StorePipelineWidth * 2 + i).bits.uop.vpu.vstart := io.vecFeedback(i).bits.vstart 243 exceptionBuffer.io.storeAddrIn(StorePipelineWidth * 2 + i).bits.uop.vpu.vl := io.vecFeedback(i).bits.vl 244 exceptionBuffer.io.storeAddrIn(StorePipelineWidth * 2 + i).bits.isForVSnonLeafPTE := io.vecFeedback(i).bits.isForVSnonLeafPTE 245 exceptionBuffer.io.storeAddrIn(StorePipelineWidth * 2 + i).bits.uop.exceptionVec := io.vecFeedback(i).bits.exceptionVec 246 } 247 248 249 val debug_paddr = Reg(Vec(StoreQueueSize, UInt((PAddrBits).W))) 250 val debug_vaddr = Reg(Vec(StoreQueueSize, UInt((VAddrBits).W))) 251 val debug_data = Reg(Vec(StoreQueueSize, UInt((XLEN).W))) 252 253 // state & misc 254 val allocated = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // sq entry has been allocated 255 val addrvalid = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) 256 val datavalid = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) 257 val allvalid = VecInit((0 until StoreQueueSize).map(i => addrvalid(i) && datavalid(i))) 258 val committed = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // inst has been committed by rob 259 val unaligned = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // unaligned store 260 val cross16Byte = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // unaligned cross 16Byte boundary 261 val pending = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // mmio pending: inst is an mmio inst, it will not be executed until it reachs the end of rob 262 val nc = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // nc: inst is a nc inst 263 val mmio = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // mmio: inst is an mmio inst 264 val atomic = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) 265 val memBackTypeMM = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) 266 val prefetch = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // need prefetch when committing this store to sbuffer? 267 val isVec = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // vector store instruction 268 val vecLastFlow = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // last uop the last flow of vector store instruction 269 val vecMbCommit = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // vector store committed from merge buffer to rob 270 val hasException = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // store has exception, should deq but not write sbuffer 271 val waitStoreS2 = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // wait for mmio and exception result until store_s2 272 // val vec_robCommit = Reg(Vec(StoreQueueSize, Bool())) // vector store committed by rob 273 // val vec_secondInv = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // Vector unit-stride, second entry is invalid 274 val vecExceptionFlag = RegInit(0.U.asTypeOf(Valid(new DynInst))) 275 276 // ptr 277 val enqPtrExt = RegInit(VecInit((0 until io.enq.req.length).map(_.U.asTypeOf(new SqPtr)))) 278 val rdataPtrExt = RegInit(VecInit((0 until EnsbufferWidth).map(_.U.asTypeOf(new SqPtr)))) 279 val deqPtrExt = RegInit(VecInit((0 until EnsbufferWidth).map(_.U.asTypeOf(new SqPtr)))) 280 val cmtPtrExt = RegInit(VecInit((0 until CommitWidth).map(_.U.asTypeOf(new SqPtr)))) 281 val addrReadyPtrExt = RegInit(0.U.asTypeOf(new SqPtr)) 282 val dataReadyPtrExt = RegInit(0.U.asTypeOf(new SqPtr)) 283 284 val enqPtr = enqPtrExt(0).value 285 val deqPtr = deqPtrExt(0).value 286 val cmtPtr = cmtPtrExt(0).value 287 288 val validCount = distanceBetween(enqPtrExt(0), deqPtrExt(0)) 289 val allowEnqueue = validCount <= (StoreQueueSize - LSQStEnqWidth).U 290 291 val deqMask = UIntToMask(deqPtr, StoreQueueSize) 292 val enqMask = UIntToMask(enqPtr, StoreQueueSize) 293 294 val commitCount = WireInit(0.U(log2Ceil(CommitWidth + 1).W)) 295 val scommit = GatedRegNext(io.rob.scommit) 296 val mmioReq = Wire(chiselTypeOf(io.uncache.req)) 297 val ncWaitRespPtrReg = RegInit(0.U(uncacheIdxBits.W)) // it's valid only in non-outstanding situation 298 val ncReq = Wire(chiselTypeOf(io.uncache.req)) 299 val ncResp = Wire(chiselTypeOf(io.uncache.resp)) 300 val ncDoReq = Wire(Bool()) 301 val ncSlaveAck = Wire(Bool()) 302 val ncSlaveAckMid = Wire(UInt(uncacheIdxBits.W)) 303 val ncDoResp = Wire(Bool()) 304 val ncReadNextTrigger = Mux(io.uncacheOutstanding, ncDoReq, ncDoResp) 305 val ncDeqTrigger = Mux(io.uncacheOutstanding, ncSlaveAck, ncDoResp) 306 val ncPtr = Mux(io.uncacheOutstanding, ncSlaveAckMid, ncWaitRespPtrReg) 307 308 // store can be committed by ROB 309 io.rob.mmio := DontCare 310 io.rob.uop := DontCare 311 312 // Read dataModule 313 assert(EnsbufferWidth <= 2) 314 // rdataPtrExtNext and rdataPtrExtNext+1 entry will be read from dataModule 315 val rdataPtrExtNext = Wire(Vec(EnsbufferWidth, new SqPtr)) 316 rdataPtrExtNext := rdataPtrExt.map(i => i + 317 PopCount(dataBuffer.io.enq.map(x=> x.fire && x.bits.sqNeedDeq)) + 318 PopCount(ncReadNextTrigger || io.mmioStout.fire || io.vecmmioStout.fire) 319 ) 320 321 // deqPtrExtNext traces which inst is about to leave store queue 322 // 323 // io.sbuffer(i).fire is RegNexted, as sbuffer data write takes 2 cycles. 324 // Before data write finish, sbuffer is unable to provide store to load 325 // forward data. As an workaround, deqPtrExt and allocated flag update 326 // is delayed so that load can get the right data from store queue. 327 // 328 // Modify deqPtrExtNext and io.sqDeq with care! 329 val deqPtrExtNext = Wire(Vec(EnsbufferWidth, new SqPtr)) 330 // Only sqNeedDeq can move the ptr 331 deqPtrExtNext := deqPtrExt.map(i => i + 332 RegNext(PopCount(VecInit(io.sbuffer.map(x=> x.fire && x.bits.sqNeedDeq)))) + 333 PopCount(ncDeqTrigger || io.mmioStout.fire || io.vecmmioStout.fire) 334 ) 335 336 io.sqDeq := RegNext( 337 RegNext(PopCount(VecInit(io.sbuffer.map(x=> x.fire && x.bits.sqNeedDeq)))) + 338 PopCount(ncDeqTrigger || io.mmioStout.fire || io.vecmmioStout.fire) 339 ) 340 341 assert(!RegNext(RegNext(io.sbuffer(0).fire) && (io.mmioStout.fire || io.vecmmioStout.fire))) 342 343 for (i <- 0 until EnsbufferWidth) { 344 dataModule.io.raddr(i) := rdataPtrExtNext(i).value 345 paddrModule.io.raddr(i) := rdataPtrExtNext(i).value 346 vaddrModule.io.raddr(i) := rdataPtrExtNext(i).value 347 } 348 349 /** 350 * Enqueue at dispatch 351 * 352 * Currently, StoreQueue only allows enqueue when #emptyEntries > EnqWidth 353 * Dynamic enq based on numLsElem number 354 */ 355 io.enq.canAccept := allowEnqueue 356 val canEnqueue = io.enq.req.map(_.valid) 357 val enqCancel = io.enq.req.map(_.bits.robIdx.needFlush(io.brqRedirect)) 358 val vStoreFlow = io.enq.req.map(_.bits.numLsElem.asTypeOf(UInt(elemIdxBits.W))) 359 val validVStoreFlow = vStoreFlow.zipWithIndex.map{case (vStoreFlowNumItem, index) => Mux(!RegNext(io.brqRedirect.valid) && canEnqueue(index), vStoreFlowNumItem, 0.U)} 360 val validVStoreOffset = vStoreFlow.zip(io.enq.needAlloc).map{case (flow, needAllocItem) => Mux(needAllocItem, flow, 0.U)} 361 val validVStoreOffsetRShift = 0.U +: validVStoreOffset.take(vStoreFlow.length - 1) 362 363 val enqLowBound = io.enq.req.map(_.bits.sqIdx) 364 val enqUpBound = io.enq.req.map(x => x.bits.sqIdx + x.bits.numLsElem) 365 val enqCrossLoop = enqLowBound.zip(enqUpBound).map{case (low, up) => low.flag =/= up.flag} 366 367 for(i <- 0 until StoreQueueSize) { 368 val entryCanEnqSeq = (0 until io.enq.req.length).map { j => 369 val entryHitBound = Mux( 370 enqCrossLoop(j), 371 enqLowBound(j).value <= i.U || i.U < enqUpBound(j).value, 372 enqLowBound(j).value <= i.U && i.U < enqUpBound(j).value 373 ) 374 canEnqueue(j) && !enqCancel(j) && entryHitBound 375 } 376 377 val entryCanEnq = entryCanEnqSeq.reduce(_ || _) 378 val selectBits = ParallelPriorityMux(entryCanEnqSeq, io.enq.req.map(_.bits)) 379 val selectUpBound = ParallelPriorityMux(entryCanEnqSeq, enqUpBound) 380 when (entryCanEnq) { 381 uop(i) := selectBits 382 if (i + 1 == StoreQueueSize) 383 vecLastFlow(i) := Mux(0.U === selectUpBound.value, selectBits.lastUop, false.B) else 384 vecLastFlow(i) := Mux((i + 1).U === selectUpBound.value, selectBits.lastUop, false.B) 385 allocated(i) := true.B 386 datavalid(i) := false.B 387 addrvalid(i) := false.B 388 unaligned(i) := false.B 389 cross16Byte(i) := false.B 390 committed(i) := false.B 391 pending(i) := false.B 392 prefetch(i) := false.B 393 nc(i) := false.B 394 mmio(i) := false.B 395 isVec(i) := FuType.isVStore(selectBits.fuType) 396 vecMbCommit(i) := false.B 397 hasException(i) := false.B 398 waitStoreS2(i) := true.B 399 } 400 } 401 402 for (i <- 0 until io.enq.req.length) { 403 val sqIdx = enqPtrExt(0) + validVStoreOffsetRShift.take(i + 1).reduce(_ + _) 404 val index = io.enq.req(i).bits.sqIdx 405 XSError(canEnqueue(i) && !enqCancel(i) && (!io.enq.canAccept || !io.enq.lqCanAccept), s"must accept $i\n") 406 XSError(canEnqueue(i) && !enqCancel(i) && index.value =/= sqIdx.value, s"must be the same entry $i\n") 407 io.enq.resp(i) := sqIdx 408 } 409 XSDebug(p"(ready, valid): ${io.enq.canAccept}, ${Binary(Cat(io.enq.req.map(_.valid)))}\n") 410 411 /** 412 * Update addr/dataReadyPtr when issue from rs 413 */ 414 // update issuePtr 415 val IssuePtrMoveStride = 4 416 require(IssuePtrMoveStride >= 2) 417 418 val addrReadyLookupVec = (0 until IssuePtrMoveStride).map(addrReadyPtrExt + _.U) 419 val addrReadyLookup = addrReadyLookupVec.map(ptr => allocated(ptr.value) && 420 (mmio(ptr.value) || addrvalid(ptr.value) || vecMbCommit(ptr.value)) 421 && ptr =/= enqPtrExt(0)) 422 val nextAddrReadyPtr = addrReadyPtrExt + PriorityEncoder(VecInit(addrReadyLookup.map(!_) :+ true.B)) 423 addrReadyPtrExt := nextAddrReadyPtr 424 425 val stAddrReadyVecReg = Wire(Vec(StoreQueueSize, Bool())) 426 (0 until StoreQueueSize).map(i => { 427 stAddrReadyVecReg(i) := allocated(i) && (mmio(i) || addrvalid(i) || (isVec(i) && vecMbCommit(i))) 428 }) 429 io.stAddrReadyVec := GatedValidRegNext(stAddrReadyVecReg) 430 431 when (io.brqRedirect.valid) { 432 addrReadyPtrExt := Mux( 433 isAfter(cmtPtrExt(0), deqPtrExt(0)), 434 cmtPtrExt(0), 435 deqPtrExtNext(0) // for mmio insts, deqPtr may be ahead of cmtPtr 436 ) 437 } 438 439 io.stAddrReadySqPtr := addrReadyPtrExt 440 441 // update 442 val dataReadyLookupVec = (0 until IssuePtrMoveStride).map(dataReadyPtrExt + _.U) 443 val dataReadyLookup = dataReadyLookupVec.map(ptr => allocated(ptr.value) && 444 (mmio(ptr.value) || datavalid(ptr.value) || vecMbCommit(ptr.value)) 445 && ptr =/= enqPtrExt(0)) 446 val nextDataReadyPtr = dataReadyPtrExt + PriorityEncoder(VecInit(dataReadyLookup.map(!_) :+ true.B)) 447 dataReadyPtrExt := nextDataReadyPtr 448 449 val stDataReadyVecReg = Wire(Vec(StoreQueueSize, Bool())) 450 (0 until StoreQueueSize).map(i => { 451 stDataReadyVecReg(i) := allocated(i) && (mmio(i) || datavalid(i) || (isVec(i) && vecMbCommit(i))) 452 }) 453 io.stDataReadyVec := GatedValidRegNext(stDataReadyVecReg) 454 455 when (io.brqRedirect.valid) { 456 dataReadyPtrExt := Mux( 457 isAfter(cmtPtrExt(0), deqPtrExt(0)), 458 cmtPtrExt(0), 459 deqPtrExtNext(0) // for mmio insts, deqPtr may be ahead of cmtPtr 460 ) 461 } 462 463 io.stDataReadySqPtr := dataReadyPtrExt 464 io.stIssuePtr := enqPtrExt(0) 465 io.sqDeqPtr := deqPtrExt(0) 466 467 /** 468 * Writeback store from store units 469 * 470 * Most store instructions writeback to regfile in the previous cycle. 471 * However, 472 * (1) For an mmio instruction with exceptions, we need to mark it as addrvalid 473 * (in this way it will trigger an exception when it reaches ROB's head) 474 * instead of pending to avoid sending them to lower level. 475 * (2) For an mmio instruction without exceptions, we mark it as pending. 476 * When the instruction reaches ROB's head, StoreQueue sends it to uncache channel. 477 * Upon receiving the response, StoreQueue writes back the instruction 478 * through arbiter with store units. It will later commit as normal. 479 */ 480 481 // Write addr to sq 482 for (i <- 0 until StorePipelineWidth) { 483 paddrModule.io.wen(i) := false.B 484 vaddrModule.io.wen(i) := false.B 485 dataModule.io.mask.wen(i) := false.B 486 val stWbIndex = io.storeAddrIn(i).bits.uop.sqIdx.value 487 exceptionBuffer.io.storeAddrIn(i).valid := io.storeAddrIn(i).fire && !io.storeAddrIn(i).bits.miss && !io.storeAddrIn(i).bits.isvec 488 exceptionBuffer.io.storeAddrIn(i).bits := io.storeAddrIn(i).bits 489 // will re-enter exceptionbuffer at store_s2 490 exceptionBuffer.io.storeAddrIn(StorePipelineWidth + i).valid := false.B 491 exceptionBuffer.io.storeAddrIn(StorePipelineWidth + i).bits := 0.U.asTypeOf(new LsPipelineBundle) 492 493 when (io.storeAddrIn(i).fire && io.storeAddrIn(i).bits.updateAddrValid) { 494 val addr_valid = !io.storeAddrIn(i).bits.miss 495 addrvalid(stWbIndex) := addr_valid //!io.storeAddrIn(i).bits.mmio 496 nc(stWbIndex) := io.storeAddrIn(i).bits.nc 497 498 } 499 when (io.storeAddrIn(i).fire && !io.storeAddrIn(i).bits.isFrmMisAlignBuf) { 500 // pending(stWbIndex) := io.storeAddrIn(i).bits.mmio 501 unaligned(stWbIndex) := io.storeAddrIn(i).bits.isMisalign 502 cross16Byte(stWbIndex) := io.storeAddrIn(i).bits.isMisalign && !io.storeAddrIn(i).bits.misalignWith16Byte 503 504 paddrModule.io.waddr(i) := stWbIndex 505 paddrModule.io.wdata(i) := io.storeAddrIn(i).bits.paddr 506 paddrModule.io.wmask(i) := io.storeAddrIn(i).bits.mask 507 paddrModule.io.wlineflag(i) := io.storeAddrIn(i).bits.wlineflag 508 paddrModule.io.wen(i) := true.B 509 510 vaddrModule.io.waddr(i) := stWbIndex 511 vaddrModule.io.wdata(i) := io.storeAddrIn(i).bits.vaddr 512 vaddrModule.io.wmask(i) := io.storeAddrIn(i).bits.mask 513 vaddrModule.io.wlineflag(i) := io.storeAddrIn(i).bits.wlineflag 514 vaddrModule.io.wen(i) := true.B 515 516 debug_paddr(paddrModule.io.waddr(i)) := paddrModule.io.wdata(i) 517 518 // mmio(stWbIndex) := io.storeAddrIn(i).bits.mmio 519 } 520 when (io.storeAddrIn(i).fire) { 521 uop(stWbIndex) := io.storeAddrIn(i).bits.uop 522 uop(stWbIndex).debugInfo := io.storeAddrIn(i).bits.uop.debugInfo 523 } 524 XSInfo(io.storeAddrIn(i).fire && !io.storeAddrIn(i).bits.isFrmMisAlignBuf, 525 "store addr write to sq idx %d pc 0x%x miss:%d vaddr %x paddr %x mmio %x isvec %x\n", 526 io.storeAddrIn(i).bits.uop.sqIdx.value, 527 io.storeAddrIn(i).bits.uop.pc, 528 io.storeAddrIn(i).bits.miss, 529 io.storeAddrIn(i).bits.vaddr, 530 io.storeAddrIn(i).bits.paddr, 531 io.storeAddrIn(i).bits.mmio, 532 io.storeAddrIn(i).bits.isvec 533 ) 534 535 // re-replinish mmio, for pma/pmp will get mmio one cycle later 536 val storeAddrInFireReg = RegNext(io.storeAddrIn(i).fire && !io.storeAddrIn(i).bits.miss) && io.storeAddrInRe(i).updateAddrValid 537 //val stWbIndexReg = RegNext(stWbIndex) 538 val stWbIndexReg = RegEnable(stWbIndex, io.storeAddrIn(i).fire) 539 when (storeAddrInFireReg) { 540 pending(stWbIndexReg) := io.storeAddrInRe(i).mmio 541 mmio(stWbIndexReg) := io.storeAddrInRe(i).mmio 542 atomic(stWbIndexReg) := io.storeAddrInRe(i).atomic 543 memBackTypeMM(stWbIndexReg) := io.storeAddrInRe(i).memBackTypeMM 544 hasException(stWbIndexReg) := io.storeAddrInRe(i).hasException 545 waitStoreS2(stWbIndexReg) := false.B 546 } 547 // dcache miss info (one cycle later than storeIn) 548 // if dcache report a miss in sta pipeline, this store will trigger a prefetch when committing to sbuffer (if EnableAtCommitMissTrigger) 549 when (storeAddrInFireReg) { 550 prefetch(stWbIndexReg) := io.storeAddrInRe(i).miss 551 } 552 // enter exceptionbuffer again 553 when (storeAddrInFireReg) { 554 exceptionBuffer.io.storeAddrIn(StorePipelineWidth + i).valid := io.storeAddrInRe(i).hasException && !io.storeAddrInRe(i).isvec 555 exceptionBuffer.io.storeAddrIn(StorePipelineWidth + i).bits := io.storeAddrInRe(i) 556 exceptionBuffer.io.storeAddrIn(StorePipelineWidth + i).bits.uop.exceptionVec(storeAccessFault) := io.storeAddrInRe(i).af 557 } 558 559 when(vaddrModule.io.wen(i)){ 560 debug_vaddr(vaddrModule.io.waddr(i)) := vaddrModule.io.wdata(i) 561 } 562 } 563 564 // Write data to sq 565 // Now store data pipeline is actually 2 stages 566 for (i <- 0 until StorePipelineWidth) { 567 dataModule.io.data.wen(i) := false.B 568 val stWbIndex = io.storeDataIn(i).bits.uop.sqIdx.value 569 val isVec = FuType.isVStore(io.storeDataIn(i).bits.uop.fuType) 570 // sq data write takes 2 cycles: 571 // sq data write s0 572 when (io.storeDataIn(i).fire) { 573 // send data write req to data module 574 dataModule.io.data.waddr(i) := stWbIndex 575 dataModule.io.data.wdata(i) := Mux(io.storeDataIn(i).bits.uop.fuOpType === LSUOpType.cbo_zero, 576 0.U, 577 Mux(isVec, 578 io.storeDataIn(i).bits.data, 579 genVWdata(io.storeDataIn(i).bits.data, io.storeDataIn(i).bits.uop.fuOpType(2,0))) 580 ) 581 dataModule.io.data.wen(i) := true.B 582 583 debug_data(dataModule.io.data.waddr(i)) := dataModule.io.data.wdata(i) 584 } 585 XSInfo(io.storeDataIn(i).fire, 586 "store data write to sq idx %d pc 0x%x data %x -> %x\n", 587 io.storeDataIn(i).bits.uop.sqIdx.value, 588 io.storeDataIn(i).bits.uop.pc, 589 io.storeDataIn(i).bits.data, 590 dataModule.io.data.wdata(i) 591 ) 592 // sq data write s1 593 val lastStWbIndex = RegEnable(stWbIndex, io.storeDataIn(i).fire) 594 when ( 595 RegNext(io.storeDataIn(i).fire) && allocated(lastStWbIndex) 596 // && !RegNext(io.storeDataIn(i).bits.uop).robIdx.needFlush(io.brqRedirect) 597 ) { 598 datavalid(lastStWbIndex) := true.B 599 } 600 } 601 602 // Write mask to sq 603 for (i <- 0 until StorePipelineWidth) { 604 // sq mask write s0 605 when (io.storeMaskIn(i).fire) { 606 // send data write req to data module 607 dataModule.io.mask.waddr(i) := io.storeMaskIn(i).bits.sqIdx.value 608 dataModule.io.mask.wdata(i) := io.storeMaskIn(i).bits.mask 609 dataModule.io.mask.wen(i) := true.B 610 } 611 } 612 613 /** 614 * load forward query 615 * 616 * Check store queue for instructions that is older than the load. 617 * The response will be valid at the next cycle after req. 618 */ 619 // check over all lq entries and forward data from the first matched store 620 for (i <- 0 until LoadPipelineWidth) { 621 // Compare deqPtr (deqPtr) and forward.sqIdx, we have two cases: 622 // (1) if they have the same flag, we need to check range(tail, sqIdx) 623 // (2) if they have different flags, we need to check range(tail, VirtualLoadQueueSize) and range(0, sqIdx) 624 // Forward1: Mux(same_flag, range(tail, sqIdx), range(tail, VirtualLoadQueueSize)) 625 // Forward2: Mux(same_flag, 0.U, range(0, sqIdx) ) 626 // i.e. forward1 is the target entries with the same flag bits and forward2 otherwise 627 val differentFlag = deqPtrExt(0).flag =/= io.forward(i).sqIdx.flag 628 val forwardMask = io.forward(i).sqIdxMask 629 // all addrvalid terms need to be checked 630 // Real Vaild: all scalar stores, and vector store with (!inactive && !secondInvalid) 631 val addrRealValidVec = WireInit(VecInit((0 until StoreQueueSize).map(j => addrvalid(j) && allocated(j)))) 632 // vector store will consider all inactive || secondInvalid flows as valid 633 val addrValidVec = WireInit(VecInit((0 until StoreQueueSize).map(j => addrvalid(j) && allocated(j)))) 634 val dataValidVec = WireInit(VecInit((0 until StoreQueueSize).map(j => datavalid(j)))) 635 val allValidVec = WireInit(VecInit((0 until StoreQueueSize).map(j => addrvalid(j) && datavalid(j) && allocated(j)))) 636 637 val lfstEnable = Constantin.createRecord("LFSTEnable", LFSTEnable) 638 val storeSetHitVec = Mux(lfstEnable, 639 WireInit(VecInit((0 until StoreQueueSize).map(j => io.forward(i).uop.loadWaitBit && uop(j).robIdx === io.forward(i).uop.waitForRobIdx))), 640 WireInit(VecInit((0 until StoreQueueSize).map(j => uop(j).storeSetHit && uop(j).ssid === io.forward(i).uop.ssid))) 641 ) 642 643 val forwardMask1 = Mux(differentFlag, ~deqMask, deqMask ^ forwardMask) 644 val forwardMask2 = Mux(differentFlag, forwardMask, 0.U(StoreQueueSize.W)) 645 val canForward1 = forwardMask1 & allValidVec.asUInt 646 val canForward2 = forwardMask2 & allValidVec.asUInt 647 val needForward = Mux(differentFlag, ~deqMask | forwardMask, deqMask ^ forwardMask) 648 649 XSDebug(p"$i f1 ${Binary(canForward1)} f2 ${Binary(canForward2)} " + 650 p"sqIdx ${io.forward(i).sqIdx} pa ${Hexadecimal(io.forward(i).paddr)}\n" 651 ) 652 653 // do real fwd query (cam lookup in load_s1) 654 dataModule.io.needForward(i)(0) := canForward1 & vaddrModule.io.forwardMmask(i).asUInt 655 dataModule.io.needForward(i)(1) := canForward2 & vaddrModule.io.forwardMmask(i).asUInt 656 657 vaddrModule.io.forwardMdata(i) := io.forward(i).vaddr 658 vaddrModule.io.forwardDataMask(i) := io.forward(i).mask 659 paddrModule.io.forwardMdata(i) := io.forward(i).paddr 660 paddrModule.io.forwardDataMask(i) := io.forward(i).mask 661 662 // vaddr cam result does not equal to paddr cam result 663 // replay needed 664 // val vpmaskNotEqual = ((paddrModule.io.forwardMmask(i).asUInt ^ vaddrModule.io.forwardMmask(i).asUInt) & needForward) =/= 0.U 665 // val vaddrMatchFailed = vpmaskNotEqual && io.forward(i).valid 666 val vpmaskNotEqual = ( 667 (RegEnable(paddrModule.io.forwardMmask(i).asUInt, io.forward(i).valid) ^ RegEnable(vaddrModule.io.forwardMmask(i).asUInt, io.forward(i).valid)) & 668 RegNext(needForward) & 669 GatedRegNext(addrRealValidVec.asUInt) 670 ) =/= 0.U 671 val vaddrMatchFailed = vpmaskNotEqual && RegNext(io.forward(i).valid) 672 XSInfo(vaddrMatchFailed, 673 "vaddrMatchFailed: pc %x pmask %x vmask %x\n", 674 RegEnable(io.forward(i).uop.pc, io.forward(i).valid), 675 RegEnable(needForward & paddrModule.io.forwardMmask(i).asUInt, io.forward(i).valid), 676 RegEnable(needForward & vaddrModule.io.forwardMmask(i).asUInt, io.forward(i).valid) 677 ); 678 XSPerfAccumulate("vaddr_match_failed", vpmaskNotEqual) 679 XSPerfAccumulate("vaddr_match_really_failed", vaddrMatchFailed) 680 681 // Fast forward mask will be generated immediately (load_s1) 682 io.forward(i).forwardMaskFast := dataModule.io.forwardMaskFast(i) 683 684 // Forward result will be generated 1 cycle later (load_s2) 685 io.forward(i).forwardMask := dataModule.io.forwardMask(i) 686 io.forward(i).forwardData := dataModule.io.forwardData(i) 687 688 //TODO If the previous store appears out of alignment, then simply FF, this is a very unreasonable way to do it. 689 //TODO But for the time being, this is the way to ensure correctness. Such a suitable opportunity to support unaligned forward. 690 // If addr match, data not ready, mark it as dataInvalid 691 // load_s1: generate dataInvalid in load_s1 to set fastUop 692 val dataInvalidMask1 = ((addrValidVec.asUInt & ~dataValidVec.asUInt & vaddrModule.io.forwardMmask(i).asUInt) | unaligned.asUInt & allocated.asUInt) & forwardMask1.asUInt 693 val dataInvalidMask2 = ((addrValidVec.asUInt & ~dataValidVec.asUInt & vaddrModule.io.forwardMmask(i).asUInt) | unaligned.asUInt & allocated.asUInt) & forwardMask2.asUInt 694 val dataInvalidMask = dataInvalidMask1 | dataInvalidMask2 695 io.forward(i).dataInvalidFast := dataInvalidMask.orR 696 697 // make chisel happy 698 val dataInvalidMask1Reg = Wire(UInt(StoreQueueSize.W)) 699 dataInvalidMask1Reg := RegNext(dataInvalidMask1) 700 // make chisel happy 701 val dataInvalidMask2Reg = Wire(UInt(StoreQueueSize.W)) 702 dataInvalidMask2Reg := RegNext(dataInvalidMask2) 703 val dataInvalidMaskReg = dataInvalidMask1Reg | dataInvalidMask2Reg 704 705 // If SSID match, address not ready, mark it as addrInvalid 706 // load_s2: generate addrInvalid 707 val addrInvalidMask1 = (~addrValidVec.asUInt & storeSetHitVec.asUInt & forwardMask1.asUInt) 708 val addrInvalidMask2 = (~addrValidVec.asUInt & storeSetHitVec.asUInt & forwardMask2.asUInt) 709 // make chisel happy 710 val addrInvalidMask1Reg = Wire(UInt(StoreQueueSize.W)) 711 addrInvalidMask1Reg := RegNext(addrInvalidMask1) 712 // make chisel happy 713 val addrInvalidMask2Reg = Wire(UInt(StoreQueueSize.W)) 714 addrInvalidMask2Reg := RegNext(addrInvalidMask2) 715 val addrInvalidMaskReg = addrInvalidMask1Reg | addrInvalidMask2Reg 716 717 // load_s2 718 io.forward(i).dataInvalid := RegNext(io.forward(i).dataInvalidFast) 719 // check if vaddr forward mismatched 720 io.forward(i).matchInvalid := vaddrMatchFailed 721 722 // data invalid sq index 723 // check whether false fail 724 // check flag 725 val s2_differentFlag = RegNext(differentFlag) 726 val s2_enqPtrExt = RegNext(enqPtrExt(0)) 727 val s2_deqPtrExt = RegNext(deqPtrExt(0)) 728 729 // addr invalid sq index 730 // make chisel happy 731 val addrInvalidMaskRegWire = Wire(UInt(StoreQueueSize.W)) 732 addrInvalidMaskRegWire := addrInvalidMaskReg 733 val addrInvalidFlag = addrInvalidMaskRegWire.orR 734 val hasInvalidAddr = (~addrValidVec.asUInt & needForward).orR 735 736 val addrInvalidSqIdx1 = OHToUInt(Reverse(PriorityEncoderOH(Reverse(addrInvalidMask1Reg)))) 737 val addrInvalidSqIdx2 = OHToUInt(Reverse(PriorityEncoderOH(Reverse(addrInvalidMask2Reg)))) 738 val addrInvalidSqIdx = Mux(addrInvalidMask2Reg.orR, addrInvalidSqIdx2, addrInvalidSqIdx1) 739 740 // store-set content management 741 // +-----------------------+ 742 // | Search a SSID for the | 743 // | load operation | 744 // +-----------------------+ 745 // | 746 // V 747 // +-------------------+ 748 // | load wait strict? | 749 // +-------------------+ 750 // | 751 // V 752 // +----------------------+ 753 // Set| |Clean 754 // V V 755 // +------------------------+ +------------------------------+ 756 // | Waiting for all older | | Wait until the corresponding | 757 // | stores operations | | older store operations | 758 // +------------------------+ +------------------------------+ 759 760 761 762 when (RegEnable(io.forward(i).uop.loadWaitStrict, io.forward(i).valid)) { 763 io.forward(i).addrInvalidSqIdx := RegEnable((io.forward(i).uop.sqIdx - 1.U), io.forward(i).valid) 764 } .elsewhen (addrInvalidFlag) { 765 io.forward(i).addrInvalidSqIdx.flag := Mux(!s2_differentFlag || addrInvalidSqIdx >= s2_deqPtrExt.value, s2_deqPtrExt.flag, s2_enqPtrExt.flag) 766 io.forward(i).addrInvalidSqIdx.value := addrInvalidSqIdx 767 } .otherwise { 768 // may be store inst has been written to sbuffer already. 769 io.forward(i).addrInvalidSqIdx := RegEnable(io.forward(i).uop.sqIdx, io.forward(i).valid) 770 } 771 io.forward(i).addrInvalid := Mux(RegEnable(io.forward(i).uop.loadWaitStrict, io.forward(i).valid), RegNext(hasInvalidAddr), addrInvalidFlag) 772 773 // data invalid sq index 774 // make chisel happy 775 val dataInvalidMaskRegWire = Wire(UInt(StoreQueueSize.W)) 776 dataInvalidMaskRegWire := dataInvalidMaskReg 777 val dataInvalidFlag = dataInvalidMaskRegWire.orR 778 779 val dataInvalidSqIdx1 = OHToUInt(Reverse(PriorityEncoderOH(Reverse(dataInvalidMask1Reg)))) 780 val dataInvalidSqIdx2 = OHToUInt(Reverse(PriorityEncoderOH(Reverse(dataInvalidMask2Reg)))) 781 val dataInvalidSqIdx = Mux(dataInvalidMask2Reg.orR, dataInvalidSqIdx2, dataInvalidSqIdx1) 782 783 when (dataInvalidFlag) { 784 io.forward(i).dataInvalidSqIdx.flag := Mux(!s2_differentFlag || dataInvalidSqIdx >= s2_deqPtrExt.value, s2_deqPtrExt.flag, s2_enqPtrExt.flag) 785 io.forward(i).dataInvalidSqIdx.value := dataInvalidSqIdx 786 } .otherwise { 787 // may be store inst has been written to sbuffer already. 788 io.forward(i).dataInvalidSqIdx := RegEnable(io.forward(i).uop.sqIdx, io.forward(i).valid) 789 } 790 } 791 792 /** 793 * Memory mapped IO / other uncached operations / CMO 794 * 795 * States: 796 * (1) writeback from store units: mark as pending 797 * (2) when they reach ROB's head, they can be sent to uncache channel 798 * (3) response from uncache channel: mark as datavalidmask.wen 799 * (4) writeback to ROB (and other units): mark as writebacked 800 * (5) ROB commits the instruction: same as normal instructions 801 */ 802 //(2) when they reach ROB's head, they can be sent to uncache channel 803 // TODO: CAN NOT deal with vector mmio now! 804 val s_idle :: s_req :: s_resp :: s_wb :: s_wait :: Nil = Enum(5) 805 val mmioState = RegInit(s_idle) 806 val uncacheUop = Reg(new DynInst) 807 val cboFlushedSb = RegInit(false.B) 808 val cmoOpCode = uncacheUop.fuOpType(1, 0) 809 val mmioDoReq = io.uncache.req.fire && !io.uncache.req.bits.nc 810 val cboMmioPAddr = Reg(UInt(PAddrBits.W)) 811 switch(mmioState) { 812 is(s_idle) { 813 when(RegNext(io.rob.pendingst && uop(deqPtr).robIdx === io.rob.pendingPtr && pending(deqPtr) && allocated(deqPtr) && datavalid(deqPtr) && addrvalid(deqPtr) && !hasException(deqPtr))) { 814 mmioState := s_req 815 uncacheUop := uop(deqPtr) 816 uncacheUop.exceptionVec := 0.U.asTypeOf(ExceptionVec()) 817 uncacheUop.trigger := 0.U.asTypeOf(TriggerAction()) 818 cboFlushedSb := false.B 819 cboMmioPAddr := paddrModule.io.rdata(0) 820 } 821 } 822 is(s_req) { 823 when (mmioDoReq) { 824 mmioState := s_resp 825 } 826 } 827 is(s_resp) { 828 when(io.uncache.resp.fire && !io.uncache.resp.bits.nc) { 829 mmioState := s_wb 830 831 when (io.uncache.resp.bits.nderr || io.cmoOpResp.bits.nderr) { 832 uncacheUop.exceptionVec(storeAccessFault) := true.B 833 } 834 } 835 } 836 is(s_wb) { 837 when (io.mmioStout.fire || io.vecmmioStout.fire) { 838 when (uncacheUop.exceptionVec(storeAccessFault)) { 839 mmioState := s_idle 840 }.otherwise { 841 mmioState := s_wait 842 } 843 } 844 } 845 is(s_wait) { 846 // A MMIO store can always move cmtPtrExt as it must be ROB head 847 when(scommit > 0.U) { 848 mmioState := s_idle // ready for next mmio 849 } 850 } 851 } 852 853 mmioReq.valid := mmioState === s_req && !LSUOpType.isCbo(uop(deqPtr).fuOpType) 854 mmioReq.bits := DontCare 855 mmioReq.bits.cmd := MemoryOpConstants.M_XWR 856 mmioReq.bits.addr := paddrModule.io.rdata(0) // data(deqPtr) -> rdata(0) 857 mmioReq.bits.vaddr:= vaddrModule.io.rdata(0) 858 mmioReq.bits.data := shiftDataToLow(paddrModule.io.rdata(0), dataModule.io.rdata(0).data) 859 mmioReq.bits.mask := shiftMaskToLow(paddrModule.io.rdata(0), dataModule.io.rdata(0).mask) 860 mmioReq.bits.atomic := atomic(GatedRegNext(rdataPtrExtNext(0)).value) 861 mmioReq.bits.memBackTypeMM := memBackTypeMM(GatedRegNext(rdataPtrExtNext(0)).value) 862 mmioReq.bits.nc := false.B 863 mmioReq.bits.id := rdataPtrExt(0).value 864 865 /** 866 * NC Store 867 * (1) req: when it has been commited, it can be sent to lower level. 868 * (2) resp: because SQ data forward is required, it can only be deq when ncResp is received 869 */ 870 // TODO: CAN NOT deal with vector nc now! 871 val nc_idle :: nc_req :: nc_resp :: Nil = Enum(3) 872 val ncState = RegInit(nc_idle) 873 val rptr0 = rdataPtrExt(0).value 874 switch(ncState){ 875 is(nc_idle) { 876 when(nc(rptr0) && allocated(rptr0) && committed(rptr0) && !mmio(rptr0) && !isVec(rptr0)) { 877 ncState := nc_req 878 ncWaitRespPtrReg := rptr0 879 } 880 } 881 is(nc_req) { 882 when(ncDoReq) { 883 when(io.uncacheOutstanding) { 884 ncState := nc_idle 885 }.otherwise{ 886 ncState := nc_resp 887 } 888 } 889 } 890 is(nc_resp) { 891 when(ncResp.fire) { 892 ncState := nc_idle 893 } 894 } 895 } 896 897 ncDoReq := io.uncache.req.fire && io.uncache.req.bits.nc 898 ncDoResp := ncResp.fire 899 ncSlaveAck := io.uncache.idResp.valid && io.uncache.idResp.bits.nc 900 ncSlaveAckMid := io.uncache.idResp.bits.mid 901 902 ncReq.valid := ncState === nc_req 903 ncReq.bits := DontCare 904 ncReq.bits.cmd := MemoryOpConstants.M_XWR 905 ncReq.bits.addr := paddrModule.io.rdata(0) 906 ncReq.bits.vaddr:= vaddrModule.io.rdata(0) 907 ncReq.bits.data := shiftDataToLow(paddrModule.io.rdata(0), dataModule.io.rdata(0).data) 908 ncReq.bits.mask := shiftMaskToLow(paddrModule.io.rdata(0), dataModule.io.rdata(0).mask) 909 ncReq.bits.atomic := atomic(GatedRegNext(rdataPtrExtNext(0)).value) 910 ncReq.bits.memBackTypeMM := memBackTypeMM(GatedRegNext(rdataPtrExtNext(0)).value) 911 ncReq.bits.nc := true.B 912 ncReq.bits.id := rptr0 913 914 ncResp.ready := io.uncache.resp.ready 915 ncResp.valid := io.uncache.resp.fire && io.uncache.resp.bits.nc 916 ncResp.bits <> io.uncache.resp.bits 917 when (ncDeqTrigger) { 918 allocated(ncPtr) := false.B 919 XSDebug("nc fire: ptr %d\n", ncPtr) 920 } 921 922 mmioReq.ready := io.uncache.req.ready 923 ncReq.ready := io.uncache.req.ready && !mmioReq.valid 924 io.uncache.req.valid := mmioReq.valid || ncReq.valid 925 io.uncache.req.bits := Mux(mmioReq.valid, mmioReq.bits, ncReq.bits) 926 927 // CBO op type check can be delayed for 1 cycle, 928 // as uncache op will not start in s_idle 929 val cboMmioAddr = get_block_addr(cboMmioPAddr) 930 val deqCanDoCbo = GatedRegNext(LSUOpType.isCbo(uop(deqPtr).fuOpType) && allocated(deqPtr) && addrvalid(deqPtr) && !hasException(deqPtr)) 931 when (deqCanDoCbo) { 932 // disable uncache channel 933 io.uncache.req.valid := false.B 934 935 when (io.cmoOpReq.fire) { 936 mmioState := s_resp 937 } 938 939 when (mmioState === s_resp) { 940 when (io.cmoOpResp.fire) { 941 mmioState := s_wb 942 } 943 } 944 } 945 946 io.cmoOpReq.valid := deqCanDoCbo && cboFlushedSb && (mmioState === s_req) 947 io.cmoOpReq.bits.opcode := cmoOpCode 948 io.cmoOpReq.bits.address := cboMmioAddr 949 950 io.cmoOpResp.ready := deqCanDoCbo && (mmioState === s_resp) 951 952 io.flushSbuffer.valid := deqCanDoCbo && !cboFlushedSb && (mmioState === s_req) && !io.flushSbuffer.empty 953 954 when(deqCanDoCbo && !cboFlushedSb && (mmioState === s_req) && io.flushSbuffer.empty) { 955 cboFlushedSb := true.B 956 } 957 958 when(mmioDoReq){ 959 // mmio store should not be committed until uncache req is sent 960 pending(deqPtr) := false.B 961 } 962 XSDebug( 963 mmioDoReq, 964 p"uncache req: pc ${Hexadecimal(uop(deqPtr).pc)} " + 965 p"addr ${Hexadecimal(io.uncache.req.bits.addr)} " + 966 p"data ${Hexadecimal(io.uncache.req.bits.data)} " + 967 p"op ${Hexadecimal(io.uncache.req.bits.cmd)} " + 968 p"mask ${Hexadecimal(io.uncache.req.bits.mask)}\n" 969 ) 970 971 // (3) response from uncache channel: mark as datavalid 972 io.uncache.resp.ready := true.B 973 974 // (4) scalar store: writeback to ROB (and other units): mark as writebacked 975 io.mmioStout.valid := mmioState === s_wb && !isVec(deqPtr) 976 io.mmioStout.bits.uop := uncacheUop 977 io.mmioStout.bits.uop.exceptionVec := ExceptionNO.selectByFu(uncacheUop.exceptionVec, StaCfg) 978 io.mmioStout.bits.uop.sqIdx := deqPtrExt(0) 979 io.mmioStout.bits.uop.flushPipe := deqCanDoCbo // flush Pipeline to keep order in CMO 980 io.mmioStout.bits.data := shiftDataToLow(paddrModule.io.rdata(0), dataModule.io.rdata(0).data) // dataModule.io.rdata.read(deqPtr) 981 io.mmioStout.bits.isFromLoadUnit := DontCare 982 io.mmioStout.bits.debug.isMMIO := true.B 983 io.mmioStout.bits.debug.isNC := false.B 984 io.mmioStout.bits.debug.paddr := DontCare 985 io.mmioStout.bits.debug.isPerfCnt := false.B 986 io.mmioStout.bits.debug.vaddr := DontCare 987 // Remove MMIO inst from store queue after MMIO request is being sent 988 // That inst will be traced by uncache state machine 989 when (io.mmioStout.fire) { 990 allocated(deqPtr) := false.B 991 } 992 993 exceptionBuffer.io.storeAddrIn.last.valid := io.mmioStout.fire 994 exceptionBuffer.io.storeAddrIn.last.bits := DontCare 995 exceptionBuffer.io.storeAddrIn.last.bits.fullva := vaddrModule.io.rdata.head 996 exceptionBuffer.io.storeAddrIn.last.bits.vaNeedExt := true.B 997 exceptionBuffer.io.storeAddrIn.last.bits.uop := uncacheUop 998 999 // (4) or vector store: 1000 // TODO: implement it! 1001 io.vecmmioStout := DontCare 1002 io.vecmmioStout.valid := false.B //mmioState === s_wb && isVec(deqPtr) 1003 io.vecmmioStout.bits.uop := uop(deqPtr) 1004 io.vecmmioStout.bits.uop.sqIdx := deqPtrExt(0) 1005 io.vecmmioStout.bits.data := shiftDataToLow(paddrModule.io.rdata(0), dataModule.io.rdata(0).data) // dataModule.io.rdata.read(deqPtr) 1006 io.vecmmioStout.bits.debug.isMMIO := true.B 1007 io.vecmmioStout.bits.debug.isNC := false.B 1008 io.vecmmioStout.bits.debug.paddr := DontCare 1009 io.vecmmioStout.bits.debug.isPerfCnt := false.B 1010 io.vecmmioStout.bits.debug.vaddr := DontCare 1011 // Remove MMIO inst from store queue after MMIO request is being sent 1012 // That inst will be traced by uncache state machine 1013 when (io.vecmmioStout.fire) { 1014 allocated(deqPtr) := false.B 1015 } 1016 1017 /** 1018 * ROB commits store instructions (mark them as committed) 1019 * 1020 * (1) When store commits, mark it as committed. 1021 * (2) They will not be cancelled and can be sent to lower level. 1022 */ 1023 XSError(mmioState =/= s_idle && mmioState =/= s_wait && commitCount > 0.U, 1024 "should not commit instruction when MMIO has not been finished\n") 1025 1026 val commitVec = WireInit(VecInit(Seq.fill(CommitWidth)(false.B))) 1027 val needCancel = Wire(Vec(StoreQueueSize, Bool())) // Will be assigned later 1028 1029 if (backendParams.debugEn){ dontTouch(commitVec) } 1030 1031 // TODO: Deal with vector store mmio 1032 for (i <- 0 until CommitWidth) { 1033 // don't mark misalign store as committed 1034 when ( 1035 allocated(cmtPtrExt(i).value) && 1036 isNotAfter(uop(cmtPtrExt(i).value).robIdx, GatedRegNext(io.rob.pendingPtr)) && 1037 !needCancel(cmtPtrExt(i).value) && 1038 (!waitStoreS2(cmtPtrExt(i).value) || isVec(cmtPtrExt(i).value))) { 1039 if (i == 0){ 1040 // TODO: fixme for vector mmio 1041 when ((mmioState === s_idle) || (mmioState === s_wait && scommit > 0.U)){ 1042 when ((isVec(cmtPtrExt(i).value) && vecMbCommit(cmtPtrExt(i).value)) || !isVec(cmtPtrExt(i).value)) { 1043 committed(cmtPtrExt(0).value) := true.B 1044 commitVec(0) := true.B 1045 } 1046 } 1047 } else { 1048 when ((isVec(cmtPtrExt(i).value) && vecMbCommit(cmtPtrExt(i).value)) || !isVec(cmtPtrExt(i).value)) { 1049 committed(cmtPtrExt(i).value) := commitVec(i - 1) || committed(cmtPtrExt(i).value) 1050 commitVec(i) := commitVec(i - 1) 1051 } 1052 } 1053 } 1054 } 1055 1056 commitCount := PopCount(commitVec) 1057 cmtPtrExt := cmtPtrExt.map(_ + commitCount) 1058 1059 /** 1060 * committed stores will not be cancelled and can be sent to lower level. 1061 * 1062 * 1. Store NC: Read data to uncache 1063 * implement as above 1064 * 1065 * 2. Store Cache: Read data from data module 1066 * remove retired insts from sq, add retired store to sbuffer. 1067 * as store queue grows larger and larger, time needed to read data from data 1068 * module keeps growing higher. Now we give data read a whole cycle. 1069 */ 1070 1071 //TODO An unaligned command can only be sent out if the databuffer can enter more than two. 1072 //TODO For now, hardcode the number of ENQs for the databuffer. 1073 val canDeqMisaligned = dataBuffer.io.enq(0).ready && dataBuffer.io.enq(1).ready 1074 val firstWithMisalign = unaligned(rdataPtrExt(0).value) 1075 val firstWithCross16Byte = cross16Byte(rdataPtrExt(0).value) 1076 1077 val isCross4KPage = io.maControl.toStoreQueue.crossPageWithHit 1078 val isCross4KPageCanDeq = io.maControl.toStoreQueue.crossPageCanDeq 1079 // When encountering a cross page store, a request needs to be sent to storeMisalignBuffer for the high page table's paddr. 1080 io.maControl.toStoreMisalignBuffer.sqPtr := rdataPtrExt(0) 1081 io.maControl.toStoreMisalignBuffer.doDeq := isCross4KPage && isCross4KPageCanDeq && dataBuffer.io.enq(0).fire 1082 io.maControl.toStoreMisalignBuffer.uop := uop(rdataPtrExt(0).value) 1083 for (i <- 0 until EnsbufferWidth) { 1084 val ptr = rdataPtrExt(i).value 1085 val mmioStall = if(i == 0) mmio(rdataPtrExt(0).value) else (mmio(rdataPtrExt(i).value) || mmio(rdataPtrExt(i-1).value)) 1086 val ncStall = if(i == 0) nc(rdataPtrExt(0).value) else (nc(rdataPtrExt(i).value) || nc(rdataPtrExt(i-1).value)) 1087 val exceptionValid = if(i == 0) hasException(rdataPtrExt(0).value) else { 1088 hasException(rdataPtrExt(i).value) || (hasException(rdataPtrExt(i-1).value) && uop(rdataPtrExt(i).value).robIdx === uop(rdataPtrExt(i-1).value).robIdx) 1089 } 1090 val vecNotAllMask = dataModule.io.rdata(i).mask.orR 1091 // Vector instructions that prevent triggered exceptions from being written to the 'databuffer'. 1092 val vecHasExceptionFlagValid = vecExceptionFlag.valid && isVec(ptr) && vecExceptionFlag.bits.robIdx === uop(ptr).robIdx 1093 1094 // Only the first interface can write unaligned directives. 1095 // Simplified design, even if the two ports have exceptions, but still only one unaligned dequeue. 1096 val assert_flag = WireInit(false.B) 1097 when(firstWithMisalign && firstWithCross16Byte) { 1098 dataBuffer.io.enq(0).valid := canDeqMisaligned && allocated(rdataPtrExt(0).value) && committed(rdataPtrExt(0).value) && 1099 ((!isVec(rdataPtrExt(0).value) && allvalid(rdataPtrExt(0).value) || vecMbCommit(rdataPtrExt(0).value)) && 1100 (!isCross4KPage || isCross4KPageCanDeq) || hasException(rdataPtrExt(0).value)) && !ncStall 1101 1102 dataBuffer.io.enq(1).valid := canDeqMisaligned && allocated(rdataPtrExt(0).value) && committed(rdataPtrExt(0).value) && 1103 (!isVec(rdataPtrExt(0).value) && allvalid(rdataPtrExt(0).value) || vecMbCommit(rdataPtrExt(0).value)) && 1104 (!isCross4KPage || isCross4KPageCanDeq) && !hasException(rdataPtrExt(0).value) && !ncStall 1105 assert_flag := dataBuffer.io.enq(1).valid 1106 }.otherwise { 1107 if (i == 0) { 1108 dataBuffer.io.enq(i).valid := ( 1109 allocated(ptr) && committed(ptr) 1110 && ((!isVec(ptr) && (allvalid(ptr) || hasException(ptr))) || vecMbCommit(ptr)) 1111 && !mmioStall && !ncStall 1112 && (!unaligned(ptr) || !cross16Byte(ptr) && (allvalid(ptr) || hasException(ptr))) 1113 ) 1114 } 1115 else { 1116 dataBuffer.io.enq(i).valid := ( 1117 allocated(ptr) && committed(ptr) 1118 && ((!isVec(ptr) && (allvalid(ptr) || hasException(ptr))) || vecMbCommit(ptr)) 1119 && !mmioStall && !ncStall 1120 && (!unaligned(ptr) || !cross16Byte(ptr) && (allvalid(ptr) || hasException(ptr))) 1121 ) 1122 } 1123 } 1124 1125 val misalignAddrLow = vaddrModule.io.rdata(0)(2, 0) 1126 val cross16ByteAddrLow4bit = vaddrModule.io.rdata(0)(3, 0) 1127 val addrLow4bit = vaddrModule.io.rdata(i)(3, 0) 1128 1129 // For unaligned, we need to generate a base-aligned mask in storeunit and then do a shift split in StoreQueue. 1130 val Cross16ByteMask = Wire(UInt(32.W)) 1131 val Cross16ByteData = Wire(UInt(256.W)) 1132 Cross16ByteMask := dataModule.io.rdata(0).mask << cross16ByteAddrLow4bit 1133 Cross16ByteData := dataModule.io.rdata(0).data << (cross16ByteAddrLow4bit << 3) 1134 1135 val paddrLow = Cat(paddrModule.io.rdata(0)(paddrModule.io.rdata(0).getWidth - 1, 3), 0.U(3.W)) 1136 val paddrHigh = Cat(paddrModule.io.rdata(0)(paddrModule.io.rdata(0).getWidth - 1, 3), 0.U(3.W)) + 8.U 1137 1138 val vaddrLow = Cat(vaddrModule.io.rdata(0)(vaddrModule.io.rdata(0).getWidth - 1, 3), 0.U(3.W)) 1139 val vaddrHigh = Cat(vaddrModule.io.rdata(0)(vaddrModule.io.rdata(0).getWidth - 1, 3), 0.U(3.W)) + 8.U 1140 1141 val maskLow = Cross16ByteMask(15, 0) 1142 val maskHigh = Cross16ByteMask(31, 16) 1143 1144 val dataLow = Cross16ByteData(127, 0) 1145 val dataHigh = Cross16ByteData(255, 128) 1146 1147 val toSbufferVecValid = (!isVec(ptr) || (vecMbCommit(ptr) && allvalid(ptr) && vecNotAllMask)) && !exceptionValid && !vecHasExceptionFlagValid 1148 when(canDeqMisaligned && firstWithMisalign && firstWithCross16Byte) { 1149 when(isCross4KPage && isCross4KPageCanDeq) { 1150 if (i == 0) { 1151 dataBuffer.io.enq(i).bits.addr := paddrLow 1152 dataBuffer.io.enq(i).bits.vaddr := vaddrLow 1153 dataBuffer.io.enq(i).bits.data := dataLow 1154 dataBuffer.io.enq(i).bits.mask := maskLow 1155 dataBuffer.io.enq(i).bits.wline := false.B 1156 dataBuffer.io.enq(i).bits.sqPtr := rdataPtrExt(0) 1157 dataBuffer.io.enq(i).bits.prefetch := false.B 1158 dataBuffer.io.enq(i).bits.sqNeedDeq := true.B 1159 dataBuffer.io.enq(i).bits.vecValid := toSbufferVecValid 1160 } 1161 else { 1162 dataBuffer.io.enq(i).bits.addr := io.maControl.toStoreQueue.paddr 1163 dataBuffer.io.enq(i).bits.vaddr := vaddrHigh 1164 dataBuffer.io.enq(i).bits.data := dataHigh 1165 dataBuffer.io.enq(i).bits.mask := maskHigh 1166 dataBuffer.io.enq(i).bits.wline := false.B 1167 dataBuffer.io.enq(i).bits.sqPtr := rdataPtrExt(0) 1168 dataBuffer.io.enq(i).bits.prefetch := false.B 1169 dataBuffer.io.enq(i).bits.sqNeedDeq := false.B 1170 dataBuffer.io.enq(i).bits.vecValid := dataBuffer.io.enq(0).bits.vecValid 1171 } 1172 } .otherwise { 1173 if (i == 0) { 1174 dataBuffer.io.enq(i).bits.addr := paddrLow 1175 dataBuffer.io.enq(i).bits.vaddr := vaddrLow 1176 dataBuffer.io.enq(i).bits.data := dataLow 1177 dataBuffer.io.enq(i).bits.mask := maskLow 1178 dataBuffer.io.enq(i).bits.wline := false.B 1179 dataBuffer.io.enq(i).bits.sqPtr := rdataPtrExt(0) 1180 dataBuffer.io.enq(i).bits.prefetch := false.B 1181 dataBuffer.io.enq(i).bits.sqNeedDeq := true.B 1182 dataBuffer.io.enq(i).bits.vecValid := toSbufferVecValid 1183 } 1184 else { 1185 dataBuffer.io.enq(i).bits.addr := paddrHigh 1186 dataBuffer.io.enq(i).bits.vaddr := vaddrHigh 1187 dataBuffer.io.enq(i).bits.data := dataHigh 1188 dataBuffer.io.enq(i).bits.mask := maskHigh 1189 dataBuffer.io.enq(i).bits.wline := false.B 1190 dataBuffer.io.enq(i).bits.sqPtr := rdataPtrExt(0) 1191 dataBuffer.io.enq(i).bits.prefetch := false.B 1192 dataBuffer.io.enq(i).bits.sqNeedDeq := false.B 1193 dataBuffer.io.enq(i).bits.vecValid := dataBuffer.io.enq(0).bits.vecValid 1194 } 1195 } 1196 1197 1198 }.elsewhen(!cross16Byte(ptr) && unaligned(ptr)) { 1199 dataBuffer.io.enq(i).bits.addr := Cat(paddrModule.io.rdata(i)(PAddrBits - 1, 4), 0.U(4.W)) 1200 dataBuffer.io.enq(i).bits.vaddr := Cat(vaddrModule.io.rdata(i)(VAddrBits - 1, 4), 0.U(4.W)) 1201 dataBuffer.io.enq(i).bits.data := dataModule.io.rdata(i).data << (addrLow4bit << 3) 1202 dataBuffer.io.enq(i).bits.mask := dataModule.io.rdata(i).mask 1203 dataBuffer.io.enq(i).bits.wline := paddrModule.io.rlineflag(i) 1204 dataBuffer.io.enq(i).bits.sqPtr := rdataPtrExt(i) 1205 dataBuffer.io.enq(i).bits.prefetch := prefetch(ptr) 1206 dataBuffer.io.enq(i).bits.sqNeedDeq := true.B 1207 // when scalar has exception, will also not write into sbuffer 1208 dataBuffer.io.enq(i).bits.vecValid := toSbufferVecValid 1209 }.otherwise { 1210 dataBuffer.io.enq(i).bits.addr := paddrModule.io.rdata(i) 1211 dataBuffer.io.enq(i).bits.vaddr := vaddrModule.io.rdata(i) 1212 dataBuffer.io.enq(i).bits.data := dataModule.io.rdata(i).data 1213 dataBuffer.io.enq(i).bits.mask := dataModule.io.rdata(i).mask 1214 dataBuffer.io.enq(i).bits.wline := paddrModule.io.rlineflag(i) 1215 dataBuffer.io.enq(i).bits.sqPtr := rdataPtrExt(i) 1216 dataBuffer.io.enq(i).bits.prefetch := prefetch(ptr) 1217 dataBuffer.io.enq(i).bits.sqNeedDeq := true.B 1218 // when scalar has exception, will also not write into sbuffer 1219 dataBuffer.io.enq(i).bits.vecValid := toSbufferVecValid 1220 1221 } 1222 1223 // Note that store data/addr should both be valid after store's commit 1224 assert(!dataBuffer.io.enq(i).valid || allvalid(ptr) || hasException(ptr) || (allocated(ptr) && vecMbCommit(ptr)) || assert_flag) 1225 } 1226 1227 // Send data stored in sbufferReqBitsReg to sbuffer 1228 for (i <- 0 until EnsbufferWidth) { 1229 io.sbuffer(i).valid := dataBuffer.io.deq(i).valid 1230 dataBuffer.io.deq(i).ready := io.sbuffer(i).ready 1231 io.sbuffer(i).bits := DontCare 1232 io.sbuffer(i).bits.cmd := MemoryOpConstants.M_XWR 1233 io.sbuffer(i).bits.addr := dataBuffer.io.deq(i).bits.addr 1234 io.sbuffer(i).bits.vaddr := dataBuffer.io.deq(i).bits.vaddr 1235 io.sbuffer(i).bits.data := dataBuffer.io.deq(i).bits.data 1236 io.sbuffer(i).bits.mask := dataBuffer.io.deq(i).bits.mask 1237 io.sbuffer(i).bits.wline := dataBuffer.io.deq(i).bits.wline && dataBuffer.io.deq(i).bits.vecValid 1238 io.sbuffer(i).bits.prefetch := dataBuffer.io.deq(i).bits.prefetch 1239 io.sbuffer(i).bits.vecValid := dataBuffer.io.deq(i).bits.vecValid 1240 io.sbuffer(i).bits.sqNeedDeq := dataBuffer.io.deq(i).bits.sqNeedDeq 1241 // io.sbuffer(i).fire is RegNexted, as sbuffer data write takes 2 cycles. 1242 // Before data write finish, sbuffer is unable to provide store to load 1243 // forward data. As an workaround, deqPtrExt and allocated flag update 1244 // is delayed so that load can get the right data from store queue. 1245 val ptr = dataBuffer.io.deq(i).bits.sqPtr.value 1246 when (RegNext(io.sbuffer(i).fire && io.sbuffer(i).bits.sqNeedDeq)) { 1247 allocated(RegEnable(ptr, io.sbuffer(i).fire)) := false.B 1248 } 1249 XSDebug(RegNext(io.sbuffer(i).fire && io.sbuffer(i).bits.sqNeedDeq), "sbuffer "+i+" fire: ptr %d\n", ptr) 1250 } 1251 1252 // All vector instruction uop normally dequeue, but the Uop after the exception is raised does not write to the 'sbuffer'. 1253 // Flags are used to record whether there are any exceptions when the queue is displayed. 1254 // This is determined each time a write is made to the 'databuffer', prevent subsequent uop of the same instruction from writing to the 'dataBuffer'. 1255 val vecCommitHasException = (0 until EnsbufferWidth).map{ i => 1256 val ptr = rdataPtrExt(i).value 1257 val mmioStall = if(i == 0) mmio(rdataPtrExt(0).value) else (mmio(rdataPtrExt(i).value) || mmio(rdataPtrExt(i-1).value)) 1258 val ncStall = if(i == 0) nc(rdataPtrExt(0).value) else (nc(rdataPtrExt(i).value) || nc(rdataPtrExt(i-1).value)) 1259 val exceptionVliad = isVec(ptr) && hasException(ptr) && dataBuffer.io.enq(i).fire 1260 (exceptionVliad, uop(ptr), vecLastFlow(ptr)) 1261 } 1262 1263 val vecCommitHasExceptionValid = vecCommitHasException.map(_._1) 1264 val vecCommitHasExceptionUop = vecCommitHasException.map(_._2) 1265 val vecCommitHasExceptionLastFlow = vecCommitHasException.map(_._3) 1266 val vecCommitHasExceptionValidOR = vecCommitHasExceptionValid.reduce(_ || _) 1267 // Just select the last Uop tah has an exception. 1268 val vecCommitHasExceptionSelectUop = ParallelPosteriorityMux(vecCommitHasExceptionValid, vecCommitHasExceptionUop) 1269 // If the last flow with an exception is the LastFlow of this instruction, the flag is not set. 1270 // compare robidx to select the last flow 1271 require(EnsbufferWidth == 2, "The vector store exception handle process only support EnsbufferWidth == 2 yet.") 1272 val robidxEQ = dataBuffer.io.enq(0).fire && dataBuffer.io.enq(1).fire && 1273 uop(rdataPtrExt(0).value).robIdx === uop(rdataPtrExt(1).value).robIdx 1274 val robidxNE = dataBuffer.io.enq(0).fire && dataBuffer.io.enq(1).fire && ( 1275 uop(rdataPtrExt(0).value).robIdx =/= uop(rdataPtrExt(1).value).robIdx 1276 ) 1277 val onlyCommit0 = dataBuffer.io.enq(0).fire && !dataBuffer.io.enq(1).fire 1278 1279 val vecCommitLastFlow = 1280 // robidx equal => check if 1 is last flow 1281 robidxEQ && vecCommitHasExceptionLastFlow(1) || 1282 // robidx not equal => 0 must be the last flow, just check if 1 is last flow when 1 has exception 1283 robidxNE && (vecCommitHasExceptionValid(1) && vecCommitHasExceptionLastFlow(1) || !vecCommitHasExceptionValid(1)) || 1284 onlyCommit0 && vecCommitHasExceptionLastFlow(0) 1285 1286 1287 val vecExceptionFlagCancel = (0 until EnsbufferWidth).map{ i => 1288 val ptr = rdataPtrExt(i).value 1289 val vecLastFlowCommit = vecLastFlow(ptr) && (uop(ptr).robIdx === vecExceptionFlag.bits.robIdx) && dataBuffer.io.enq(i).fire 1290 vecLastFlowCommit 1291 }.reduce(_ || _) 1292 1293 // When a LastFlow with an exception instruction is commited, clear the flag. 1294 when(!vecExceptionFlag.valid && vecCommitHasExceptionValidOR && !vecCommitLastFlow) { 1295 vecExceptionFlag.valid := true.B 1296 vecExceptionFlag.bits := vecCommitHasExceptionSelectUop 1297 }.elsewhen(vecExceptionFlag.valid && vecExceptionFlagCancel) { 1298 vecExceptionFlag.valid := false.B 1299 vecExceptionFlag.bits := 0.U.asTypeOf(new DynInst) 1300 } 1301 1302 // A dumb defensive code. The flag should not be placed for a long period of time. 1303 // A relatively large timeout period, not have any special meaning. 1304 // If an assert appears and you confirm that it is not a Bug: Increase the timeout or remove the assert. 1305 TimeOutAssert(vecExceptionFlag.valid, 3000, "vecExceptionFlag timeout, Plase check for bugs or add timeouts.") 1306 1307 // Initialize when unenabled difftest. 1308 for (i <- 0 until EnsbufferWidth) { 1309 io.sbufferVecDifftestInfo(i) := DontCare 1310 } 1311 // Consistent with the logic above. 1312 // Only the vector store difftest required signal is separated from the rtl code. 1313 if (env.EnableDifftest) { 1314 for (i <- 0 until EnsbufferWidth) { 1315 val ptr = dataBuffer.io.enq(i).bits.sqPtr.value 1316 difftestBuffer.get.io.enq(i).valid := dataBuffer.io.enq(i).valid 1317 difftestBuffer.get.io.enq(i).bits := uop(ptr) 1318 } 1319 for (i <- 0 until EnsbufferWidth) { 1320 io.sbufferVecDifftestInfo(i).valid := difftestBuffer.get.io.deq(i).valid 1321 difftestBuffer.get.io.deq(i).ready := io.sbufferVecDifftestInfo(i).ready 1322 1323 io.sbufferVecDifftestInfo(i).bits := difftestBuffer.get.io.deq(i).bits 1324 } 1325 1326 // commit cbo.inval to difftest 1327 val cmoInvalEvent = DifftestModule(new DiffCMOInvalEvent) 1328 cmoInvalEvent.coreid := io.hartId 1329 cmoInvalEvent.valid := io.mmioStout.fire && deqCanDoCbo && LSUOpType.isCboInval(uop(deqPtr).fuOpType) 1330 cmoInvalEvent.addr := cboMmioAddr 1331 } 1332 1333 (1 until EnsbufferWidth).foreach(i => when(io.sbuffer(i).fire) { assert(io.sbuffer(i - 1).fire) }) 1334 if (coreParams.dcacheParametersOpt.isEmpty) { 1335 for (i <- 0 until EnsbufferWidth) { 1336 val ptr = deqPtrExt(i).value 1337 val ram = DifftestMem(64L * 1024 * 1024 * 1024, 8) 1338 val wen = allocated(ptr) && committed(ptr) && !mmio(ptr) 1339 val waddr = ((paddrModule.io.rdata(i) - "h80000000".U) >> 3).asUInt 1340 val wdata = Mux(paddrModule.io.rdata(i)(3), dataModule.io.rdata(i).data(127, 64), dataModule.io.rdata(i).data(63, 0)) 1341 val wmask = Mux(paddrModule.io.rdata(i)(3), dataModule.io.rdata(i).mask(15, 8), dataModule.io.rdata(i).mask(7, 0)) 1342 when (wen) { 1343 ram.write(waddr, wdata.asTypeOf(Vec(8, UInt(8.W))), wmask.asBools) 1344 } 1345 } 1346 } 1347 1348 // Read vaddr for mem exception 1349 io.exceptionAddr.vaddr := exceptionBuffer.io.exceptionAddr.vaddr 1350 io.exceptionAddr.vaNeedExt := exceptionBuffer.io.exceptionAddr.vaNeedExt 1351 io.exceptionAddr.isHyper := exceptionBuffer.io.exceptionAddr.isHyper 1352 io.exceptionAddr.gpaddr := exceptionBuffer.io.exceptionAddr.gpaddr 1353 io.exceptionAddr.vstart := exceptionBuffer.io.exceptionAddr.vstart 1354 io.exceptionAddr.vl := exceptionBuffer.io.exceptionAddr.vl 1355 io.exceptionAddr.isForVSnonLeafPTE := exceptionBuffer.io.exceptionAddr.isForVSnonLeafPTE 1356 1357 // vector commit or replay from 1358 val vecCommittmp = Wire(Vec(StoreQueueSize, Vec(VecStorePipelineWidth, Bool()))) 1359 val vecCommit = Wire(Vec(StoreQueueSize, Bool())) 1360 for (i <- 0 until StoreQueueSize) { 1361 val fbk = io.vecFeedback 1362 for (j <- 0 until VecStorePipelineWidth) { 1363 vecCommittmp(i)(j) := fbk(j).valid && (fbk(j).bits.isCommit || fbk(j).bits.isFlush) && 1364 uop(i).robIdx === fbk(j).bits.robidx && uop(i).uopIdx === fbk(j).bits.uopidx && allocated(i) 1365 } 1366 vecCommit(i) := vecCommittmp(i).reduce(_ || _) 1367 1368 when (vecCommit(i)) { 1369 vecMbCommit(i) := true.B 1370 } 1371 } 1372 1373 // For vector, when there is a store across pages with the same uop in storeMisalignBuffer, storequeue needs to mark this item as committed. 1374 // TODO FIXME Can vecMbCommit be removed? 1375 when(io.maControl.toStoreQueue.withSameUop && allvalid(rdataPtrExt(0).value)) { 1376 vecMbCommit(rdataPtrExt(0).value) := true.B 1377 } 1378 1379 // misprediction recovery / exception redirect 1380 // invalidate sq term using robIdx 1381 for (i <- 0 until StoreQueueSize) { 1382 needCancel(i) := uop(i).robIdx.needFlush(io.brqRedirect) && allocated(i) && !committed(i) 1383 when (needCancel(i)) { 1384 allocated(i) := false.B 1385 } 1386 } 1387 1388 /** 1389* update pointers 1390**/ 1391 val enqCancelValid = canEnqueue.zip(io.enq.req).map{case (v , x) => 1392 v && x.bits.robIdx.needFlush(io.brqRedirect) 1393 } 1394 val enqCancelNum = enqCancelValid.zip(vStoreFlow).map{case (v, flow) => 1395 Mux(v, flow, 0.U) 1396 } 1397 val lastEnqCancel = RegEnable(enqCancelNum.reduce(_ + _), io.brqRedirect.valid) // 1 cycle after redirect 1398 1399 val lastCycleCancelCount = PopCount(RegEnable(needCancel, io.brqRedirect.valid)) // 1 cycle after redirect 1400 val lastCycleRedirect = RegNext(io.brqRedirect.valid) // 1 cycle after redirect 1401 val enqNumber = validVStoreFlow.reduce(_ + _) 1402 1403 val lastlastCycleRedirect=RegNext(lastCycleRedirect)// 2 cycle after redirect 1404 val redirectCancelCount = RegEnable(lastCycleCancelCount + lastEnqCancel, 0.U, lastCycleRedirect) // 2 cycle after redirect 1405 1406 when (lastlastCycleRedirect) { 1407 // we recover the pointers in 2 cycle after redirect for better timing 1408 enqPtrExt := VecInit(enqPtrExt.map(_ - redirectCancelCount)) 1409 }.otherwise { 1410 // lastCycleRedirect.valid or nornal case 1411 // when lastCycleRedirect.valid, enqNumber === 0.U, enqPtrExt will not change 1412 enqPtrExt := VecInit(enqPtrExt.map(_ + enqNumber)) 1413 } 1414 assert(!(lastCycleRedirect && enqNumber =/= 0.U)) 1415 1416 deqPtrExt := deqPtrExtNext 1417 rdataPtrExt := rdataPtrExtNext 1418 1419 // val dequeueCount = Mux(io.sbuffer(1).fire, 2.U, Mux(io.sbuffer(0).fire || io.mmioStout.fire, 1.U, 0.U)) 1420 1421 // If redirect at T0, sqCancelCnt is at T2 1422 io.sqCancelCnt := redirectCancelCount 1423 val ForceWriteUpper = Wire(UInt(log2Up(StoreQueueSize + 1).W)) 1424 ForceWriteUpper := Constantin.createRecord(s"ForceWriteUpper_${p(XSCoreParamsKey).HartId}", initValue = 60) 1425 val ForceWriteLower = Wire(UInt(log2Up(StoreQueueSize + 1).W)) 1426 ForceWriteLower := Constantin.createRecord(s"ForceWriteLower_${p(XSCoreParamsKey).HartId}", initValue = 55) 1427 1428 val valid_cnt = PopCount(allocated) 1429 io.force_write := RegNext(Mux(valid_cnt >= ForceWriteUpper, true.B, valid_cnt >= ForceWriteLower && io.force_write), init = false.B) 1430 1431 // io.sqempty will be used by sbuffer 1432 // We delay it for 1 cycle for better timing 1433 // When sbuffer need to check if it is empty, the pipeline is blocked, which means delay io.sqempty 1434 // for 1 cycle will also promise that sq is empty in that cycle 1435 io.sqEmpty := RegNext( 1436 enqPtrExt(0).value === deqPtrExt(0).value && 1437 enqPtrExt(0).flag === deqPtrExt(0).flag 1438 ) 1439 // perf counter 1440 QueuePerf(StoreQueueSize, validCount, !allowEnqueue) 1441 val vecValidVec = WireInit(VecInit((0 until StoreQueueSize).map(i => allocated(i) && isVec(i)))) 1442 QueuePerf(StoreQueueSize, PopCount(vecValidVec), !allowEnqueue) 1443 io.sqFull := !allowEnqueue 1444 XSPerfAccumulate("mmioCycle", mmioState =/= s_idle) // lq is busy dealing with uncache req 1445 XSPerfAccumulate("mmioCnt", mmioDoReq) 1446 XSPerfAccumulate("mmio_wb_success", io.mmioStout.fire || io.vecmmioStout.fire) 1447 XSPerfAccumulate("mmio_wb_blocked", (io.mmioStout.valid && !io.mmioStout.ready) || (io.vecmmioStout.valid && !io.vecmmioStout.ready)) 1448 XSPerfAccumulate("validEntryCnt", distanceBetween(enqPtrExt(0), deqPtrExt(0))) 1449 XSPerfAccumulate("cmtEntryCnt", distanceBetween(cmtPtrExt(0), deqPtrExt(0))) 1450 XSPerfAccumulate("nCmtEntryCnt", distanceBetween(enqPtrExt(0), cmtPtrExt(0))) 1451 1452 val perfValidCount = distanceBetween(enqPtrExt(0), deqPtrExt(0)) 1453 val perfEvents = Seq( 1454 ("mmioCycle ", mmioState =/= s_idle), 1455 ("mmioCnt ", mmioDoReq), 1456 ("mmio_wb_success", io.mmioStout.fire || io.vecmmioStout.fire), 1457 ("mmio_wb_blocked", (io.mmioStout.valid && !io.mmioStout.ready) || (io.vecmmioStout.valid && !io.vecmmioStout.ready)), 1458 ("stq_1_4_valid ", (perfValidCount < (StoreQueueSize.U/4.U))), 1459 ("stq_2_4_valid ", (perfValidCount > (StoreQueueSize.U/4.U)) & (perfValidCount <= (StoreQueueSize.U/2.U))), 1460 ("stq_3_4_valid ", (perfValidCount > (StoreQueueSize.U/2.U)) & (perfValidCount <= (StoreQueueSize.U*3.U/4.U))), 1461 ("stq_4_4_valid ", (perfValidCount > (StoreQueueSize.U*3.U/4.U))), 1462 ) 1463 generatePerfEvent() 1464 1465 // debug info 1466 XSDebug("enqPtrExt %d:%d deqPtrExt %d:%d\n", enqPtrExt(0).flag, enqPtr, deqPtrExt(0).flag, deqPtr) 1467 1468 def PrintFlag(flag: Bool, name: String): Unit = { 1469 XSDebug(false, flag, name) // when(flag) 1470 XSDebug(false, !flag, " ") // otherwirse 1471 } 1472 1473 for (i <- 0 until StoreQueueSize) { 1474 XSDebug(s"$i: pc %x va %x pa %x data %x ", 1475 uop(i).pc, 1476 debug_vaddr(i), 1477 debug_paddr(i), 1478 debug_data(i) 1479 ) 1480 PrintFlag(allocated(i), "a") 1481 PrintFlag(allocated(i) && addrvalid(i), "a") 1482 PrintFlag(allocated(i) && datavalid(i), "d") 1483 PrintFlag(allocated(i) && committed(i), "c") 1484 PrintFlag(allocated(i) && pending(i), "p") 1485 PrintFlag(allocated(i) && mmio(i), "m") 1486 XSDebug(false, true.B, "\n") 1487 } 1488 1489} 1490