xref: /XiangShan/src/main/scala/xiangshan/mem/lsqueue/StoreQueue.scala (revision be8e95bc7b72417b30c401c21e5709aaad9df5a6)
1/***************************************************************************************
2* Copyright (c) 2024 Beijing Institute of Open Source Chip (BOSC)
3* Copyright (c) 2020-2024 Institute of Computing Technology, Chinese Academy of Sciences
4* Copyright (c) 2020-2021 Peng Cheng Laboratory
5*
6* XiangShan is licensed under Mulan PSL v2.
7* You can use this software according to the terms and conditions of the Mulan PSL v2.
8* You may obtain a copy of Mulan PSL v2 at:
9*          http://license.coscl.org.cn/MulanPSL2
10*
11* THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND,
12* EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT,
13* MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE.
14*
15* See the Mulan PSL v2 for more details.
16***************************************************************************************/
17
18package xiangshan.mem
19
20import chisel3._
21import chisel3.util._
22import difftest._
23import difftest.common.DifftestMem
24import org.chipsalliance.cde.config.Parameters
25import utility._
26import utils._
27import xiangshan._
28import xiangshan.cache._
29import xiangshan.cache.{DCacheLineIO, DCacheWordIO, MemoryOpConstants}
30import xiangshan.cache.{CMOReq, CMOResp}
31import xiangshan.backend._
32import xiangshan.backend.rob.{RobLsqIO, RobPtr}
33import xiangshan.backend.Bundles.{DynInst, MemExuOutput}
34import xiangshan.backend.decode.isa.bitfield.{Riscv32BitInst, XSInstBitFields}
35import xiangshan.backend.fu.FuConfig._
36import xiangshan.backend.fu.FuType
37import xiangshan.ExceptionNO._
38
39class SqPtr(implicit p: Parameters) extends CircularQueuePtr[SqPtr](
40  p => p(XSCoreParamsKey).StoreQueueSize
41){
42}
43
44object SqPtr {
45  def apply(f: Bool, v: UInt)(implicit p: Parameters): SqPtr = {
46    val ptr = Wire(new SqPtr)
47    ptr.flag := f
48    ptr.value := v
49    ptr
50  }
51}
52
53class SqEnqIO(implicit p: Parameters) extends MemBlockBundle {
54  val canAccept = Output(Bool())
55  val lqCanAccept = Input(Bool())
56  val needAlloc = Vec(LSQEnqWidth, Input(Bool()))
57  val req = Vec(LSQEnqWidth, Flipped(ValidIO(new DynInst)))
58  val resp = Vec(LSQEnqWidth, Output(new SqPtr))
59}
60
61class DataBufferEntry (implicit p: Parameters)  extends DCacheBundle {
62  val addr   = UInt(PAddrBits.W)
63  val vaddr  = UInt(VAddrBits.W)
64  val data   = UInt(VLEN.W)
65  val mask   = UInt((VLEN/8).W)
66  val wline = Bool()
67  val sqPtr  = new SqPtr
68  val prefetch = Bool()
69  val vecValid = Bool()
70  val sqNeedDeq = Bool()
71}
72
73class StoreExceptionBuffer(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper {
74  // The 1st StorePipelineWidth ports: sta exception generated at s1, except for af
75  // The 2nd StorePipelineWidth ports: sta af generated at s2
76  // The following VecStorePipelineWidth ports: vector st exception
77  // The last port: non-data error generated in SoC
78  val enqPortNum = StorePipelineWidth * 2 + VecStorePipelineWidth + 1
79
80  val io = IO(new Bundle() {
81    val redirect = Flipped(ValidIO(new Redirect))
82    val storeAddrIn = Vec(enqPortNum, Flipped(ValidIO(new LsPipelineBundle())))
83    val exceptionAddr = new ExceptionAddrIO
84  })
85
86  val req_valid = RegInit(false.B)
87  val req = Reg(new LsPipelineBundle())
88
89  // enqueue
90  // S1:
91  val s1_req = VecInit(io.storeAddrIn.map(_.bits))
92  val s1_valid = VecInit(io.storeAddrIn.map(x =>
93      x.valid && !x.bits.uop.robIdx.needFlush(io.redirect) && ExceptionNO.selectByFu(x.bits.uop.exceptionVec, StaCfg).asUInt.orR
94  ))
95
96  // S2: delay 1 cycle
97  val s2_req = (0 until enqPortNum).map(i =>
98    RegEnable(s1_req(i), s1_valid(i)))
99  val s2_valid = (0 until enqPortNum).map(i =>
100    RegNext(s1_valid(i)) && !s2_req(i).uop.robIdx.needFlush(io.redirect)
101  )
102
103  val s2_enqueue = Wire(Vec(enqPortNum, Bool()))
104  for (w <- 0 until enqPortNum) {
105    s2_enqueue(w) := s2_valid(w)
106  }
107
108  when (req_valid && req.uop.robIdx.needFlush(io.redirect)) {
109    req_valid := s2_enqueue.asUInt.orR
110  }.elsewhen (s2_enqueue.asUInt.orR) {
111    req_valid := true.B
112  }
113
114  def selectOldest[T <: LsPipelineBundle](valid: Seq[Bool], bits: Seq[T]): (Seq[Bool], Seq[T]) = {
115    assert(valid.length == bits.length)
116    if (valid.length == 0 || valid.length == 1) {
117      (valid, bits)
118    } else if (valid.length == 2) {
119      val res = Seq.fill(2)(Wire(Valid(chiselTypeOf(bits(0)))))
120      for (i <- res.indices) {
121        res(i).valid := valid(i)
122        res(i).bits := bits(i)
123      }
124      val oldest = Mux(valid(0) && valid(1),
125        Mux(isAfter(bits(0).uop.robIdx, bits(1).uop.robIdx) ||
126          (bits(0).uop.robIdx === bits(1).uop.robIdx && bits(0).uop.uopIdx > bits(1).uop.uopIdx), res(1), res(0)),
127        Mux(valid(0) && !valid(1), res(0), res(1)))
128      (Seq(oldest.valid), Seq(oldest.bits))
129    } else {
130      val left = selectOldest(valid.take(valid.length / 2), bits.take(bits.length / 2))
131      val right = selectOldest(valid.takeRight(valid.length - (valid.length / 2)), bits.takeRight(bits.length - (bits.length / 2)))
132      selectOldest(left._1 ++ right._1, left._2 ++ right._2)
133    }
134  }
135
136  val reqSel = selectOldest(s2_enqueue, s2_req)
137
138  when (req_valid) {
139    req := Mux(
140      reqSel._1(0) && (isAfter(req.uop.robIdx, reqSel._2(0).uop.robIdx) || (isNotBefore(req.uop.robIdx, reqSel._2(0).uop.robIdx) && req.uop.uopIdx > reqSel._2(0).uop.uopIdx)),
141      reqSel._2(0),
142      req)
143  } .elsewhen (s2_enqueue.asUInt.orR) {
144    req := reqSel._2(0)
145  }
146
147  io.exceptionAddr.vaddr     := req.fullva
148  io.exceptionAddr.vaNeedExt := req.vaNeedExt
149  io.exceptionAddr.isHyper   := req.isHyper
150  io.exceptionAddr.gpaddr    := req.gpaddr
151  io.exceptionAddr.vstart    := req.uop.vpu.vstart
152  io.exceptionAddr.vl        := req.uop.vpu.vl
153  io.exceptionAddr.isForVSnonLeafPTE := req.isForVSnonLeafPTE
154
155}
156
157// Store Queue
158class StoreQueue(implicit p: Parameters) extends XSModule
159  with HasDCacheParameters
160  with HasCircularQueuePtrHelper
161  with HasPerfEvents
162  with HasVLSUParameters {
163  val io = IO(new Bundle() {
164    val hartId = Input(UInt(hartIdLen.W))
165    val enq = new SqEnqIO
166    val brqRedirect = Flipped(ValidIO(new Redirect))
167    val vecFeedback = Vec(VecLoadPipelineWidth, Flipped(ValidIO(new FeedbackToLsqIO)))
168    val storeAddrIn = Vec(StorePipelineWidth, Flipped(Valid(new LsPipelineBundle))) // store addr, data is not included
169    val storeAddrInRe = Vec(StorePipelineWidth, Input(new LsPipelineBundle())) // store more mmio and exception
170    val storeDataIn = Vec(StorePipelineWidth, Flipped(Valid(new MemExuOutput(isVector = true)))) // store data, send to sq from rs
171    val storeMaskIn = Vec(StorePipelineWidth, Flipped(Valid(new StoreMaskBundle))) // store mask, send to sq from rs
172    val sbuffer = Vec(EnsbufferWidth, Decoupled(new DCacheWordReqWithVaddrAndPfFlag)) // write committed store to sbuffer
173    val sbufferVecDifftestInfo = Vec(EnsbufferWidth, Decoupled(new DynInst)) // The vector store difftest needs is, write committed store to sbuffer
174    val uncacheOutstanding = Input(Bool())
175    val cmoOpReq  = DecoupledIO(new CMOReq)
176    val cmoOpResp = Flipped(DecoupledIO(new CMOResp))
177    val mmioStout = DecoupledIO(new MemExuOutput) // writeback uncached store
178    val vecmmioStout = DecoupledIO(new MemExuOutput(isVector = true))
179    val forward = Vec(LoadPipelineWidth, Flipped(new PipeLoadForwardQueryIO))
180    // TODO: scommit is only for scalar store
181    val rob = Flipped(new RobLsqIO)
182    val uncache = new UncacheWordIO
183    // val refill = Flipped(Valid(new DCacheLineReq ))
184    val exceptionAddr = new ExceptionAddrIO
185    val flushSbuffer = new SbufferFlushBundle
186    val sqEmpty = Output(Bool())
187    val stAddrReadySqPtr = Output(new SqPtr)
188    val stAddrReadyVec = Output(Vec(StoreQueueSize, Bool()))
189    val stDataReadySqPtr = Output(new SqPtr)
190    val stDataReadyVec = Output(Vec(StoreQueueSize, Bool()))
191    val stIssuePtr = Output(new SqPtr)
192    val sqDeqPtr = Output(new SqPtr)
193    val sqFull = Output(Bool())
194    val sqCancelCnt = Output(UInt(log2Up(StoreQueueSize + 1).W))
195    val sqDeq = Output(UInt(log2Ceil(EnsbufferWidth + 1).W))
196    val force_write = Output(Bool())
197    val maControl   = Flipped(new StoreMaBufToSqControlIO)
198  })
199
200  println("StoreQueue: size:" + StoreQueueSize)
201
202  // data modules
203  val uop = Reg(Vec(StoreQueueSize, new DynInst))
204  // val data = Reg(Vec(StoreQueueSize, new LsqEntry))
205  val dataModule = Module(new SQDataModule(
206    numEntries = StoreQueueSize,
207    numRead = EnsbufferWidth,
208    numWrite = StorePipelineWidth,
209    numForward = LoadPipelineWidth
210  ))
211  dataModule.io := DontCare
212  val paddrModule = Module(new SQAddrModule(
213    dataWidth = PAddrBits,
214    numEntries = StoreQueueSize,
215    numRead = EnsbufferWidth,
216    numWrite = StorePipelineWidth,
217    numForward = LoadPipelineWidth
218  ))
219  paddrModule.io := DontCare
220  val vaddrModule = Module(new SQAddrModule(
221    dataWidth = VAddrBits,
222    numEntries = StoreQueueSize,
223    numRead = EnsbufferWidth, // sbuffer; badvaddr will be sent from exceptionBuffer
224    numWrite = StorePipelineWidth,
225    numForward = LoadPipelineWidth
226  ))
227  vaddrModule.io := DontCare
228  val dataBuffer = Module(new DatamoduleResultBuffer(new DataBufferEntry))
229  val difftestBuffer = if (env.EnableDifftest) Some(Module(new DatamoduleResultBuffer(new DynInst))) else None
230  val exceptionBuffer = Module(new StoreExceptionBuffer)
231  exceptionBuffer.io.redirect := io.brqRedirect
232  exceptionBuffer.io.exceptionAddr.isStore := DontCare
233  // vlsu exception!
234  for (i <- 0 until VecStorePipelineWidth) {
235    exceptionBuffer.io.storeAddrIn(StorePipelineWidth * 2 + i).valid               := io.vecFeedback(i).valid && io.vecFeedback(i).bits.feedback(VecFeedbacks.FLUSH) // have exception
236    exceptionBuffer.io.storeAddrIn(StorePipelineWidth * 2 + i).bits                := DontCare
237    exceptionBuffer.io.storeAddrIn(StorePipelineWidth * 2 + i).bits.fullva         := io.vecFeedback(i).bits.vaddr
238    exceptionBuffer.io.storeAddrIn(StorePipelineWidth * 2 + i).bits.vaNeedExt      := io.vecFeedback(i).bits.vaNeedExt
239    exceptionBuffer.io.storeAddrIn(StorePipelineWidth * 2 + i).bits.gpaddr         := io.vecFeedback(i).bits.gpaddr
240    exceptionBuffer.io.storeAddrIn(StorePipelineWidth * 2 + i).bits.uop.uopIdx     := io.vecFeedback(i).bits.uopidx
241    exceptionBuffer.io.storeAddrIn(StorePipelineWidth * 2 + i).bits.uop.robIdx     := io.vecFeedback(i).bits.robidx
242    exceptionBuffer.io.storeAddrIn(StorePipelineWidth * 2 + i).bits.uop.vpu.vstart := io.vecFeedback(i).bits.vstart
243    exceptionBuffer.io.storeAddrIn(StorePipelineWidth * 2 + i).bits.uop.vpu.vl     := io.vecFeedback(i).bits.vl
244    exceptionBuffer.io.storeAddrIn(StorePipelineWidth * 2 + i).bits.isForVSnonLeafPTE := io.vecFeedback(i).bits.isForVSnonLeafPTE
245    exceptionBuffer.io.storeAddrIn(StorePipelineWidth * 2 + i).bits.uop.exceptionVec  := io.vecFeedback(i).bits.exceptionVec
246  }
247
248
249  val debug_paddr = Reg(Vec(StoreQueueSize, UInt((PAddrBits).W)))
250  val debug_vaddr = Reg(Vec(StoreQueueSize, UInt((VAddrBits).W)))
251  val debug_data = Reg(Vec(StoreQueueSize, UInt((XLEN).W)))
252
253  // state & misc
254  val allocated = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // sq entry has been allocated
255  val addrvalid = RegInit(VecInit(List.fill(StoreQueueSize)(false.B)))
256  val datavalid = RegInit(VecInit(List.fill(StoreQueueSize)(false.B)))
257  val allvalid  = VecInit((0 until StoreQueueSize).map(i => addrvalid(i) && datavalid(i)))
258  val committed = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // inst has been committed by rob
259  val unaligned = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // unaligned store
260  val cross16Byte = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // unaligned cross 16Byte boundary
261  val pending = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // mmio pending: inst is an mmio inst, it will not be executed until it reachs the end of rob
262  val nc = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // nc: inst is a nc inst
263  val mmio = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // mmio: inst is an mmio inst
264  val atomic = RegInit(VecInit(List.fill(StoreQueueSize)(false.B)))
265  val memBackTypeMM = RegInit(VecInit(List.fill(StoreQueueSize)(false.B)))
266  val prefetch = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // need prefetch when committing this store to sbuffer?
267  val isVec = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // vector store instruction
268  val vecLastFlow = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // last uop the last flow of vector store instruction
269  val vecMbCommit = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // vector store committed from merge buffer to rob
270  val hasException = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // store has exception, should deq but not write sbuffer
271  val waitStoreS2 = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // wait for mmio and exception result until store_s2
272  // val vec_robCommit = Reg(Vec(StoreQueueSize, Bool())) // vector store committed by rob
273  // val vec_secondInv = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // Vector unit-stride, second entry is invalid
274  val vecExceptionFlag = RegInit(0.U.asTypeOf(Valid(new DynInst)))
275
276  // ptr
277  val enqPtrExt = RegInit(VecInit((0 until io.enq.req.length).map(_.U.asTypeOf(new SqPtr))))
278  val rdataPtrExt = RegInit(VecInit((0 until EnsbufferWidth).map(_.U.asTypeOf(new SqPtr))))
279  val deqPtrExt = RegInit(VecInit((0 until EnsbufferWidth).map(_.U.asTypeOf(new SqPtr))))
280  val cmtPtrExt = RegInit(VecInit((0 until CommitWidth).map(_.U.asTypeOf(new SqPtr))))
281  val addrReadyPtrExt = RegInit(0.U.asTypeOf(new SqPtr))
282  val dataReadyPtrExt = RegInit(0.U.asTypeOf(new SqPtr))
283
284  val enqPtr = enqPtrExt(0).value
285  val deqPtr = deqPtrExt(0).value
286  val cmtPtr = cmtPtrExt(0).value
287
288  val validCount = distanceBetween(enqPtrExt(0), deqPtrExt(0))
289  val allowEnqueue = validCount <= (StoreQueueSize - LSQStEnqWidth).U
290
291  val deqMask = UIntToMask(deqPtr, StoreQueueSize)
292  val enqMask = UIntToMask(enqPtr, StoreQueueSize)
293
294  val commitCount = WireInit(0.U(log2Ceil(CommitWidth + 1).W))
295  val scommit = GatedRegNext(io.rob.scommit)
296  val mmioReq = Wire(chiselTypeOf(io.uncache.req))
297  val ncReq = Wire(chiselTypeOf(io.uncache.req))
298  val ncResp = Wire(chiselTypeOf(io.uncache.resp))
299  val ncDoReq = Wire(Bool())
300  val ncDoResp = Wire(Bool())
301  val ncReadNextTrigger = Mux(io.uncacheOutstanding, ncDoReq, ncDoResp)
302  // ncDoReq is double RegNexted, as ubuffer data write takes 3 cycles.
303  // TODO lyq: to eliminate coupling by passing signals through ubuffer
304  val ncDeqTrigger = Mux(io.uncacheOutstanding, RegNext(RegNext(ncDoReq)), ncDoResp)
305  val ncPtr = Mux(io.uncacheOutstanding, RegNext(RegNext(io.uncache.req.bits.id)), io.uncache.resp.bits.id)
306
307  // store can be committed by ROB
308  io.rob.mmio := DontCare
309  io.rob.uop := DontCare
310
311  // Read dataModule
312  assert(EnsbufferWidth <= 2)
313  // rdataPtrExtNext and rdataPtrExtNext+1 entry will be read from dataModule
314  val rdataPtrExtNext = Wire(Vec(EnsbufferWidth, new SqPtr))
315  rdataPtrExtNext := rdataPtrExt.map(i => i +
316    PopCount(dataBuffer.io.enq.map(x=> x.fire && x.bits.sqNeedDeq)) +
317    PopCount(ncReadNextTrigger || io.mmioStout.fire || io.vecmmioStout.fire)
318  )
319
320  // deqPtrExtNext traces which inst is about to leave store queue
321  //
322  // io.sbuffer(i).fire is RegNexted, as sbuffer data write takes 2 cycles.
323  // Before data write finish, sbuffer is unable to provide store to load
324  // forward data. As an workaround, deqPtrExt and allocated flag update
325  // is delayed so that load can get the right data from store queue.
326  //
327  // Modify deqPtrExtNext and io.sqDeq with care!
328  val deqPtrExtNext = Wire(Vec(EnsbufferWidth, new SqPtr))
329  // Only sqNeedDeq can move the ptr
330  deqPtrExtNext := deqPtrExt.map(i =>  i +
331    RegNext(PopCount(VecInit(io.sbuffer.map(x=> x.fire && x.bits.sqNeedDeq)))) +
332    PopCount(ncDeqTrigger || io.mmioStout.fire || io.vecmmioStout.fire)
333  )
334
335  io.sqDeq := RegNext(
336    RegNext(PopCount(VecInit(io.sbuffer.map(x=> x.fire && x.bits.sqNeedDeq)))) +
337    PopCount(ncDeqTrigger || io.mmioStout.fire || io.vecmmioStout.fire)
338  )
339
340  assert(!RegNext(RegNext(io.sbuffer(0).fire) && (io.mmioStout.fire || io.vecmmioStout.fire)))
341
342  for (i <- 0 until EnsbufferWidth) {
343    dataModule.io.raddr(i) := rdataPtrExtNext(i).value
344    paddrModule.io.raddr(i) := rdataPtrExtNext(i).value
345    vaddrModule.io.raddr(i) := rdataPtrExtNext(i).value
346  }
347
348  /**
349    * Enqueue at dispatch
350    *
351    * Currently, StoreQueue only allows enqueue when #emptyEntries > EnqWidth
352    * Dynamic enq based on numLsElem number
353    */
354  io.enq.canAccept := allowEnqueue
355  val canEnqueue = io.enq.req.map(_.valid)
356  val enqCancel = io.enq.req.map(_.bits.robIdx.needFlush(io.brqRedirect))
357  val vStoreFlow = io.enq.req.map(_.bits.numLsElem.asTypeOf(UInt(elemIdxBits.W)))
358  val validVStoreFlow = vStoreFlow.zipWithIndex.map{case (vStoreFlowNumItem, index) => Mux(!RegNext(io.brqRedirect.valid) && canEnqueue(index), vStoreFlowNumItem, 0.U)}
359  val validVStoreOffset = vStoreFlow.zip(io.enq.needAlloc).map{case (flow, needAllocItem) => Mux(needAllocItem, flow, 0.U)}
360  val validVStoreOffsetRShift = 0.U +: validVStoreOffset.take(vStoreFlow.length - 1)
361
362  val enqLowBound = io.enq.req.map(_.bits.sqIdx)
363  val enqUpBound  = io.enq.req.map(x => x.bits.sqIdx + x.bits.numLsElem)
364  val enqCrossLoop = enqLowBound.zip(enqUpBound).map{case (low, up) => low.flag =/= up.flag}
365
366  for(i <- 0 until StoreQueueSize) {
367    val entryCanEnqSeq = (0 until io.enq.req.length).map { j =>
368      val entryHitBound = Mux(
369        enqCrossLoop(j),
370        enqLowBound(j).value <= i.U || i.U < enqUpBound(j).value,
371        enqLowBound(j).value <= i.U && i.U < enqUpBound(j).value
372      )
373      canEnqueue(j) && !enqCancel(j) && entryHitBound
374    }
375
376    val entryCanEnq = entryCanEnqSeq.reduce(_ || _)
377    val selectBits = ParallelPriorityMux(entryCanEnqSeq, io.enq.req.map(_.bits))
378    val selectUpBound = ParallelPriorityMux(entryCanEnqSeq, enqUpBound)
379    when (entryCanEnq) {
380      uop(i) := selectBits
381      vecLastFlow(i) := Mux((i + 1).U === selectUpBound.value, selectBits.lastUop, false.B)
382      allocated(i) := true.B
383      datavalid(i) := false.B
384      addrvalid(i) := false.B
385      unaligned(i) := false.B
386      cross16Byte(i) := false.B
387      committed(i) := false.B
388      pending(i) := false.B
389      prefetch(i) := false.B
390      nc(i) := false.B
391      mmio(i) := false.B
392      isVec(i) :=  FuType.isVStore(selectBits.fuType)
393      vecMbCommit(i) := false.B
394      hasException(i) := false.B
395      waitStoreS2(i) := true.B
396    }
397  }
398
399  for (i <- 0 until io.enq.req.length) {
400    val sqIdx = enqPtrExt(0) + validVStoreOffsetRShift.take(i + 1).reduce(_ + _)
401    val index = io.enq.req(i).bits.sqIdx
402    XSError(canEnqueue(i) && !enqCancel(i) && (!io.enq.canAccept || !io.enq.lqCanAccept), s"must accept $i\n")
403    XSError(canEnqueue(i) && !enqCancel(i) && index.value =/= sqIdx.value, s"must be the same entry $i\n")
404    io.enq.resp(i) := sqIdx
405  }
406  XSDebug(p"(ready, valid): ${io.enq.canAccept}, ${Binary(Cat(io.enq.req.map(_.valid)))}\n")
407
408  /**
409    * Update addr/dataReadyPtr when issue from rs
410    */
411  // update issuePtr
412  val IssuePtrMoveStride = 4
413  require(IssuePtrMoveStride >= 2)
414
415  val addrReadyLookupVec = (0 until IssuePtrMoveStride).map(addrReadyPtrExt + _.U)
416  val addrReadyLookup = addrReadyLookupVec.map(ptr => allocated(ptr.value) &&
417   (mmio(ptr.value) || addrvalid(ptr.value) || vecMbCommit(ptr.value))
418    && ptr =/= enqPtrExt(0))
419  val nextAddrReadyPtr = addrReadyPtrExt + PriorityEncoder(VecInit(addrReadyLookup.map(!_) :+ true.B))
420  addrReadyPtrExt := nextAddrReadyPtr
421
422  val stAddrReadyVecReg = Wire(Vec(StoreQueueSize, Bool()))
423  (0 until StoreQueueSize).map(i => {
424    stAddrReadyVecReg(i) := allocated(i) && (mmio(i) || addrvalid(i) || (isVec(i) && vecMbCommit(i)))
425  })
426  io.stAddrReadyVec := GatedValidRegNext(stAddrReadyVecReg)
427
428  when (io.brqRedirect.valid) {
429    addrReadyPtrExt := Mux(
430      isAfter(cmtPtrExt(0), deqPtrExt(0)),
431      cmtPtrExt(0),
432      deqPtrExtNext(0) // for mmio insts, deqPtr may be ahead of cmtPtr
433    )
434  }
435
436  io.stAddrReadySqPtr := addrReadyPtrExt
437
438  // update
439  val dataReadyLookupVec = (0 until IssuePtrMoveStride).map(dataReadyPtrExt + _.U)
440  val dataReadyLookup = dataReadyLookupVec.map(ptr => allocated(ptr.value) &&
441   (mmio(ptr.value) || datavalid(ptr.value) || vecMbCommit(ptr.value))
442    && ptr =/= enqPtrExt(0))
443  val nextDataReadyPtr = dataReadyPtrExt + PriorityEncoder(VecInit(dataReadyLookup.map(!_) :+ true.B))
444  dataReadyPtrExt := nextDataReadyPtr
445
446  val stDataReadyVecReg = Wire(Vec(StoreQueueSize, Bool()))
447  (0 until StoreQueueSize).map(i => {
448    stDataReadyVecReg(i) := allocated(i) && (mmio(i) || datavalid(i) || (isVec(i) && vecMbCommit(i)))
449  })
450  io.stDataReadyVec := GatedValidRegNext(stDataReadyVecReg)
451
452  when (io.brqRedirect.valid) {
453    dataReadyPtrExt := Mux(
454      isAfter(cmtPtrExt(0), deqPtrExt(0)),
455      cmtPtrExt(0),
456      deqPtrExtNext(0) // for mmio insts, deqPtr may be ahead of cmtPtr
457    )
458  }
459
460  io.stDataReadySqPtr := dataReadyPtrExt
461  io.stIssuePtr := enqPtrExt(0)
462  io.sqDeqPtr := deqPtrExt(0)
463
464  /**
465    * Writeback store from store units
466    *
467    * Most store instructions writeback to regfile in the previous cycle.
468    * However,
469    *   (1) For an mmio instruction with exceptions, we need to mark it as addrvalid
470    * (in this way it will trigger an exception when it reaches ROB's head)
471    * instead of pending to avoid sending them to lower level.
472    *   (2) For an mmio instruction without exceptions, we mark it as pending.
473    * When the instruction reaches ROB's head, StoreQueue sends it to uncache channel.
474    * Upon receiving the response, StoreQueue writes back the instruction
475    * through arbiter with store units. It will later commit as normal.
476    */
477
478  // Write addr to sq
479  for (i <- 0 until StorePipelineWidth) {
480    paddrModule.io.wen(i) := false.B
481    vaddrModule.io.wen(i) := false.B
482    dataModule.io.mask.wen(i) := false.B
483    val stWbIndex = io.storeAddrIn(i).bits.uop.sqIdx.value
484    exceptionBuffer.io.storeAddrIn(i).valid := io.storeAddrIn(i).fire && !io.storeAddrIn(i).bits.miss && !io.storeAddrIn(i).bits.isvec
485    exceptionBuffer.io.storeAddrIn(i).bits := io.storeAddrIn(i).bits
486    // will re-enter exceptionbuffer at store_s2
487    exceptionBuffer.io.storeAddrIn(StorePipelineWidth + i).valid := false.B
488    exceptionBuffer.io.storeAddrIn(StorePipelineWidth + i).bits := 0.U.asTypeOf(new LsPipelineBundle)
489
490    when (io.storeAddrIn(i).fire && io.storeAddrIn(i).bits.updateAddrValid) {
491      val addr_valid = !io.storeAddrIn(i).bits.miss
492      addrvalid(stWbIndex) := addr_valid //!io.storeAddrIn(i).bits.mmio
493      nc(stWbIndex) := io.storeAddrIn(i).bits.nc
494
495    }
496    when (io.storeAddrIn(i).fire && !io.storeAddrIn(i).bits.isFrmMisAlignBuf) {
497      // pending(stWbIndex) := io.storeAddrIn(i).bits.mmio
498      unaligned(stWbIndex) := io.storeAddrIn(i).bits.isMisalign
499      cross16Byte(stWbIndex) := io.storeAddrIn(i).bits.isMisalign && !io.storeAddrIn(i).bits.misalignWith16Byte
500
501      paddrModule.io.waddr(i) := stWbIndex
502      paddrModule.io.wdata(i) := io.storeAddrIn(i).bits.paddr
503      paddrModule.io.wmask(i) := io.storeAddrIn(i).bits.mask
504      paddrModule.io.wlineflag(i) := io.storeAddrIn(i).bits.wlineflag
505      paddrModule.io.wen(i) := true.B
506
507      vaddrModule.io.waddr(i) := stWbIndex
508      vaddrModule.io.wdata(i) := io.storeAddrIn(i).bits.vaddr
509      vaddrModule.io.wmask(i) := io.storeAddrIn(i).bits.mask
510      vaddrModule.io.wlineflag(i) := io.storeAddrIn(i).bits.wlineflag
511      vaddrModule.io.wen(i) := true.B
512
513      debug_paddr(paddrModule.io.waddr(i)) := paddrModule.io.wdata(i)
514
515      // mmio(stWbIndex) := io.storeAddrIn(i).bits.mmio
516    }
517    when (io.storeAddrIn(i).fire) {
518      uop(stWbIndex) := io.storeAddrIn(i).bits.uop
519      uop(stWbIndex).debugInfo := io.storeAddrIn(i).bits.uop.debugInfo
520    }
521    XSInfo(io.storeAddrIn(i).fire && !io.storeAddrIn(i).bits.isFrmMisAlignBuf,
522      "store addr write to sq idx %d pc 0x%x miss:%d vaddr %x paddr %x mmio %x isvec %x\n",
523      io.storeAddrIn(i).bits.uop.sqIdx.value,
524      io.storeAddrIn(i).bits.uop.pc,
525      io.storeAddrIn(i).bits.miss,
526      io.storeAddrIn(i).bits.vaddr,
527      io.storeAddrIn(i).bits.paddr,
528      io.storeAddrIn(i).bits.mmio,
529      io.storeAddrIn(i).bits.isvec
530    )
531
532    // re-replinish mmio, for pma/pmp will get mmio one cycle later
533    val storeAddrInFireReg = RegNext(io.storeAddrIn(i).fire && !io.storeAddrIn(i).bits.miss) && io.storeAddrInRe(i).updateAddrValid
534    //val stWbIndexReg = RegNext(stWbIndex)
535    val stWbIndexReg = RegEnable(stWbIndex, io.storeAddrIn(i).fire)
536    when (storeAddrInFireReg) {
537      pending(stWbIndexReg) := io.storeAddrInRe(i).mmio
538      mmio(stWbIndexReg) := io.storeAddrInRe(i).mmio
539      atomic(stWbIndexReg) := io.storeAddrInRe(i).atomic
540      memBackTypeMM(stWbIndexReg) := io.storeAddrInRe(i).memBackTypeMM
541      hasException(stWbIndexReg) := io.storeAddrInRe(i).hasException
542      waitStoreS2(stWbIndexReg) := false.B
543    }
544    // dcache miss info (one cycle later than storeIn)
545    // if dcache report a miss in sta pipeline, this store will trigger a prefetch when committing to sbuffer (if EnableAtCommitMissTrigger)
546    when (storeAddrInFireReg) {
547      prefetch(stWbIndexReg) := io.storeAddrInRe(i).miss
548    }
549    // enter exceptionbuffer again
550    when (storeAddrInFireReg) {
551      exceptionBuffer.io.storeAddrIn(StorePipelineWidth + i).valid := io.storeAddrInRe(i).hasException && !io.storeAddrInRe(i).isvec
552      exceptionBuffer.io.storeAddrIn(StorePipelineWidth + i).bits := io.storeAddrInRe(i)
553      exceptionBuffer.io.storeAddrIn(StorePipelineWidth + i).bits.uop.exceptionVec(storeAccessFault) := io.storeAddrInRe(i).af
554    }
555
556    when(vaddrModule.io.wen(i)){
557      debug_vaddr(vaddrModule.io.waddr(i)) := vaddrModule.io.wdata(i)
558    }
559  }
560
561  // Write data to sq
562  // Now store data pipeline is actually 2 stages
563  for (i <- 0 until StorePipelineWidth) {
564    dataModule.io.data.wen(i) := false.B
565    val stWbIndex = io.storeDataIn(i).bits.uop.sqIdx.value
566    val isVec     = FuType.isVStore(io.storeDataIn(i).bits.uop.fuType)
567    // sq data write takes 2 cycles:
568    // sq data write s0
569    when (io.storeDataIn(i).fire) {
570      // send data write req to data module
571      dataModule.io.data.waddr(i) := stWbIndex
572      dataModule.io.data.wdata(i) := Mux(io.storeDataIn(i).bits.uop.fuOpType === LSUOpType.cbo_zero,
573        0.U,
574        Mux(isVec,
575          io.storeDataIn(i).bits.data,
576          genVWdata(io.storeDataIn(i).bits.data, io.storeDataIn(i).bits.uop.fuOpType(2,0)))
577      )
578      dataModule.io.data.wen(i) := true.B
579
580      debug_data(dataModule.io.data.waddr(i)) := dataModule.io.data.wdata(i)
581    }
582    XSInfo(io.storeDataIn(i).fire,
583      "store data write to sq idx %d pc 0x%x data %x -> %x\n",
584      io.storeDataIn(i).bits.uop.sqIdx.value,
585      io.storeDataIn(i).bits.uop.pc,
586      io.storeDataIn(i).bits.data,
587      dataModule.io.data.wdata(i)
588    )
589    // sq data write s1
590    val lastStWbIndex = RegEnable(stWbIndex, io.storeDataIn(i).fire)
591    when (
592      RegNext(io.storeDataIn(i).fire) && allocated(lastStWbIndex)
593      // && !RegNext(io.storeDataIn(i).bits.uop).robIdx.needFlush(io.brqRedirect)
594    ) {
595      datavalid(lastStWbIndex) := true.B
596    }
597  }
598
599  // Write mask to sq
600  for (i <- 0 until StorePipelineWidth) {
601    // sq mask write s0
602    when (io.storeMaskIn(i).fire) {
603      // send data write req to data module
604      dataModule.io.mask.waddr(i) := io.storeMaskIn(i).bits.sqIdx.value
605      dataModule.io.mask.wdata(i) := io.storeMaskIn(i).bits.mask
606      dataModule.io.mask.wen(i) := true.B
607    }
608  }
609
610  /**
611    * load forward query
612    *
613    * Check store queue for instructions that is older than the load.
614    * The response will be valid at the next cycle after req.
615    */
616  // check over all lq entries and forward data from the first matched store
617  for (i <- 0 until LoadPipelineWidth) {
618    // Compare deqPtr (deqPtr) and forward.sqIdx, we have two cases:
619    // (1) if they have the same flag, we need to check range(tail, sqIdx)
620    // (2) if they have different flags, we need to check range(tail, VirtualLoadQueueSize) and range(0, sqIdx)
621    // Forward1: Mux(same_flag, range(tail, sqIdx), range(tail, VirtualLoadQueueSize))
622    // Forward2: Mux(same_flag, 0.U,                   range(0, sqIdx)    )
623    // i.e. forward1 is the target entries with the same flag bits and forward2 otherwise
624    val differentFlag = deqPtrExt(0).flag =/= io.forward(i).sqIdx.flag
625    val forwardMask = io.forward(i).sqIdxMask
626    // all addrvalid terms need to be checked
627    // Real Vaild: all scalar stores, and vector store with (!inactive && !secondInvalid)
628    val addrRealValidVec = WireInit(VecInit((0 until StoreQueueSize).map(j => addrvalid(j) && allocated(j))))
629    // vector store will consider all inactive || secondInvalid flows as valid
630    val addrValidVec = WireInit(VecInit((0 until StoreQueueSize).map(j => addrvalid(j) && allocated(j))))
631    val dataValidVec = WireInit(VecInit((0 until StoreQueueSize).map(j => datavalid(j))))
632    val allValidVec  = WireInit(VecInit((0 until StoreQueueSize).map(j => addrvalid(j) && datavalid(j) && allocated(j))))
633
634    val lfstEnable = Constantin.createRecord("LFSTEnable", LFSTEnable)
635    val storeSetHitVec = Mux(lfstEnable,
636      WireInit(VecInit((0 until StoreQueueSize).map(j => io.forward(i).uop.loadWaitBit && uop(j).robIdx === io.forward(i).uop.waitForRobIdx))),
637      WireInit(VecInit((0 until StoreQueueSize).map(j => uop(j).storeSetHit && uop(j).ssid === io.forward(i).uop.ssid)))
638    )
639
640    val forwardMask1 = Mux(differentFlag, ~deqMask, deqMask ^ forwardMask)
641    val forwardMask2 = Mux(differentFlag, forwardMask, 0.U(StoreQueueSize.W))
642    val canForward1 = forwardMask1 & allValidVec.asUInt
643    val canForward2 = forwardMask2 & allValidVec.asUInt
644    val needForward = Mux(differentFlag, ~deqMask | forwardMask, deqMask ^ forwardMask)
645
646    XSDebug(p"$i f1 ${Binary(canForward1)} f2 ${Binary(canForward2)} " +
647      p"sqIdx ${io.forward(i).sqIdx} pa ${Hexadecimal(io.forward(i).paddr)}\n"
648    )
649
650    // do real fwd query (cam lookup in load_s1)
651    dataModule.io.needForward(i)(0) := canForward1 & vaddrModule.io.forwardMmask(i).asUInt
652    dataModule.io.needForward(i)(1) := canForward2 & vaddrModule.io.forwardMmask(i).asUInt
653
654    vaddrModule.io.forwardMdata(i) := io.forward(i).vaddr
655    vaddrModule.io.forwardDataMask(i) := io.forward(i).mask
656    paddrModule.io.forwardMdata(i) := io.forward(i).paddr
657    paddrModule.io.forwardDataMask(i) := io.forward(i).mask
658
659    // vaddr cam result does not equal to paddr cam result
660    // replay needed
661    // val vpmaskNotEqual = ((paddrModule.io.forwardMmask(i).asUInt ^ vaddrModule.io.forwardMmask(i).asUInt) & needForward) =/= 0.U
662    // val vaddrMatchFailed = vpmaskNotEqual && io.forward(i).valid
663    val vpmaskNotEqual = (
664      (RegEnable(paddrModule.io.forwardMmask(i).asUInt, io.forward(i).valid) ^ RegEnable(vaddrModule.io.forwardMmask(i).asUInt, io.forward(i).valid)) &
665      RegNext(needForward) &
666      GatedRegNext(addrRealValidVec.asUInt)
667    ) =/= 0.U
668    val vaddrMatchFailed = vpmaskNotEqual && RegNext(io.forward(i).valid)
669    XSInfo(vaddrMatchFailed,
670      "vaddrMatchFailed: pc %x pmask %x vmask %x\n",
671      RegEnable(io.forward(i).uop.pc, io.forward(i).valid),
672      RegEnable(needForward & paddrModule.io.forwardMmask(i).asUInt, io.forward(i).valid),
673      RegEnable(needForward & vaddrModule.io.forwardMmask(i).asUInt, io.forward(i).valid)
674    );
675    XSPerfAccumulate("vaddr_match_failed", vpmaskNotEqual)
676    XSPerfAccumulate("vaddr_match_really_failed", vaddrMatchFailed)
677
678    // Fast forward mask will be generated immediately (load_s1)
679    io.forward(i).forwardMaskFast := dataModule.io.forwardMaskFast(i)
680
681    // Forward result will be generated 1 cycle later (load_s2)
682    io.forward(i).forwardMask := dataModule.io.forwardMask(i)
683    io.forward(i).forwardData := dataModule.io.forwardData(i)
684
685    //TODO If the previous store appears out of alignment, then simply FF, this is a very unreasonable way to do it.
686    //TODO But for the time being, this is the way to ensure correctness. Such a suitable opportunity to support unaligned forward.
687    // If addr match, data not ready, mark it as dataInvalid
688    // load_s1: generate dataInvalid in load_s1 to set fastUop
689    val dataInvalidMask1 = ((addrValidVec.asUInt & ~dataValidVec.asUInt & vaddrModule.io.forwardMmask(i).asUInt) | unaligned.asUInt & allocated.asUInt) & forwardMask1.asUInt
690    val dataInvalidMask2 = ((addrValidVec.asUInt & ~dataValidVec.asUInt & vaddrModule.io.forwardMmask(i).asUInt) | unaligned.asUInt & allocated.asUInt) & forwardMask2.asUInt
691    val dataInvalidMask = dataInvalidMask1 | dataInvalidMask2
692    io.forward(i).dataInvalidFast := dataInvalidMask.orR
693
694    // make chisel happy
695    val dataInvalidMask1Reg = Wire(UInt(StoreQueueSize.W))
696    dataInvalidMask1Reg := RegNext(dataInvalidMask1)
697    // make chisel happy
698    val dataInvalidMask2Reg = Wire(UInt(StoreQueueSize.W))
699    dataInvalidMask2Reg := RegNext(dataInvalidMask2)
700    val dataInvalidMaskReg = dataInvalidMask1Reg | dataInvalidMask2Reg
701
702    // If SSID match, address not ready, mark it as addrInvalid
703    // load_s2: generate addrInvalid
704    val addrInvalidMask1 = (~addrValidVec.asUInt & storeSetHitVec.asUInt & forwardMask1.asUInt)
705    val addrInvalidMask2 = (~addrValidVec.asUInt & storeSetHitVec.asUInt & forwardMask2.asUInt)
706    // make chisel happy
707    val addrInvalidMask1Reg = Wire(UInt(StoreQueueSize.W))
708    addrInvalidMask1Reg := RegNext(addrInvalidMask1)
709    // make chisel happy
710    val addrInvalidMask2Reg = Wire(UInt(StoreQueueSize.W))
711    addrInvalidMask2Reg := RegNext(addrInvalidMask2)
712    val addrInvalidMaskReg = addrInvalidMask1Reg | addrInvalidMask2Reg
713
714    // load_s2
715    io.forward(i).dataInvalid := RegNext(io.forward(i).dataInvalidFast)
716    // check if vaddr forward mismatched
717    io.forward(i).matchInvalid := vaddrMatchFailed
718
719    // data invalid sq index
720    // check whether false fail
721    // check flag
722    val s2_differentFlag = RegNext(differentFlag)
723    val s2_enqPtrExt = RegNext(enqPtrExt(0))
724    val s2_deqPtrExt = RegNext(deqPtrExt(0))
725
726    // addr invalid sq index
727    // make chisel happy
728    val addrInvalidMaskRegWire = Wire(UInt(StoreQueueSize.W))
729    addrInvalidMaskRegWire := addrInvalidMaskReg
730    val addrInvalidFlag = addrInvalidMaskRegWire.orR
731    val hasInvalidAddr = (~addrValidVec.asUInt & needForward).orR
732
733    val addrInvalidSqIdx1 = OHToUInt(Reverse(PriorityEncoderOH(Reverse(addrInvalidMask1Reg))))
734    val addrInvalidSqIdx2 = OHToUInt(Reverse(PriorityEncoderOH(Reverse(addrInvalidMask2Reg))))
735    val addrInvalidSqIdx = Mux(addrInvalidMask2Reg.orR, addrInvalidSqIdx2, addrInvalidSqIdx1)
736
737    // store-set content management
738    //                +-----------------------+
739    //                | Search a SSID for the |
740    //                |    load operation     |
741    //                +-----------------------+
742    //                           |
743    //                           V
744    //                 +-------------------+
745    //                 | load wait strict? |
746    //                 +-------------------+
747    //                           |
748    //                           V
749    //               +----------------------+
750    //            Set|                      |Clean
751    //               V                      V
752    //  +------------------------+   +------------------------------+
753    //  | Waiting for all older  |   | Wait until the corresponding |
754    //  |   stores operations    |   | older store operations       |
755    //  +------------------------+   +------------------------------+
756
757
758
759    when (RegEnable(io.forward(i).uop.loadWaitStrict, io.forward(i).valid)) {
760      io.forward(i).addrInvalidSqIdx := RegEnable((io.forward(i).uop.sqIdx - 1.U), io.forward(i).valid)
761    } .elsewhen (addrInvalidFlag) {
762      io.forward(i).addrInvalidSqIdx.flag := Mux(!s2_differentFlag || addrInvalidSqIdx >= s2_deqPtrExt.value, s2_deqPtrExt.flag, s2_enqPtrExt.flag)
763      io.forward(i).addrInvalidSqIdx.value := addrInvalidSqIdx
764    } .otherwise {
765      // may be store inst has been written to sbuffer already.
766      io.forward(i).addrInvalidSqIdx := RegEnable(io.forward(i).uop.sqIdx, io.forward(i).valid)
767    }
768    io.forward(i).addrInvalid := Mux(RegEnable(io.forward(i).uop.loadWaitStrict, io.forward(i).valid), RegNext(hasInvalidAddr), addrInvalidFlag)
769
770    // data invalid sq index
771    // make chisel happy
772    val dataInvalidMaskRegWire = Wire(UInt(StoreQueueSize.W))
773    dataInvalidMaskRegWire := dataInvalidMaskReg
774    val dataInvalidFlag = dataInvalidMaskRegWire.orR
775
776    val dataInvalidSqIdx1 = OHToUInt(Reverse(PriorityEncoderOH(Reverse(dataInvalidMask1Reg))))
777    val dataInvalidSqIdx2 = OHToUInt(Reverse(PriorityEncoderOH(Reverse(dataInvalidMask2Reg))))
778    val dataInvalidSqIdx = Mux(dataInvalidMask2Reg.orR, dataInvalidSqIdx2, dataInvalidSqIdx1)
779
780    when (dataInvalidFlag) {
781      io.forward(i).dataInvalidSqIdx.flag := Mux(!s2_differentFlag || dataInvalidSqIdx >= s2_deqPtrExt.value, s2_deqPtrExt.flag, s2_enqPtrExt.flag)
782      io.forward(i).dataInvalidSqIdx.value := dataInvalidSqIdx
783    } .otherwise {
784      // may be store inst has been written to sbuffer already.
785      io.forward(i).dataInvalidSqIdx := RegEnable(io.forward(i).uop.sqIdx, io.forward(i).valid)
786    }
787  }
788
789  /**
790    * Memory mapped IO / other uncached operations / CMO
791    *
792    * States:
793    * (1) writeback from store units: mark as pending
794    * (2) when they reach ROB's head, they can be sent to uncache channel
795    * (3) response from uncache channel: mark as datavalidmask.wen
796    * (4) writeback to ROB (and other units): mark as writebacked
797    * (5) ROB commits the instruction: same as normal instructions
798    */
799  //(2) when they reach ROB's head, they can be sent to uncache channel
800  // TODO: CAN NOT deal with vector mmio now!
801  val s_idle :: s_req :: s_resp :: s_wb :: s_wait :: Nil = Enum(5)
802  val mmioState = RegInit(s_idle)
803  val uncacheUop = Reg(new DynInst)
804  val cboFlushedSb = RegInit(false.B)
805  val cmoOpCode = uncacheUop.fuOpType(1, 0)
806  val mmioDoReq = io.uncache.req.fire && !io.uncache.req.bits.nc
807  val cboMmioPAddr = Reg(UInt(PAddrBits.W))
808  switch(mmioState) {
809    is(s_idle) {
810      when(RegNext(io.rob.pendingst && uop(deqPtr).robIdx === io.rob.pendingPtr && pending(deqPtr) && allocated(deqPtr) && datavalid(deqPtr) && addrvalid(deqPtr) && !hasException(deqPtr))) {
811        mmioState := s_req
812        uncacheUop := uop(deqPtr)
813        uncacheUop.exceptionVec := 0.U.asTypeOf(ExceptionVec())
814        uncacheUop.trigger := 0.U.asTypeOf(TriggerAction())
815        cboFlushedSb := false.B
816        cboMmioPAddr := paddrModule.io.rdata(0)
817      }
818    }
819    is(s_req) {
820      when (mmioDoReq) {
821        mmioState := s_resp
822      }
823    }
824    is(s_resp) {
825      when(io.uncache.resp.fire && !io.uncache.resp.bits.nc) {
826        mmioState := s_wb
827
828        when (io.uncache.resp.bits.nderr) {
829          uncacheUop.exceptionVec(storeAccessFault) := true.B
830        }
831      }
832    }
833    is(s_wb) {
834      when (io.mmioStout.fire || io.vecmmioStout.fire) {
835        when (uncacheUop.exceptionVec(storeAccessFault)) {
836          mmioState := s_idle
837        }.otherwise {
838          mmioState := s_wait
839        }
840      }
841    }
842    is(s_wait) {
843      // A MMIO store can always move cmtPtrExt as it must be ROB head
844      when(scommit > 0.U) {
845        mmioState := s_idle // ready for next mmio
846      }
847    }
848  }
849
850  mmioReq.valid := mmioState === s_req
851  mmioReq.bits := DontCare
852  mmioReq.bits.cmd  := MemoryOpConstants.M_XWR
853  mmioReq.bits.addr := paddrModule.io.rdata(0) // data(deqPtr) -> rdata(0)
854  mmioReq.bits.vaddr:= vaddrModule.io.rdata(0)
855  mmioReq.bits.data := shiftDataToLow(paddrModule.io.rdata(0), dataModule.io.rdata(0).data)
856  mmioReq.bits.mask := shiftMaskToLow(paddrModule.io.rdata(0), dataModule.io.rdata(0).mask)
857  mmioReq.bits.atomic := atomic(GatedRegNext(rdataPtrExtNext(0)).value)
858  mmioReq.bits.memBackTypeMM := memBackTypeMM(GatedRegNext(rdataPtrExtNext(0)).value)
859  mmioReq.bits.nc := false.B
860  mmioReq.bits.id := rdataPtrExt(0).value
861
862  /**
863    * NC Store
864    * (1) req: when it has been commited, it can be sent to lower level.
865    * (2) resp: because SQ data forward is required, it can only be deq when ncResp is received
866    */
867  // TODO: CAN NOT deal with vector nc now!
868  val nc_idle :: nc_req :: nc_resp :: Nil = Enum(3)
869  val ncState = RegInit(nc_idle)
870  val rptr0 = rdataPtrExt(0).value
871  switch(ncState){
872    is(nc_idle) {
873      when(nc(rptr0) && allocated(rptr0) && committed(rptr0) && !mmio(rptr0) && !isVec(rptr0)) {
874        ncState := nc_req
875      }
876    }
877    is(nc_req) {
878      when(ncDoReq) {
879        when(io.uncacheOutstanding) {
880          ncState := nc_idle
881        }.otherwise{
882          ncState := nc_resp
883        }
884      }
885    }
886    is(nc_resp) {
887      when(ncResp.fire) {
888        ncState := nc_idle
889      }
890    }
891  }
892
893  ncDoReq := io.uncache.req.fire && io.uncache.req.bits.nc
894  ncDoResp := ncResp.fire
895
896  ncReq.valid := ncState === nc_req
897  ncReq.bits := DontCare
898  ncReq.bits.cmd  := MemoryOpConstants.M_XWR
899  ncReq.bits.addr := paddrModule.io.rdata(0)
900  ncReq.bits.vaddr:= vaddrModule.io.rdata(0)
901  ncReq.bits.data := shiftDataToLow(paddrModule.io.rdata(0), dataModule.io.rdata(0).data)
902  ncReq.bits.mask := shiftMaskToLow(paddrModule.io.rdata(0), dataModule.io.rdata(0).mask)
903  ncReq.bits.atomic := atomic(GatedRegNext(rdataPtrExtNext(0)).value)
904  ncReq.bits.memBackTypeMM := memBackTypeMM(GatedRegNext(rdataPtrExtNext(0)).value)
905  ncReq.bits.nc := true.B
906  ncReq.bits.id := rptr0
907
908  ncResp.ready := io.uncache.resp.ready
909  ncResp.valid := io.uncache.resp.fire && io.uncache.resp.bits.nc
910  ncResp.bits <> io.uncache.resp.bits
911  when (ncDeqTrigger) {
912    allocated(ncPtr) := false.B
913    XSDebug("nc fire: ptr %d\n", ncPtr)
914  }
915
916  mmioReq.ready := io.uncache.req.ready
917  ncReq.ready := io.uncache.req.ready && !mmioReq.valid
918  io.uncache.req.valid := mmioReq.valid || ncReq.valid
919  io.uncache.req.bits := Mux(mmioReq.valid, mmioReq.bits, ncReq.bits)
920
921  // CBO op type check can be delayed for 1 cycle,
922  // as uncache op will not start in s_idle
923  val cboMmioAddr = get_block_addr(cboMmioPAddr)
924  val deqCanDoCbo = GatedRegNext(LSUOpType.isCbo(uop(deqPtr).fuOpType) && allocated(deqPtr) && addrvalid(deqPtr))
925  when (deqCanDoCbo) {
926    // disable uncache channel
927    io.uncache.req.valid := false.B
928
929    when (io.cmoOpReq.fire) {
930      mmioState := s_resp
931    }
932
933    when (mmioState === s_resp) {
934      when (io.cmoOpResp.fire) {
935        mmioState := s_wb
936      }
937    }
938  }
939
940  io.cmoOpReq.valid := deqCanDoCbo && cboFlushedSb && (mmioState === s_req)
941  io.cmoOpReq.bits.opcode  := cmoOpCode
942  io.cmoOpReq.bits.address := cboMmioAddr
943
944  io.cmoOpResp.ready := deqCanDoCbo && (mmioState === s_resp)
945
946  io.flushSbuffer.valid := deqCanDoCbo && !cboFlushedSb && (mmioState === s_req) && !io.flushSbuffer.empty
947
948  when(deqCanDoCbo && !cboFlushedSb && (mmioState === s_req) && io.flushSbuffer.empty) {
949    cboFlushedSb := true.B
950  }
951
952  when(mmioDoReq){
953    // mmio store should not be committed until uncache req is sent
954    pending(deqPtr) := false.B
955  }
956  XSDebug(
957    mmioDoReq,
958    p"uncache req: pc ${Hexadecimal(uop(deqPtr).pc)} " +
959    p"addr ${Hexadecimal(io.uncache.req.bits.addr)} " +
960    p"data ${Hexadecimal(io.uncache.req.bits.data)} " +
961    p"op ${Hexadecimal(io.uncache.req.bits.cmd)} " +
962    p"mask ${Hexadecimal(io.uncache.req.bits.mask)}\n"
963  )
964
965  // (3) response from uncache channel: mark as datavalid
966  io.uncache.resp.ready := true.B
967
968  // (4) scalar store: writeback to ROB (and other units): mark as writebacked
969  io.mmioStout.valid := mmioState === s_wb && !isVec(deqPtr)
970  io.mmioStout.bits.uop := uncacheUop
971  io.mmioStout.bits.uop.exceptionVec := ExceptionNO.selectByFu(uncacheUop.exceptionVec, StaCfg)
972  io.mmioStout.bits.uop.sqIdx := deqPtrExt(0)
973  io.mmioStout.bits.uop.flushPipe := deqCanDoCbo // flush Pipeline to keep order in CMO
974  io.mmioStout.bits.data := shiftDataToLow(paddrModule.io.rdata(0), dataModule.io.rdata(0).data) // dataModule.io.rdata.read(deqPtr)
975  io.mmioStout.bits.isFromLoadUnit := DontCare
976  io.mmioStout.bits.debug.isMMIO := true.B
977  io.mmioStout.bits.debug.isNC := false.B
978  io.mmioStout.bits.debug.paddr := DontCare
979  io.mmioStout.bits.debug.isPerfCnt := false.B
980  io.mmioStout.bits.debug.vaddr := DontCare
981  // Remove MMIO inst from store queue after MMIO request is being sent
982  // That inst will be traced by uncache state machine
983  when (io.mmioStout.fire) {
984    allocated(deqPtr) := false.B
985  }
986
987  exceptionBuffer.io.storeAddrIn.last.valid := io.mmioStout.fire
988  exceptionBuffer.io.storeAddrIn.last.bits := DontCare
989  exceptionBuffer.io.storeAddrIn.last.bits.fullva := vaddrModule.io.rdata.head
990  exceptionBuffer.io.storeAddrIn.last.bits.vaNeedExt := true.B
991  exceptionBuffer.io.storeAddrIn.last.bits.uop := uncacheUop
992
993  // (4) or vector store:
994  // TODO: implement it!
995  io.vecmmioStout := DontCare
996  io.vecmmioStout.valid := false.B //mmioState === s_wb && isVec(deqPtr)
997  io.vecmmioStout.bits.uop := uop(deqPtr)
998  io.vecmmioStout.bits.uop.sqIdx := deqPtrExt(0)
999  io.vecmmioStout.bits.data := shiftDataToLow(paddrModule.io.rdata(0), dataModule.io.rdata(0).data) // dataModule.io.rdata.read(deqPtr)
1000  io.vecmmioStout.bits.debug.isMMIO := true.B
1001  io.vecmmioStout.bits.debug.isNC   := false.B
1002  io.vecmmioStout.bits.debug.paddr := DontCare
1003  io.vecmmioStout.bits.debug.isPerfCnt := false.B
1004  io.vecmmioStout.bits.debug.vaddr := DontCare
1005  // Remove MMIO inst from store queue after MMIO request is being sent
1006  // That inst will be traced by uncache state machine
1007  when (io.vecmmioStout.fire) {
1008    allocated(deqPtr) := false.B
1009  }
1010
1011  /**
1012    * ROB commits store instructions (mark them as committed)
1013    *
1014    * (1) When store commits, mark it as committed.
1015    * (2) They will not be cancelled and can be sent to lower level.
1016    */
1017  XSError(mmioState =/= s_idle && mmioState =/= s_wait && commitCount > 0.U,
1018   "should not commit instruction when MMIO has not been finished\n")
1019
1020  val commitVec = WireInit(VecInit(Seq.fill(CommitWidth)(false.B)))
1021  val needCancel = Wire(Vec(StoreQueueSize, Bool())) // Will be assigned later
1022
1023  if (backendParams.debugEn){ dontTouch(commitVec) }
1024
1025  // TODO: Deal with vector store mmio
1026  for (i <- 0 until CommitWidth) {
1027    // don't mark misalign store as committed
1028    when (
1029      allocated(cmtPtrExt(i).value) &&
1030      isNotAfter(uop(cmtPtrExt(i).value).robIdx, GatedRegNext(io.rob.pendingPtr)) &&
1031      !needCancel(cmtPtrExt(i).value) &&
1032      (!waitStoreS2(cmtPtrExt(i).value) || isVec(cmtPtrExt(i).value))) {
1033      if (i == 0){
1034        // TODO: fixme for vector mmio
1035        when ((mmioState === s_idle) || (mmioState === s_wait && scommit > 0.U)){
1036          when ((isVec(cmtPtrExt(i).value) && vecMbCommit(cmtPtrExt(i).value)) || !isVec(cmtPtrExt(i).value)) {
1037            committed(cmtPtrExt(0).value) := true.B
1038            commitVec(0) := true.B
1039          }
1040        }
1041      } else {
1042        when ((isVec(cmtPtrExt(i).value) && vecMbCommit(cmtPtrExt(i).value)) || !isVec(cmtPtrExt(i).value)) {
1043          committed(cmtPtrExt(i).value) := commitVec(i - 1) || committed(cmtPtrExt(i).value)
1044          commitVec(i) := commitVec(i - 1)
1045        }
1046      }
1047    }
1048  }
1049
1050  commitCount := PopCount(commitVec)
1051  cmtPtrExt := cmtPtrExt.map(_ + commitCount)
1052
1053  /**
1054   * committed stores will not be cancelled and can be sent to lower level.
1055   *
1056   * 1. Store NC: Read data to uncache
1057   *    implement as above
1058   *
1059   * 2. Store Cache: Read data from data module
1060   *    remove retired insts from sq, add retired store to sbuffer.
1061   *    as store queue grows larger and larger, time needed to read data from data
1062   *    module keeps growing higher. Now we give data read a whole cycle.
1063   */
1064
1065  //TODO An unaligned command can only be sent out if the databuffer can enter more than two.
1066  //TODO For now, hardcode the number of ENQs for the databuffer.
1067  val canDeqMisaligned = dataBuffer.io.enq(0).ready && dataBuffer.io.enq(1).ready
1068  val firstWithMisalign = unaligned(rdataPtrExt(0).value)
1069  val firstWithCross16Byte = cross16Byte(rdataPtrExt(0).value)
1070
1071  val isCross4KPage = io.maControl.toStoreQueue.crossPageWithHit
1072  val isCross4KPageCanDeq = io.maControl.toStoreQueue.crossPageCanDeq
1073  // When encountering a cross page store, a request needs to be sent to storeMisalignBuffer for the high page table's paddr.
1074  io.maControl.toStoreMisalignBuffer.sqPtr := rdataPtrExt(0)
1075  io.maControl.toStoreMisalignBuffer.doDeq := isCross4KPage && isCross4KPageCanDeq && dataBuffer.io.enq(0).fire
1076  io.maControl.toStoreMisalignBuffer.uop := uop(rdataPtrExt(0).value)
1077  for (i <- 0 until EnsbufferWidth) {
1078    val ptr = rdataPtrExt(i).value
1079    val mmioStall = if(i == 0) mmio(rdataPtrExt(0).value) else (mmio(rdataPtrExt(i).value) || mmio(rdataPtrExt(i-1).value))
1080    val ncStall = if(i == 0) nc(rdataPtrExt(0).value) else (nc(rdataPtrExt(i).value) || nc(rdataPtrExt(i-1).value))
1081    val exceptionValid = if(i == 0) hasException(rdataPtrExt(0).value) else {
1082      hasException(rdataPtrExt(i).value) || (hasException(rdataPtrExt(i-1).value) && uop(rdataPtrExt(i).value).robIdx === uop(rdataPtrExt(i-1).value).robIdx)
1083    }
1084    val vecNotAllMask = dataModule.io.rdata(i).mask.orR
1085    // Vector instructions that prevent triggered exceptions from being written to the 'databuffer'.
1086    val vecHasExceptionFlagValid = vecExceptionFlag.valid && isVec(ptr) && vecExceptionFlag.bits.robIdx === uop(ptr).robIdx
1087
1088    // Only the first interface can write unaligned directives.
1089    // Simplified design, even if the two ports have exceptions, but still only one unaligned dequeue.
1090    val assert_flag = WireInit(false.B)
1091    when(firstWithMisalign && firstWithCross16Byte) {
1092      dataBuffer.io.enq(0).valid := canDeqMisaligned && allocated(rdataPtrExt(0).value) && committed(rdataPtrExt(0).value) &&
1093        ((!isVec(rdataPtrExt(0).value) && allvalid(rdataPtrExt(0).value) || vecMbCommit(rdataPtrExt(0).value)) &&
1094        (!isCross4KPage || isCross4KPageCanDeq) || hasException(rdataPtrExt(0).value)) && !ncStall
1095
1096      dataBuffer.io.enq(1).valid := canDeqMisaligned && allocated(rdataPtrExt(0).value) && committed(rdataPtrExt(0).value) &&
1097        (!isVec(rdataPtrExt(0).value) && allvalid(rdataPtrExt(0).value) || vecMbCommit(rdataPtrExt(0).value)) &&
1098        (!isCross4KPage || isCross4KPageCanDeq) && !hasException(rdataPtrExt(0).value) && !ncStall
1099      assert_flag := dataBuffer.io.enq(1).valid
1100    }.otherwise {
1101      if (i == 0) {
1102        dataBuffer.io.enq(i).valid := (
1103          allocated(ptr) && committed(ptr)
1104            && ((!isVec(ptr) && (allvalid(ptr) || hasException(ptr))) || vecMbCommit(ptr))
1105            && !mmioStall && !ncStall
1106            && (!unaligned(ptr) || !cross16Byte(ptr) && (allvalid(ptr) || hasException(ptr)))
1107          )
1108      }
1109      else {
1110        dataBuffer.io.enq(i).valid := (
1111          allocated(ptr) && committed(ptr)
1112            && ((!isVec(ptr) && (allvalid(ptr) || hasException(ptr))) || vecMbCommit(ptr))
1113            && !mmioStall && !ncStall
1114            && (!unaligned(ptr) || !cross16Byte(ptr) && (allvalid(ptr) || hasException(ptr)))
1115          )
1116      }
1117    }
1118
1119    val misalignAddrLow = vaddrModule.io.rdata(0)(2, 0)
1120    val cross16ByteAddrLow4bit = vaddrModule.io.rdata(0)(3, 0)
1121    val addrLow4bit = vaddrModule.io.rdata(i)(3, 0)
1122
1123    // For unaligned, we need to generate a base-aligned mask in storeunit and then do a shift split in StoreQueue.
1124    val Cross16ByteMask = Wire(UInt(32.W))
1125    val Cross16ByteData = Wire(UInt(256.W))
1126    Cross16ByteMask := dataModule.io.rdata(0).mask << cross16ByteAddrLow4bit
1127    Cross16ByteData := dataModule.io.rdata(0).data << (cross16ByteAddrLow4bit << 3)
1128
1129    val paddrLow  = Cat(paddrModule.io.rdata(0)(paddrModule.io.rdata(0).getWidth - 1, 3), 0.U(3.W))
1130    val paddrHigh = Cat(paddrModule.io.rdata(0)(paddrModule.io.rdata(0).getWidth - 1, 3), 0.U(3.W)) + 8.U
1131
1132    val vaddrLow  = Cat(vaddrModule.io.rdata(0)(vaddrModule.io.rdata(0).getWidth - 1, 3), 0.U(3.W))
1133    val vaddrHigh = Cat(vaddrModule.io.rdata(0)(vaddrModule.io.rdata(0).getWidth - 1, 3), 0.U(3.W)) + 8.U
1134
1135    val maskLow   = Cross16ByteMask(15, 0)
1136    val maskHigh  = Cross16ByteMask(31, 16)
1137
1138    val dataLow   = Cross16ByteData(127, 0)
1139    val dataHigh  = Cross16ByteData(255, 128)
1140
1141    val toSbufferVecValid = (!isVec(ptr) || (vecMbCommit(ptr) && allvalid(ptr) && vecNotAllMask)) && !exceptionValid && !vecHasExceptionFlagValid
1142    when(canDeqMisaligned && firstWithMisalign && firstWithCross16Byte) {
1143      when(isCross4KPage && isCross4KPageCanDeq) {
1144        if (i == 0) {
1145          dataBuffer.io.enq(i).bits.addr      := paddrLow
1146          dataBuffer.io.enq(i).bits.vaddr     := vaddrLow
1147          dataBuffer.io.enq(i).bits.data      := dataLow
1148          dataBuffer.io.enq(i).bits.mask      := maskLow
1149          dataBuffer.io.enq(i).bits.wline     := false.B
1150          dataBuffer.io.enq(i).bits.sqPtr     := rdataPtrExt(0)
1151          dataBuffer.io.enq(i).bits.prefetch  := false.B
1152          dataBuffer.io.enq(i).bits.sqNeedDeq := true.B
1153          dataBuffer.io.enq(i).bits.vecValid  := toSbufferVecValid
1154        }
1155        else {
1156          dataBuffer.io.enq(i).bits.addr      := io.maControl.toStoreQueue.paddr
1157          dataBuffer.io.enq(i).bits.vaddr     := vaddrHigh
1158          dataBuffer.io.enq(i).bits.data      := dataHigh
1159          dataBuffer.io.enq(i).bits.mask      := maskHigh
1160          dataBuffer.io.enq(i).bits.wline     := false.B
1161          dataBuffer.io.enq(i).bits.sqPtr     := rdataPtrExt(0)
1162          dataBuffer.io.enq(i).bits.prefetch  := false.B
1163          dataBuffer.io.enq(i).bits.sqNeedDeq := false.B
1164          dataBuffer.io.enq(i).bits.vecValid  := dataBuffer.io.enq(0).bits.vecValid
1165        }
1166      } .otherwise {
1167        if (i == 0) {
1168          dataBuffer.io.enq(i).bits.addr      := paddrLow
1169          dataBuffer.io.enq(i).bits.vaddr     := vaddrLow
1170          dataBuffer.io.enq(i).bits.data      := dataLow
1171          dataBuffer.io.enq(i).bits.mask      := maskLow
1172          dataBuffer.io.enq(i).bits.wline     := false.B
1173          dataBuffer.io.enq(i).bits.sqPtr     := rdataPtrExt(0)
1174          dataBuffer.io.enq(i).bits.prefetch  := false.B
1175          dataBuffer.io.enq(i).bits.sqNeedDeq  := true.B
1176          dataBuffer.io.enq(i).bits.vecValid  := toSbufferVecValid
1177        }
1178        else {
1179          dataBuffer.io.enq(i).bits.addr      := paddrHigh
1180          dataBuffer.io.enq(i).bits.vaddr     := vaddrHigh
1181          dataBuffer.io.enq(i).bits.data      := dataHigh
1182          dataBuffer.io.enq(i).bits.mask      := maskHigh
1183          dataBuffer.io.enq(i).bits.wline     := false.B
1184          dataBuffer.io.enq(i).bits.sqPtr     := rdataPtrExt(0)
1185          dataBuffer.io.enq(i).bits.prefetch  := false.B
1186          dataBuffer.io.enq(i).bits.sqNeedDeq  := false.B
1187          dataBuffer.io.enq(i).bits.vecValid  := dataBuffer.io.enq(0).bits.vecValid
1188        }
1189      }
1190
1191
1192    }.elsewhen(!cross16Byte(ptr) && unaligned(ptr)) {
1193      dataBuffer.io.enq(i).bits.addr     := Cat(paddrModule.io.rdata(i)(PAddrBits - 1, 4), 0.U(4.W))
1194      dataBuffer.io.enq(i).bits.vaddr    := Cat(vaddrModule.io.rdata(i)(VAddrBits - 1, 4), 0.U(4.W))
1195      dataBuffer.io.enq(i).bits.data     := dataModule.io.rdata(i).data << (addrLow4bit << 3)
1196      dataBuffer.io.enq(i).bits.mask     := dataModule.io.rdata(i).mask
1197      dataBuffer.io.enq(i).bits.wline    := paddrModule.io.rlineflag(i)
1198      dataBuffer.io.enq(i).bits.sqPtr    := rdataPtrExt(i)
1199      dataBuffer.io.enq(i).bits.prefetch := prefetch(ptr)
1200      dataBuffer.io.enq(i).bits.sqNeedDeq := true.B
1201      // when scalar has exception, will also not write into sbuffer
1202      dataBuffer.io.enq(i).bits.vecValid := toSbufferVecValid
1203    }.otherwise {
1204      dataBuffer.io.enq(i).bits.addr     := paddrModule.io.rdata(i)
1205      dataBuffer.io.enq(i).bits.vaddr    := vaddrModule.io.rdata(i)
1206      dataBuffer.io.enq(i).bits.data     := dataModule.io.rdata(i).data
1207      dataBuffer.io.enq(i).bits.mask     := dataModule.io.rdata(i).mask
1208      dataBuffer.io.enq(i).bits.wline    := paddrModule.io.rlineflag(i)
1209      dataBuffer.io.enq(i).bits.sqPtr    := rdataPtrExt(i)
1210      dataBuffer.io.enq(i).bits.prefetch := prefetch(ptr)
1211      dataBuffer.io.enq(i).bits.sqNeedDeq := true.B
1212      // when scalar has exception, will also not write into sbuffer
1213      dataBuffer.io.enq(i).bits.vecValid := toSbufferVecValid
1214
1215    }
1216
1217    // Note that store data/addr should both be valid after store's commit
1218    assert(!dataBuffer.io.enq(i).valid || allvalid(ptr) || hasException(ptr) || (allocated(ptr) && vecMbCommit(ptr)) || assert_flag)
1219  }
1220
1221  // Send data stored in sbufferReqBitsReg to sbuffer
1222  for (i <- 0 until EnsbufferWidth) {
1223    io.sbuffer(i).valid := dataBuffer.io.deq(i).valid
1224    dataBuffer.io.deq(i).ready := io.sbuffer(i).ready
1225    io.sbuffer(i).bits := DontCare
1226    io.sbuffer(i).bits.cmd   := MemoryOpConstants.M_XWR
1227    io.sbuffer(i).bits.addr  := dataBuffer.io.deq(i).bits.addr
1228    io.sbuffer(i).bits.vaddr := dataBuffer.io.deq(i).bits.vaddr
1229    io.sbuffer(i).bits.data  := dataBuffer.io.deq(i).bits.data
1230    io.sbuffer(i).bits.mask  := dataBuffer.io.deq(i).bits.mask
1231    io.sbuffer(i).bits.wline := dataBuffer.io.deq(i).bits.wline && dataBuffer.io.deq(i).bits.vecValid
1232    io.sbuffer(i).bits.prefetch := dataBuffer.io.deq(i).bits.prefetch
1233    io.sbuffer(i).bits.vecValid := dataBuffer.io.deq(i).bits.vecValid
1234    io.sbuffer(i).bits.sqNeedDeq := dataBuffer.io.deq(i).bits.sqNeedDeq
1235    // io.sbuffer(i).fire is RegNexted, as sbuffer data write takes 2 cycles.
1236    // Before data write finish, sbuffer is unable to provide store to load
1237    // forward data. As an workaround, deqPtrExt and allocated flag update
1238    // is delayed so that load can get the right data from store queue.
1239    val ptr = dataBuffer.io.deq(i).bits.sqPtr.value
1240    when (RegNext(io.sbuffer(i).fire && io.sbuffer(i).bits.sqNeedDeq)) {
1241      allocated(RegEnable(ptr, io.sbuffer(i).fire)) := false.B
1242    }
1243    XSDebug(RegNext(io.sbuffer(i).fire && io.sbuffer(i).bits.sqNeedDeq), "sbuffer "+i+" fire: ptr %d\n", ptr)
1244  }
1245
1246  // All vector instruction uop normally dequeue, but the Uop after the exception is raised does not write to the 'sbuffer'.
1247  // Flags are used to record whether there are any exceptions when the queue is displayed.
1248  // This is determined each time a write is made to the 'databuffer', prevent subsequent uop of the same instruction from writing to the 'dataBuffer'.
1249  val vecCommitHasException = (0 until EnsbufferWidth).map{ i =>
1250    val ptr = rdataPtrExt(i).value
1251    val mmioStall = if(i == 0) mmio(rdataPtrExt(0).value) else (mmio(rdataPtrExt(i).value) || mmio(rdataPtrExt(i-1).value))
1252    val ncStall = if(i == 0) nc(rdataPtrExt(0).value) else (nc(rdataPtrExt(i).value) || nc(rdataPtrExt(i-1).value))
1253    val exceptionVliad      = isVec(ptr) && hasException(ptr) && dataBuffer.io.enq(i).fire
1254    (exceptionVliad, uop(ptr), vecLastFlow(ptr))
1255  }
1256
1257  val vecCommitHasExceptionValid      = vecCommitHasException.map(_._1)
1258  val vecCommitHasExceptionUop        = vecCommitHasException.map(_._2)
1259  val vecCommitHasExceptionLastFlow   = vecCommitHasException.map(_._3)
1260  val vecCommitHasExceptionValidOR    = vecCommitHasExceptionValid.reduce(_ || _)
1261  // Just select the last Uop tah has an exception.
1262  val vecCommitHasExceptionSelectUop  = ParallelPosteriorityMux(vecCommitHasExceptionValid, vecCommitHasExceptionUop)
1263  // If the last flow with an exception is the LastFlow of this instruction, the flag is not set.
1264  // compare robidx to select the last flow
1265  require(EnsbufferWidth == 2, "The vector store exception handle process only support EnsbufferWidth == 2 yet.")
1266  val robidxEQ = dataBuffer.io.enq(0).fire && dataBuffer.io.enq(1).fire &&
1267    uop(rdataPtrExt(0).value).robIdx === uop(rdataPtrExt(1).value).robIdx
1268  val robidxNE = dataBuffer.io.enq(0).fire && dataBuffer.io.enq(1).fire && (
1269    uop(rdataPtrExt(0).value).robIdx =/= uop(rdataPtrExt(1).value).robIdx
1270  )
1271  val onlyCommit0 = dataBuffer.io.enq(0).fire && !dataBuffer.io.enq(1).fire
1272
1273  val vecCommitLastFlow =
1274    // robidx equal => check if 1 is last flow
1275    robidxEQ && vecCommitHasExceptionLastFlow(1) ||
1276    // robidx not equal => 0 must be the last flow, just check if 1 is last flow when 1 has exception
1277    robidxNE && (vecCommitHasExceptionValid(1) && vecCommitHasExceptionLastFlow(1) || !vecCommitHasExceptionValid(1)) ||
1278    onlyCommit0 && vecCommitHasExceptionLastFlow(0)
1279
1280
1281  val vecExceptionFlagCancel  = (0 until EnsbufferWidth).map{ i =>
1282    val ptr = rdataPtrExt(i).value
1283    val vecLastFlowCommit = vecLastFlow(ptr) && (uop(ptr).robIdx === vecExceptionFlag.bits.robIdx) && dataBuffer.io.enq(i).fire
1284    vecLastFlowCommit
1285  }.reduce(_ || _)
1286
1287  // When a LastFlow with an exception instruction is commited, clear the flag.
1288  when(!vecExceptionFlag.valid && vecCommitHasExceptionValidOR && !vecCommitLastFlow) {
1289    vecExceptionFlag.valid  := true.B
1290    vecExceptionFlag.bits   := vecCommitHasExceptionSelectUop
1291  }.elsewhen(vecExceptionFlag.valid && vecExceptionFlagCancel) {
1292    vecExceptionFlag.valid  := false.B
1293    vecExceptionFlag.bits   := 0.U.asTypeOf(new DynInst)
1294  }
1295
1296  // A dumb defensive code. The flag should not be placed for a long period of time.
1297  // A relatively large timeout period, not have any special meaning.
1298  // If an assert appears and you confirm that it is not a Bug: Increase the timeout or remove the assert.
1299  TimeOutAssert(vecExceptionFlag.valid, 3000, "vecExceptionFlag timeout, Plase check for bugs or add timeouts.")
1300
1301  // Initialize when unenabled difftest.
1302  for (i <- 0 until EnsbufferWidth) {
1303    io.sbufferVecDifftestInfo(i) := DontCare
1304  }
1305  // Consistent with the logic above.
1306  // Only the vector store difftest required signal is separated from the rtl code.
1307  if (env.EnableDifftest) {
1308    for (i <- 0 until EnsbufferWidth) {
1309      val ptr = dataBuffer.io.enq(i).bits.sqPtr.value
1310      difftestBuffer.get.io.enq(i).valid := dataBuffer.io.enq(i).valid
1311      difftestBuffer.get.io.enq(i).bits := uop(ptr)
1312    }
1313    for (i <- 0 until EnsbufferWidth) {
1314      io.sbufferVecDifftestInfo(i).valid := difftestBuffer.get.io.deq(i).valid
1315      difftestBuffer.get.io.deq(i).ready := io.sbufferVecDifftestInfo(i).ready
1316
1317      io.sbufferVecDifftestInfo(i).bits := difftestBuffer.get.io.deq(i).bits
1318    }
1319
1320    // commit cbo.inval to difftest
1321    val cmoInvalEvent = DifftestModule(new DiffCMOInvalEvent)
1322    cmoInvalEvent.coreid := io.hartId
1323    cmoInvalEvent.valid  := io.mmioStout.fire && deqCanDoCbo && LSUOpType.isCboInval(uop(deqPtr).fuOpType)
1324    cmoInvalEvent.addr   := cboMmioAddr
1325  }
1326
1327  (1 until EnsbufferWidth).foreach(i => when(io.sbuffer(i).fire) { assert(io.sbuffer(i - 1).fire) })
1328  if (coreParams.dcacheParametersOpt.isEmpty) {
1329    for (i <- 0 until EnsbufferWidth) {
1330      val ptr = deqPtrExt(i).value
1331      val ram = DifftestMem(64L * 1024 * 1024 * 1024, 8)
1332      val wen = allocated(ptr) && committed(ptr) && !mmio(ptr)
1333      val waddr = ((paddrModule.io.rdata(i) - "h80000000".U) >> 3).asUInt
1334      val wdata = Mux(paddrModule.io.rdata(i)(3), dataModule.io.rdata(i).data(127, 64), dataModule.io.rdata(i).data(63, 0))
1335      val wmask = Mux(paddrModule.io.rdata(i)(3), dataModule.io.rdata(i).mask(15, 8), dataModule.io.rdata(i).mask(7, 0))
1336      when (wen) {
1337        ram.write(waddr, wdata.asTypeOf(Vec(8, UInt(8.W))), wmask.asBools)
1338      }
1339    }
1340  }
1341
1342  // Read vaddr for mem exception
1343  io.exceptionAddr.vaddr     := exceptionBuffer.io.exceptionAddr.vaddr
1344  io.exceptionAddr.vaNeedExt := exceptionBuffer.io.exceptionAddr.vaNeedExt
1345  io.exceptionAddr.isHyper   := exceptionBuffer.io.exceptionAddr.isHyper
1346  io.exceptionAddr.gpaddr    := exceptionBuffer.io.exceptionAddr.gpaddr
1347  io.exceptionAddr.vstart    := exceptionBuffer.io.exceptionAddr.vstart
1348  io.exceptionAddr.vl        := exceptionBuffer.io.exceptionAddr.vl
1349  io.exceptionAddr.isForVSnonLeafPTE := exceptionBuffer.io.exceptionAddr.isForVSnonLeafPTE
1350
1351  // vector commit or replay from
1352  val vecCommittmp = Wire(Vec(StoreQueueSize, Vec(VecStorePipelineWidth, Bool())))
1353  val vecCommit = Wire(Vec(StoreQueueSize, Bool()))
1354  for (i <- 0 until StoreQueueSize) {
1355    val fbk = io.vecFeedback
1356    for (j <- 0 until VecStorePipelineWidth) {
1357      vecCommittmp(i)(j) := fbk(j).valid && (fbk(j).bits.isCommit || fbk(j).bits.isFlush) &&
1358        uop(i).robIdx === fbk(j).bits.robidx && uop(i).uopIdx === fbk(j).bits.uopidx && allocated(i)
1359    }
1360    vecCommit(i) := vecCommittmp(i).reduce(_ || _)
1361
1362    when (vecCommit(i)) {
1363      vecMbCommit(i) := true.B
1364    }
1365  }
1366
1367  // For vector, when there is a store across pages with the same uop in storeMisalignBuffer, storequeue needs to mark this item as committed.
1368  // TODO FIXME Can vecMbCommit be removed?
1369  when(io.maControl.toStoreQueue.withSameUop && allvalid(rdataPtrExt(0).value)) {
1370    vecMbCommit(rdataPtrExt(0).value) := true.B
1371  }
1372
1373  // misprediction recovery / exception redirect
1374  // invalidate sq term using robIdx
1375  for (i <- 0 until StoreQueueSize) {
1376    needCancel(i) := uop(i).robIdx.needFlush(io.brqRedirect) && allocated(i) && !committed(i) &&
1377      (!isVec(i) || !(uop(i).robIdx === io.brqRedirect.bits.robIdx))
1378    when (needCancel(i)) {
1379      allocated(i) := false.B
1380    }
1381  }
1382
1383 /**
1384* update pointers
1385**/
1386  val enqCancelValid = canEnqueue.zip(io.enq.req).map{case (v , x) =>
1387    v && x.bits.robIdx.needFlush(io.brqRedirect)
1388  }
1389  val enqCancelNum = enqCancelValid.zip(io.enq.req).map{case (v, req) =>
1390    Mux(v, req.bits.numLsElem, 0.U)
1391  }
1392  val lastEnqCancel = RegEnable(enqCancelNum.reduce(_ + _), io.brqRedirect.valid) // 1 cycle after redirect
1393
1394  val lastCycleCancelCount = PopCount(RegEnable(needCancel, io.brqRedirect.valid)) // 1 cycle after redirect
1395  val lastCycleRedirect = RegNext(io.brqRedirect.valid) // 1 cycle after redirect
1396  val enqNumber = validVStoreFlow.reduce(_ + _)
1397
1398  val lastlastCycleRedirect=RegNext(lastCycleRedirect)// 2 cycle after redirect
1399  val redirectCancelCount = RegEnable(lastCycleCancelCount + lastEnqCancel, 0.U, lastCycleRedirect) // 2 cycle after redirect
1400
1401  when (lastlastCycleRedirect) {
1402    // we recover the pointers in 2 cycle after redirect for better timing
1403    enqPtrExt := VecInit(enqPtrExt.map(_ - redirectCancelCount))
1404  }.otherwise {
1405    // lastCycleRedirect.valid or nornal case
1406    // when lastCycleRedirect.valid, enqNumber === 0.U, enqPtrExt will not change
1407    enqPtrExt := VecInit(enqPtrExt.map(_ + enqNumber))
1408  }
1409  assert(!(lastCycleRedirect && enqNumber =/= 0.U))
1410
1411  deqPtrExt := deqPtrExtNext
1412  rdataPtrExt := rdataPtrExtNext
1413
1414  // val dequeueCount = Mux(io.sbuffer(1).fire, 2.U, Mux(io.sbuffer(0).fire || io.mmioStout.fire, 1.U, 0.U))
1415
1416  // If redirect at T0, sqCancelCnt is at T2
1417  io.sqCancelCnt := redirectCancelCount
1418  val ForceWriteUpper = Wire(UInt(log2Up(StoreQueueSize + 1).W))
1419  ForceWriteUpper := Constantin.createRecord(s"ForceWriteUpper_${p(XSCoreParamsKey).HartId}", initValue = 60)
1420  val ForceWriteLower = Wire(UInt(log2Up(StoreQueueSize + 1).W))
1421  ForceWriteLower := Constantin.createRecord(s"ForceWriteLower_${p(XSCoreParamsKey).HartId}", initValue = 55)
1422
1423  val valid_cnt = PopCount(allocated)
1424  io.force_write := RegNext(Mux(valid_cnt >= ForceWriteUpper, true.B, valid_cnt >= ForceWriteLower && io.force_write), init = false.B)
1425
1426  // io.sqempty will be used by sbuffer
1427  // We delay it for 1 cycle for better timing
1428  // When sbuffer need to check if it is empty, the pipeline is blocked, which means delay io.sqempty
1429  // for 1 cycle will also promise that sq is empty in that cycle
1430  io.sqEmpty := RegNext(
1431    enqPtrExt(0).value === deqPtrExt(0).value &&
1432    enqPtrExt(0).flag === deqPtrExt(0).flag
1433  )
1434  // perf counter
1435  QueuePerf(StoreQueueSize, validCount, !allowEnqueue)
1436  val vecValidVec = WireInit(VecInit((0 until StoreQueueSize).map(i => allocated(i) && isVec(i))))
1437  QueuePerf(StoreQueueSize, PopCount(vecValidVec), !allowEnqueue)
1438  io.sqFull := !allowEnqueue
1439  XSPerfAccumulate("mmioCycle", mmioState =/= s_idle) // lq is busy dealing with uncache req
1440  XSPerfAccumulate("mmioCnt", mmioDoReq)
1441  XSPerfAccumulate("mmio_wb_success", io.mmioStout.fire || io.vecmmioStout.fire)
1442  XSPerfAccumulate("mmio_wb_blocked", (io.mmioStout.valid && !io.mmioStout.ready) || (io.vecmmioStout.valid && !io.vecmmioStout.ready))
1443  XSPerfAccumulate("validEntryCnt", distanceBetween(enqPtrExt(0), deqPtrExt(0)))
1444  XSPerfAccumulate("cmtEntryCnt", distanceBetween(cmtPtrExt(0), deqPtrExt(0)))
1445  XSPerfAccumulate("nCmtEntryCnt", distanceBetween(enqPtrExt(0), cmtPtrExt(0)))
1446
1447  val perfValidCount = distanceBetween(enqPtrExt(0), deqPtrExt(0))
1448  val perfEvents = Seq(
1449    ("mmioCycle      ", mmioState =/= s_idle),
1450    ("mmioCnt        ", mmioDoReq),
1451    ("mmio_wb_success", io.mmioStout.fire || io.vecmmioStout.fire),
1452    ("mmio_wb_blocked", (io.mmioStout.valid && !io.mmioStout.ready) || (io.vecmmioStout.valid && !io.vecmmioStout.ready)),
1453    ("stq_1_4_valid  ", (perfValidCount < (StoreQueueSize.U/4.U))),
1454    ("stq_2_4_valid  ", (perfValidCount > (StoreQueueSize.U/4.U)) & (perfValidCount <= (StoreQueueSize.U/2.U))),
1455    ("stq_3_4_valid  ", (perfValidCount > (StoreQueueSize.U/2.U)) & (perfValidCount <= (StoreQueueSize.U*3.U/4.U))),
1456    ("stq_4_4_valid  ", (perfValidCount > (StoreQueueSize.U*3.U/4.U))),
1457  )
1458  generatePerfEvent()
1459
1460  // debug info
1461  XSDebug("enqPtrExt %d:%d deqPtrExt %d:%d\n", enqPtrExt(0).flag, enqPtr, deqPtrExt(0).flag, deqPtr)
1462
1463  def PrintFlag(flag: Bool, name: String): Unit = {
1464    XSDebug(false, flag, name) // when(flag)
1465    XSDebug(false, !flag, " ") // otherwirse
1466  }
1467
1468  for (i <- 0 until StoreQueueSize) {
1469    XSDebug(s"$i: pc %x va %x pa %x data %x ",
1470      uop(i).pc,
1471      debug_vaddr(i),
1472      debug_paddr(i),
1473      debug_data(i)
1474    )
1475    PrintFlag(allocated(i), "a")
1476    PrintFlag(allocated(i) && addrvalid(i), "a")
1477    PrintFlag(allocated(i) && datavalid(i), "d")
1478    PrintFlag(allocated(i) && committed(i), "c")
1479    PrintFlag(allocated(i) && pending(i), "p")
1480    PrintFlag(allocated(i) && mmio(i), "m")
1481    XSDebug(false, true.B, "\n")
1482  }
1483
1484}
1485