1package xiangshan.mem 2 3import chisel3._ 4import chisel3.util._ 5import utils._ 6import xiangshan._ 7import xiangshan.cache._ 8import xiangshan.cache.{DCacheWordIO, DCacheLineIO, TlbRequestIO, MemoryOpConstants} 9import xiangshan.backend.LSUOpType 10import xiangshan.backend.roq.RoqPtr 11 12 13class SqPtr extends CircularQueuePtr(SqPtr.StoreQueueSize) { } 14 15object SqPtr extends HasXSParameter { 16 def apply(f: Bool, v: UInt): SqPtr = { 17 val ptr = Wire(new SqPtr) 18 ptr.flag := f 19 ptr.value := v 20 ptr 21 } 22} 23 24// Store Queue 25class StoreQueue extends XSModule with HasDCacheParameters with HasCircularQueuePtrHelper { 26 val io = IO(new Bundle() { 27 val enq = new Bundle() { 28 val canAccept = Output(Bool()) 29 val req = Vec(RenameWidth, Flipped(ValidIO(new MicroOp))) 30 val resp = Vec(RenameWidth, Output(new SqPtr)) 31 } 32 val brqRedirect = Input(Valid(new Redirect)) 33 val storeIn = Vec(StorePipelineWidth, Flipped(Valid(new LsPipelineBundle))) 34 val sbuffer = Vec(StorePipelineWidth, Decoupled(new DCacheWordReq)) 35 val mmioStout = DecoupledIO(new ExuOutput) // writeback uncached store 36 val forward = Vec(LoadPipelineWidth, Flipped(new LoadForwardQueryIO)) 37 val commits = Flipped(new RoqCommitIO) 38 val uncache = new DCacheWordIO 39 val roqDeqPtr = Input(new RoqPtr) 40 // val refill = Flipped(Valid(new DCacheLineReq )) 41 val exceptionAddr = new ExceptionAddrIO 42 }) 43 44 val uop = Reg(Vec(StoreQueueSize, new MicroOp)) 45 // val data = Reg(Vec(StoreQueueSize, new LsqEntry)) 46 val dataModule = Module(new LSQueueData(StoreQueueSize, StorePipelineWidth)) 47 dataModule.io := DontCare 48 val allocated = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // sq entry has been allocated 49 val datavalid = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // non-mmio data is valid 50 val writebacked = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // inst has been writebacked to CDB 51 val commited = Reg(Vec(StoreQueueSize, Bool())) // inst has been commited by roq 52 val pending = Reg(Vec(StoreQueueSize, Bool())) // mmio pending: inst is an mmio inst, it will not be executed until it reachs the end of roq 53 54 require(StoreQueueSize > RenameWidth) 55 val enqPtrExt = RegInit(VecInit((0 until RenameWidth).map(_.U.asTypeOf(new SqPtr)))) 56 val deqPtrExt = RegInit(VecInit((0 until StorePipelineWidth).map(_.U.asTypeOf(new SqPtr)))) 57 val enqPtr = enqPtrExt(0).value 58 val deqPtr = deqPtrExt(0).value 59 60 val tailMask = UIntToMask(deqPtr, StoreQueueSize) 61 val headMask = UIntToMask(enqPtr, StoreQueueSize) 62 63 /** 64 * Enqueue at dispatch 65 * 66 * Currently, StoreQueue only allows enqueue when #emptyEntries > RenameWidth(EnqWidth) 67 */ 68 val validEntries = distanceBetween(enqPtrExt(0), deqPtrExt(0)) 69 val firedDispatch = io.enq.req.map(_.valid) 70 io.enq.canAccept := validEntries <= (StoreQueueSize - RenameWidth).U 71 XSDebug(p"(ready, valid): ${io.enq.canAccept}, ${Binary(Cat(firedDispatch))}\n") 72 for (i <- 0 until RenameWidth) { 73 val offset = if (i == 0) 0.U else PopCount((0 until i).map(firedDispatch(_))) 74 val sqIdx = enqPtrExt(offset) 75 val index = sqIdx.value 76 when (io.enq.req(i).valid && !io.brqRedirect.valid) { 77 uop(index) := io.enq.req(i).bits 78 allocated(index) := true.B 79 datavalid(index) := false.B 80 writebacked(index) := false.B 81 commited(index) := false.B 82 pending(index) := false.B 83 } 84 io.enq.resp(i) := sqIdx 85 86 XSError(!io.enq.canAccept && io.enq.req(i).valid, "should not valid when not ready\n") 87 } 88 89 when (Cat(firedDispatch).orR && !io.brqRedirect.valid) { 90 val enqNumber = PopCount(firedDispatch) 91 enqPtrExt := VecInit(enqPtrExt.map(_ + enqNumber)) 92 XSInfo("dispatched %d insts to sq\n", enqNumber) 93 } 94 95 /** 96 * Writeback store from store units 97 * 98 * Most store instructions writeback to regfile in the previous cycle. 99 * However, 100 * (1) For an mmio instruction with exceptions, we need to mark it as datavalid 101 * (in this way it will trigger an exception when it reaches ROB's head) 102 * instead of pending to avoid sending them to lower level. 103 * (2) For an mmio instruction without exceptions, we mark it as pending. 104 * When the instruction reaches ROB's head, StoreQueue sends it to uncache channel. 105 * Upon receiving the response, StoreQueue writes back the instruction 106 * through arbiter with store units. It will later commit as normal. 107 */ 108 for (i <- 0 until StorePipelineWidth) { 109 dataModule.io.wb(i).wen := false.B 110 when(io.storeIn(i).fire()) { 111 val stWbIndex = io.storeIn(i).bits.uop.sqIdx.value 112 val hasException = io.storeIn(i).bits.uop.cf.exceptionVec.asUInt.orR 113 val hasWritebacked = !io.storeIn(i).bits.mmio || hasException 114 datavalid(stWbIndex) := hasWritebacked 115 writebacked(stWbIndex) := hasWritebacked 116 pending(stWbIndex) := !hasWritebacked // valid mmio require 117 118 val storeWbData = Wire(new LsqEntry) 119 storeWbData := DontCare 120 storeWbData.paddr := io.storeIn(i).bits.paddr 121 storeWbData.vaddr := io.storeIn(i).bits.vaddr 122 storeWbData.mask := io.storeIn(i).bits.mask 123 storeWbData.data := io.storeIn(i).bits.data 124 storeWbData.mmio := io.storeIn(i).bits.mmio 125 storeWbData.exception := io.storeIn(i).bits.uop.cf.exceptionVec.asUInt 126 127 dataModule.io.wbWrite(i, stWbIndex, storeWbData) 128 dataModule.io.wb(i).wen := true.B 129 130 XSInfo("store write to sq idx %d pc 0x%x vaddr %x paddr %x data %x mmio %x roll %x exc %x\n", 131 io.storeIn(i).bits.uop.sqIdx.value, 132 io.storeIn(i).bits.uop.cf.pc, 133 io.storeIn(i).bits.vaddr, 134 io.storeIn(i).bits.paddr, 135 io.storeIn(i).bits.data, 136 io.storeIn(i).bits.mmio, 137 io.storeIn(i).bits.rollback, 138 io.storeIn(i).bits.uop.cf.exceptionVec.asUInt 139 ) 140 } 141 } 142 143 /** 144 * load forward query 145 * 146 * Check store queue for instructions that is older than the load. 147 * The response will be valid at the next cycle after req. 148 */ 149 // check over all lq entries and forward data from the first matched store 150 for (i <- 0 until LoadPipelineWidth) { 151 io.forward(i).forwardMask := 0.U(8.W).asBools 152 io.forward(i).forwardData := DontCare 153 154 // Compare deqPtr (deqPtr) and forward.sqIdx, we have two cases: 155 // (1) if they have the same flag, we need to check range(tail, sqIdx) 156 // (2) if they have different flags, we need to check range(tail, LoadQueueSize) and range(0, sqIdx) 157 // Forward1: Mux(same_flag, range(tail, sqIdx), range(tail, LoadQueueSize)) 158 // Forward2: Mux(same_flag, 0.U, range(0, sqIdx) ) 159 // i.e. forward1 is the target entries with the same flag bits and forward2 otherwise 160 val differentFlag = deqPtrExt(0).flag =/= io.forward(i).sqIdx.flag 161 val forwardMask = UIntToMask(io.forward(i).sqIdx.value, StoreQueueSize) 162 val storeWritebackedVec = WireInit(VecInit(Seq.fill(StoreQueueSize)(false.B))) 163 for (j <- 0 until StoreQueueSize) { 164 storeWritebackedVec(j) := datavalid(j) && allocated(j) // all datavalid terms need to be checked 165 } 166 val needForward1 = Mux(differentFlag, ~tailMask, tailMask ^ forwardMask) & storeWritebackedVec.asUInt 167 val needForward2 = Mux(differentFlag, forwardMask, 0.U(StoreQueueSize.W)) & storeWritebackedVec.asUInt 168 169 XSDebug(p"$i f1 ${Binary(needForward1)} f2 ${Binary(needForward2)} " + 170 p"sqIdx ${io.forward(i).sqIdx} pa ${Hexadecimal(io.forward(i).paddr)}\n" 171 ) 172 173 // do real fwd query 174 dataModule.io.forwardQuery( 175 channel = i, 176 paddr = io.forward(i).paddr, 177 needForward1 = needForward1, 178 needForward2 = needForward2 179 ) 180 181 io.forward(i).forwardMask := dataModule.io.forward(i).forwardMask 182 io.forward(i).forwardData := dataModule.io.forward(i).forwardData 183 } 184 185 /** 186 * Memory mapped IO / other uncached operations 187 * 188 * States: 189 * (1) writeback from store units: mark as pending 190 * (2) when they reach ROB's head, they can be sent to uncache channel 191 * (3) response from uncache channel: mark as datavalid 192 * (4) writeback to ROB (and other units): mark as writebacked 193 * (5) ROB commits the instruction: same as normal instructions 194 */ 195 //(2) when they reach ROB's head, they can be sent to uncache channel 196 val commitType = io.commits.uop(0).ctrl.commitType 197 io.uncache.req.valid := pending(deqPtr) && allocated(deqPtr) && 198 commitType === CommitType.STORE && 199 io.roqDeqPtr === uop(deqPtr).roqIdx && 200 !io.commits.isWalk 201 202 io.uncache.req.bits.cmd := MemoryOpConstants.M_XWR 203 io.uncache.req.bits.addr := dataModule.io.rdata(deqPtr).paddr 204 io.uncache.req.bits.data := dataModule.io.rdata(deqPtr).data 205 io.uncache.req.bits.mask := dataModule.io.rdata(deqPtr).mask 206 207 io.uncache.req.bits.meta.id := DontCare // TODO: // FIXME 208 io.uncache.req.bits.meta.vaddr := DontCare 209 io.uncache.req.bits.meta.paddr := dataModule.io.rdata(deqPtr).paddr 210 io.uncache.req.bits.meta.uop := uop(deqPtr) 211 io.uncache.req.bits.meta.mmio := true.B 212 io.uncache.req.bits.meta.tlb_miss := false.B 213 io.uncache.req.bits.meta.mask := dataModule.io.rdata(deqPtr).mask 214 io.uncache.req.bits.meta.replay := false.B 215 216 when(io.uncache.req.fire()){ 217 pending(deqPtr) := false.B 218 219 XSDebug( 220 p"uncache req: pc ${Hexadecimal(uop(deqPtr).cf.pc)} " + 221 p"addr ${Hexadecimal(io.uncache.req.bits.addr)} " + 222 p"data ${Hexadecimal(io.uncache.req.bits.data)} " + 223 p"op ${Hexadecimal(io.uncache.req.bits.cmd)} " + 224 p"mask ${Hexadecimal(io.uncache.req.bits.mask)}\n" 225 ) 226 } 227 228 // (3) response from uncache channel: mark as datavalid 229 io.uncache.resp.ready := true.B 230 when (io.uncache.resp.fire()) { 231 datavalid(deqPtr) := true.B 232 } 233 234 // (4) writeback to ROB (and other units): mark as writebacked 235 io.mmioStout.valid := allocated(deqPtr) && datavalid(deqPtr) && !writebacked(deqPtr) 236 io.mmioStout.bits.uop := uop(deqPtr) 237 io.mmioStout.bits.uop.sqIdx := deqPtrExt(0) 238 io.mmioStout.bits.uop.cf.exceptionVec := dataModule.io.rdata(deqPtr).exception.asBools 239 io.mmioStout.bits.data := dataModule.io.rdata(deqPtr).data 240 io.mmioStout.bits.redirectValid := false.B 241 io.mmioStout.bits.redirect := DontCare 242 io.mmioStout.bits.brUpdate := DontCare 243 io.mmioStout.bits.debug.isMMIO := true.B 244 io.mmioStout.bits.fflags := DontCare 245 when (io.mmioStout.fire()) { 246 writebacked(deqPtr) := true.B 247 allocated(deqPtr) := false.B 248 deqPtrExt := VecInit(deqPtrExt.map(_ + 1.U)) 249 } 250 251 /** 252 * ROB commits store instructions (mark them as commited) 253 * 254 * (1) When store commits, mark it as commited. 255 * (2) They will not be cancelled and can be sent to lower level. 256 */ 257 for (i <- 0 until CommitWidth) { 258 val storeCommit = !io.commits.isWalk && io.commits.valid(i) && io.commits.uop(i).ctrl.commitType === CommitType.STORE 259 when (storeCommit) { 260 commited(io.commits.uop(i).sqIdx.value) := true.B 261 XSDebug("store commit %d: idx %d %x\n", i.U, io.commits.uop(i).sqIdx.value, io.commits.uop(i).cf.pc) 262 } 263 } 264 265 // Commited stores will not be cancelled and can be sent to lower level. 266 // remove retired insts from sq, add retired store to sbuffer 267 for (i <- 0 until StorePipelineWidth) { 268 val ptr = deqPtrExt(i).value 269 val mmio = dataModule.io.rdata(ptr).mmio 270 io.sbuffer(i).valid := allocated(ptr) && commited(ptr) && !mmio 271 io.sbuffer(i).bits.cmd := MemoryOpConstants.M_XWR 272 io.sbuffer(i).bits.addr := dataModule.io.rdata(ptr).paddr 273 io.sbuffer(i).bits.data := dataModule.io.rdata(ptr).data 274 io.sbuffer(i).bits.mask := dataModule.io.rdata(ptr).mask 275 io.sbuffer(i).bits.meta := DontCare 276 io.sbuffer(i).bits.meta.tlb_miss := false.B 277 io.sbuffer(i).bits.meta.uop := DontCare 278 io.sbuffer(i).bits.meta.mmio := mmio 279 io.sbuffer(i).bits.meta.mask := dataModule.io.rdata(ptr).mask 280 281 when (io.sbuffer(i).fire()) { 282 allocated(ptr) := false.B 283 XSDebug("sbuffer "+i+" fire: ptr %d\n", ptr) 284 } 285 } 286 // note that sbuffer will not accept req(1) if req(0) is not accepted. 287 when (Cat(io.sbuffer.map(_.fire())).orR) { 288 val stepForward = Mux(io.sbuffer(1).fire(), 2.U, 1.U) 289 deqPtrExt := VecInit(deqPtrExt.map(_ + stepForward)) 290 when (io.sbuffer(1).fire()) { 291 assert(io.sbuffer(0).fire()) 292 } 293 } 294 295 // Read vaddr for mem exception 296 io.exceptionAddr.vaddr := dataModule.io.rdata(io.exceptionAddr.lsIdx.sqIdx.value).vaddr 297 298 // misprediction recovery / exception redirect 299 // invalidate sq term using robIdx 300 val needCancel = Wire(Vec(StoreQueueSize, Bool())) 301 for (i <- 0 until StoreQueueSize) { 302 needCancel(i) := uop(i).roqIdx.needFlush(io.brqRedirect) && allocated(i) && !commited(i) 303 when (needCancel(i)) { 304 allocated(i) := false.B 305 } 306 } 307 // we recover the pointers in the next cycle after redirect 308 val lastCycleRedirectValid = RegNext(io.brqRedirect.valid) 309 val needCancelCount = PopCount(RegNext(needCancel)) 310 when (lastCycleRedirectValid) { 311 enqPtrExt := VecInit(enqPtrExt.map(_ - needCancelCount)) 312 } 313 314 // debug info 315 XSDebug("enqPtrExt %d:%d deqPtrExt %d:%d\n", enqPtrExt(0).flag, enqPtr, deqPtrExt(0).flag, deqPtr) 316 317 def PrintFlag(flag: Bool, name: String): Unit = { 318 when(flag) { 319 XSDebug(false, true.B, name) 320 }.otherwise { 321 XSDebug(false, true.B, " ") 322 } 323 } 324 325 for (i <- 0 until StoreQueueSize) { 326 if (i % 4 == 0) XSDebug("") 327 XSDebug(false, true.B, "%x [%x] ", uop(i).cf.pc, dataModule.io.rdata(i).paddr) 328 PrintFlag(allocated(i), "a") 329 PrintFlag(allocated(i) && datavalid(i), "v") 330 PrintFlag(allocated(i) && writebacked(i), "w") 331 PrintFlag(allocated(i) && commited(i), "c") 332 PrintFlag(allocated(i) && pending(i), "p") 333 XSDebug(false, true.B, " ") 334 if (i % 4 == 3 || i == StoreQueueSize - 1) XSDebug(false, true.B, "\n") 335 } 336 337} 338