1/*************************************************************************************** 2* Copyright (c) 2020-2021 Institute of Computing Technology, Chinese Academy of Sciences 3* Copyright (c) 2020-2021 Peng Cheng Laboratory 4* 5* XiangShan is licensed under Mulan PSL v2. 6* You can use this software according to the terms and conditions of the Mulan PSL v2. 7* You may obtain a copy of Mulan PSL v2 at: 8* http://license.coscl.org.cn/MulanPSL2 9* 10* THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND, 11* EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT, 12* MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE. 13* 14* See the Mulan PSL v2 for more details. 15***************************************************************************************/ 16 17package xiangshan.mem 18 19import chisel3._ 20import chisel3.util._ 21import difftest._ 22import difftest.common.DifftestMem 23import org.chipsalliance.cde.config.Parameters 24import utility._ 25import utils._ 26import xiangshan._ 27import xiangshan.cache._ 28import xiangshan.cache.{DCacheLineIO, DCacheWordIO, MemoryOpConstants} 29import xiangshan.backend._ 30import xiangshan.backend.rob.{RobLsqIO, RobPtr} 31import xiangshan.backend.Bundles.{DynInst, MemExuOutput} 32import xiangshan.backend.decode.isa.bitfield.{Riscv32BitInst, XSInstBitFields} 33import xiangshan.backend.fu.FuConfig._ 34import xiangshan.backend.fu.FuType 35import xiangshan.ExceptionNO._ 36 37class SqPtr(implicit p: Parameters) extends CircularQueuePtr[SqPtr]( 38 p => p(XSCoreParamsKey).StoreQueueSize 39){ 40} 41 42object SqPtr { 43 def apply(f: Bool, v: UInt)(implicit p: Parameters): SqPtr = { 44 val ptr = Wire(new SqPtr) 45 ptr.flag := f 46 ptr.value := v 47 ptr 48 } 49} 50 51class SqEnqIO(implicit p: Parameters) extends MemBlockBundle { 52 val canAccept = Output(Bool()) 53 val lqCanAccept = Input(Bool()) 54 val needAlloc = Vec(LSQEnqWidth, Input(Bool())) 55 val req = Vec(LSQEnqWidth, Flipped(ValidIO(new DynInst))) 56 val resp = Vec(LSQEnqWidth, Output(new SqPtr)) 57} 58 59class DataBufferEntry (implicit p: Parameters) extends DCacheBundle { 60 val addr = UInt(PAddrBits.W) 61 val vaddr = UInt(VAddrBits.W) 62 val data = UInt(VLEN.W) 63 val mask = UInt((VLEN/8).W) 64 val wline = Bool() 65 val sqPtr = new SqPtr 66 val prefetch = Bool() 67 val vecValid = Bool() 68} 69 70class StoreExceptionBuffer(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper { 71 val io = IO(new Bundle() { 72 val redirect = Flipped(ValidIO(new Redirect)) 73 val storeAddrIn = Vec(StorePipelineWidth * 2 + VecStorePipelineWidth, Flipped(ValidIO(new LsPipelineBundle()))) 74 val exceptionAddr = new ExceptionAddrIO 75 }) 76 77 val req_valid = RegInit(false.B) 78 val req = Reg(new LsPipelineBundle()) 79 80 // enqueue 81 // S1: 82 val s1_req = VecInit(io.storeAddrIn.map(_.bits)) 83 val s1_valid = VecInit(io.storeAddrIn.map(_.valid)) 84 85 // S2: delay 1 cycle 86 val s2_req = RegNext(s1_req) 87 val s2_valid = (0 until StorePipelineWidth * 2 + VecStorePipelineWidth).map(i => 88 RegNext(s1_valid(i)) && 89 !s2_req(i).uop.robIdx.needFlush(RegNext(io.redirect)) && 90 !s2_req(i).uop.robIdx.needFlush(io.redirect) 91 ) 92 val s2_has_exception = s2_req.map(x => ExceptionNO.selectByFu(x.uop.exceptionVec, StaCfg).asUInt.orR) 93 94 val s2_enqueue = Wire(Vec(StorePipelineWidth * 2 + VecStorePipelineWidth, Bool())) 95 for (w <- 0 until StorePipelineWidth * 2 + VecStorePipelineWidth) { 96 s2_enqueue(w) := s2_valid(w) && s2_has_exception(w) 97 } 98 99 when (req_valid && req.uop.robIdx.needFlush(io.redirect)) { 100 req_valid := s2_enqueue.asUInt.orR 101 }.elsewhen (s2_enqueue.asUInt.orR) { 102 req_valid := req_valid || true.B 103 } 104 105 def selectOldest[T <: LsPipelineBundle](valid: Seq[Bool], bits: Seq[T]): (Seq[Bool], Seq[T]) = { 106 assert(valid.length == bits.length) 107 if (valid.length == 0 || valid.length == 1) { 108 (valid, bits) 109 } else if (valid.length == 2) { 110 val res = Seq.fill(2)(Wire(Valid(chiselTypeOf(bits(0))))) 111 for (i <- res.indices) { 112 res(i).valid := valid(i) 113 res(i).bits := bits(i) 114 } 115 val oldest = Mux(valid(0) && valid(1), 116 Mux(isAfter(bits(0).uop.robIdx, bits(1).uop.robIdx) || 117 (isNotBefore(bits(0).uop.robIdx, bits(1).uop.robIdx) && bits(0).uop.uopIdx > bits(1).uop.uopIdx), res(1), res(0)), 118 Mux(valid(0) && !valid(1), res(0), res(1))) 119 (Seq(oldest.valid), Seq(oldest.bits)) 120 } else { 121 val left = selectOldest(valid.take(valid.length / 2), bits.take(bits.length / 2)) 122 val right = selectOldest(valid.takeRight(valid.length - (valid.length / 2)), bits.takeRight(bits.length - (bits.length / 2))) 123 selectOldest(left._1 ++ right._1, left._2 ++ right._2) 124 } 125 } 126 127 val reqSel = selectOldest(s2_enqueue, s2_req) 128 129 when (req_valid) { 130 req := Mux( 131 reqSel._1(0) && (isAfter(req.uop.robIdx, reqSel._2(0).uop.robIdx) || (isNotBefore(req.uop.robIdx, reqSel._2(0).uop.robIdx) && req.uop.uopIdx > reqSel._2(0).uop.uopIdx)), 132 reqSel._2(0), 133 req) 134 } .elsewhen (s2_enqueue.asUInt.orR) { 135 req := reqSel._2(0) 136 } 137 138 io.exceptionAddr.vaddr := req.vaddr 139 io.exceptionAddr.gpaddr := req.gpaddr 140 io.exceptionAddr.vstart := req.uop.vpu.vstart 141 io.exceptionAddr.vl := req.uop.vpu.vl 142} 143 144// Store Queue 145class StoreQueue(implicit p: Parameters) extends XSModule 146 with HasDCacheParameters 147 with HasCircularQueuePtrHelper 148 with HasPerfEvents 149 with HasVLSUParameters { 150 val io = IO(new Bundle() { 151 val hartId = Input(UInt(hartIdLen.W)) 152 val enq = new SqEnqIO 153 val brqRedirect = Flipped(ValidIO(new Redirect)) 154 val vecFeedback = Vec(VecLoadPipelineWidth, Flipped(ValidIO(new FeedbackToLsqIO))) 155 val storeAddrIn = Vec(StorePipelineWidth, Flipped(Valid(new LsPipelineBundle))) // store addr, data is not included 156 val storeAddrInRe = Vec(StorePipelineWidth, Input(new LsPipelineBundle())) // store more mmio and exception 157 val storeDataIn = Vec(StorePipelineWidth, Flipped(Valid(new MemExuOutput(isVector = true)))) // store data, send to sq from rs 158 val storeMaskIn = Vec(StorePipelineWidth, Flipped(Valid(new StoreMaskBundle))) // store mask, send to sq from rs 159 val sbuffer = Vec(EnsbufferWidth, Decoupled(new DCacheWordReqWithVaddrAndPfFlag)) // write committed store to sbuffer 160 val sbufferVecDifftestInfo = Vec(EnsbufferWidth, Decoupled(new DynInst)) // The vector store difftest needs is, write committed store to sbuffer 161 val uncacheOutstanding = Input(Bool()) 162 val mmioStout = DecoupledIO(new MemExuOutput) // writeback uncached store 163 val vecmmioStout = DecoupledIO(new MemExuOutput(isVector = true)) 164 val forward = Vec(LoadPipelineWidth, Flipped(new PipeLoadForwardQueryIO)) 165 // TODO: scommit is only for scalar store 166 val rob = Flipped(new RobLsqIO) 167 val uncache = new UncacheWordIO 168 // val refill = Flipped(Valid(new DCacheLineReq )) 169 val exceptionAddr = new ExceptionAddrIO 170 val sqEmpty = Output(Bool()) 171 val stAddrReadySqPtr = Output(new SqPtr) 172 val stAddrReadyVec = Output(Vec(StoreQueueSize, Bool())) 173 val stDataReadySqPtr = Output(new SqPtr) 174 val stDataReadyVec = Output(Vec(StoreQueueSize, Bool())) 175 val stIssuePtr = Output(new SqPtr) 176 val sqDeqPtr = Output(new SqPtr) 177 val sqFull = Output(Bool()) 178 val sqCancelCnt = Output(UInt(log2Up(StoreQueueSize + 1).W)) 179 val sqDeq = Output(UInt(log2Ceil(EnsbufferWidth + 1).W)) 180 val force_write = Output(Bool()) 181 }) 182 183 println("StoreQueue: size:" + StoreQueueSize) 184 185 // data modules 186 val uop = Reg(Vec(StoreQueueSize, new DynInst)) 187 // val data = Reg(Vec(StoreQueueSize, new LsqEntry)) 188 val dataModule = Module(new SQDataModule( 189 numEntries = StoreQueueSize, 190 numRead = EnsbufferWidth, 191 numWrite = StorePipelineWidth, 192 numForward = LoadPipelineWidth 193 )) 194 dataModule.io := DontCare 195 val paddrModule = Module(new SQAddrModule( 196 dataWidth = PAddrBits, 197 numEntries = StoreQueueSize, 198 numRead = EnsbufferWidth, 199 numWrite = StorePipelineWidth, 200 numForward = LoadPipelineWidth 201 )) 202 paddrModule.io := DontCare 203 val vaddrModule = Module(new SQAddrModule( 204 dataWidth = VAddrBits, 205 numEntries = StoreQueueSize, 206 numRead = EnsbufferWidth, // sbuffer; badvaddr will be sent from exceptionBuffer 207 numWrite = StorePipelineWidth, 208 numForward = LoadPipelineWidth 209 )) 210 vaddrModule.io := DontCare 211 val dataBuffer = Module(new DatamoduleResultBuffer(new DataBufferEntry)) 212 val difftestBuffer = if (env.EnableDifftest) Some(Module(new DatamoduleResultBuffer(new DynInst))) else None 213 val exceptionBuffer = Module(new StoreExceptionBuffer) 214 exceptionBuffer.io.redirect := io.brqRedirect 215 exceptionBuffer.io.exceptionAddr.isStore := DontCare 216 // vlsu exception! 217 for (i <- 0 until VecStorePipelineWidth) { 218 exceptionBuffer.io.storeAddrIn(StorePipelineWidth * 2 + i).valid := io.vecFeedback(i).valid && io.vecFeedback(i).bits.feedback(VecFeedbacks.FLUSH) // have exception 219 exceptionBuffer.io.storeAddrIn(StorePipelineWidth * 2 + i).bits := DontCare 220 exceptionBuffer.io.storeAddrIn(StorePipelineWidth * 2 + i).bits.vaddr := io.vecFeedback(i).bits.vaddr 221 exceptionBuffer.io.storeAddrIn(StorePipelineWidth * 2 + i).bits.uop.uopIdx := io.vecFeedback(i).bits.uopidx 222 exceptionBuffer.io.storeAddrIn(StorePipelineWidth * 2 + i).bits.uop.robIdx := io.vecFeedback(i).bits.robidx 223 exceptionBuffer.io.storeAddrIn(StorePipelineWidth * 2 + i).bits.uop.vpu.vstart := io.vecFeedback(i).bits.vstart 224 exceptionBuffer.io.storeAddrIn(StorePipelineWidth * 2 + i).bits.uop.vpu.vl := io.vecFeedback(i).bits.vl 225 exceptionBuffer.io.storeAddrIn(StorePipelineWidth * 2 + i).bits.uop.exceptionVec := io.vecFeedback(i).bits.exceptionVec 226 } 227 228 229 val debug_paddr = Reg(Vec(StoreQueueSize, UInt((PAddrBits).W))) 230 val debug_vaddr = Reg(Vec(StoreQueueSize, UInt((VAddrBits).W))) 231 val debug_data = Reg(Vec(StoreQueueSize, UInt((XLEN).W))) 232 233 // state & misc 234 val allocated = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // sq entry has been allocated 235 val addrvalid = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // non-mmio addr is valid 236 val datavalid = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // non-mmio data is valid 237 val allvalid = VecInit((0 until StoreQueueSize).map(i => addrvalid(i) && datavalid(i))) // non-mmio data & addr is valid 238 val committed = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // inst has been committed by rob 239 val pending = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // mmio pending: inst is an mmio inst, it will not be executed until it reachs the end of rob 240 val mmio = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // mmio: inst is an mmio inst 241 val atomic = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) 242 val prefetch = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // need prefetch when committing this store to sbuffer? 243 val isVec = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // vector store instruction 244 //val vec_lastuop = Reg(Vec(StoreQueueSize, Bool())) // last uop of vector store instruction 245 val vecMbCommit = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // vector store committed from merge buffer to rob 246 val vecDataValid = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // vector store need write to sbuffer 247 val hasException = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // store has exception, should deq but not write sbuffer 248 val waitStoreS2 = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // wait for mmio and exception result until store_s2 249 // val vec_robCommit = Reg(Vec(StoreQueueSize, Bool())) // vector store committed by rob 250 // val vec_secondInv = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // Vector unit-stride, second entry is invalid 251 val vecExceptionFlag = RegInit(0.U.asTypeOf(Valid(new DynInst))) 252 253 // ptr 254 val enqPtrExt = RegInit(VecInit((0 until io.enq.req.length).map(_.U.asTypeOf(new SqPtr)))) 255 val rdataPtrExt = RegInit(VecInit((0 until EnsbufferWidth).map(_.U.asTypeOf(new SqPtr)))) 256 val deqPtrExt = RegInit(VecInit((0 until EnsbufferWidth).map(_.U.asTypeOf(new SqPtr)))) 257 val cmtPtrExt = RegInit(VecInit((0 until CommitWidth).map(_.U.asTypeOf(new SqPtr)))) 258 val addrReadyPtrExt = RegInit(0.U.asTypeOf(new SqPtr)) 259 val dataReadyPtrExt = RegInit(0.U.asTypeOf(new SqPtr)) 260 261 val enqPtr = enqPtrExt(0).value 262 val deqPtr = deqPtrExt(0).value 263 val cmtPtr = cmtPtrExt(0).value 264 265 val validCount = distanceBetween(enqPtrExt(0), deqPtrExt(0)) 266 val allowEnqueue = validCount <= (StoreQueueSize - LSQStEnqWidth).U 267 268 val deqMask = UIntToMask(deqPtr, StoreQueueSize) 269 val enqMask = UIntToMask(enqPtr, StoreQueueSize) 270 271 val commitCount = WireInit(0.U(log2Ceil(CommitWidth + 1).W)) 272 val scommit = RegNext(io.rob.scommit) 273 274 // store can be committed by ROB 275 io.rob.mmio := DontCare 276 io.rob.uop := DontCare 277 278 // Read dataModule 279 assert(EnsbufferWidth <= 2) 280 // rdataPtrExtNext and rdataPtrExtNext+1 entry will be read from dataModule 281 val rdataPtrExtNext = WireInit(Mux(dataBuffer.io.enq(1).fire, 282 VecInit(rdataPtrExt.map(_ + 2.U)), 283 Mux(dataBuffer.io.enq(0).fire || io.mmioStout.fire || io.vecmmioStout.fire, 284 VecInit(rdataPtrExt.map(_ + 1.U)), 285 rdataPtrExt 286 ) 287 )) 288 289 // deqPtrExtNext traces which inst is about to leave store queue 290 // 291 // io.sbuffer(i).fire is RegNexted, as sbuffer data write takes 2 cycles. 292 // Before data write finish, sbuffer is unable to provide store to load 293 // forward data. As an workaround, deqPtrExt and allocated flag update 294 // is delayed so that load can get the right data from store queue. 295 // 296 // Modify deqPtrExtNext and io.sqDeq with care! 297 val deqPtrExtNext = Mux(RegNext(io.sbuffer(1).fire), 298 VecInit(deqPtrExt.map(_ + 2.U)), 299 Mux((RegNext(io.sbuffer(0).fire)) || io.mmioStout.fire || io.vecmmioStout.fire, 300 VecInit(deqPtrExt.map(_ + 1.U)), 301 deqPtrExt 302 ) 303 ) 304 io.sqDeq := RegNext(Mux(RegNext(io.sbuffer(1).fire), 2.U, 305 Mux((RegNext(io.sbuffer(0).fire)) || io.mmioStout.fire || io.vecmmioStout.fire, 1.U, 0.U) 306 )) 307 assert(!RegNext(RegNext(io.sbuffer(0).fire) && (io.mmioStout.fire || io.vecmmioStout.fire))) 308 309 for (i <- 0 until EnsbufferWidth) { 310 dataModule.io.raddr(i) := rdataPtrExtNext(i).value 311 paddrModule.io.raddr(i) := rdataPtrExtNext(i).value 312 vaddrModule.io.raddr(i) := rdataPtrExtNext(i).value 313 } 314 315 /** 316 * Enqueue at dispatch 317 * 318 * Currently, StoreQueue only allows enqueue when #emptyEntries > EnqWidth 319 */ 320 io.enq.canAccept := allowEnqueue 321 val canEnqueue = io.enq.req.map(_.valid) 322 val enqCancel = io.enq.req.map(_.bits.robIdx.needFlush(io.brqRedirect)) 323 val vStoreFlow = io.enq.req.map(_.bits.numLsElem) 324 val validVStoreFlow = vStoreFlow.zipWithIndex.map{case (vLoadFlowNumItem, index) => Mux(!RegNext(io.brqRedirect.valid) && io.enq.canAccept && io.enq.lqCanAccept && canEnqueue(index), vLoadFlowNumItem, 0.U)} 325 val validVStoreOffset = vStoreFlow.zip(io.enq.needAlloc).map{case (flow, needAllocItem) => Mux(needAllocItem, flow, 0.U)} 326 val validVStoreOffsetRShift = 0.U +: validVStoreOffset.take(vStoreFlow.length - 1) 327 328 for (i <- 0 until io.enq.req.length) { 329 val sqIdx = enqPtrExt(0) + validVStoreOffsetRShift.take(i + 1).reduce(_ + _) 330 val index = io.enq.req(i).bits.sqIdx 331 val enqInstr = io.enq.req(i).bits.instr.asTypeOf(new XSInstBitFields) 332 when (canEnqueue(i) && !enqCancel(i)) { 333 // The maximum 'numLsElem' number that can be emitted per dispatch port is: 334 // 16 2 2 2 2 2. 335 // Therefore, VecMemLSQEnqIteratorNumberSeq = Seq(16, 2, 2, 2, 2, 2) 336 for (j <- 0 until VecMemLSQEnqIteratorNumberSeq(i)) { 337 when (j.U < validVStoreOffset(i)) { 338 uop((index + j.U).value) := io.enq.req(i).bits 339 // NOTE: the index will be used when replay 340 uop((index + j.U).value).sqIdx := sqIdx + j.U 341 allocated((index + j.U).value) := true.B 342 datavalid((index + j.U).value) := false.B 343 addrvalid((index + j.U).value) := false.B 344 committed((index + j.U).value) := false.B 345 pending((index + j.U).value) := false.B 346 prefetch((index + j.U).value) := false.B 347 mmio((index + j.U).value) := false.B 348 isVec((index + j.U).value) := enqInstr.isVecStore // check vector store by the encoding of inst 349 vecMbCommit((index + j.U).value) := false.B 350 vecDataValid((index + j.U).value) := false.B 351 hasException((index + j.U).value) := false.B 352 waitStoreS2((index + j.U).value) := true.B 353 XSError(!io.enq.canAccept || !io.enq.lqCanAccept, s"must accept $i\n") 354 XSError(index.value =/= sqIdx.value, s"must be the same entry $i\n") 355 } 356 } 357 } 358 io.enq.resp(i) := sqIdx 359 } 360 XSDebug(p"(ready, valid): ${io.enq.canAccept}, ${Binary(Cat(io.enq.req.map(_.valid)))}\n") 361 362 /** 363 * Update addr/dataReadyPtr when issue from rs 364 */ 365 // update issuePtr 366 val IssuePtrMoveStride = 4 367 require(IssuePtrMoveStride >= 2) 368 369 val addrReadyLookupVec = (0 until IssuePtrMoveStride).map(addrReadyPtrExt + _.U) 370 val addrReadyLookup = addrReadyLookupVec.map(ptr => allocated(ptr.value) && 371 (mmio(ptr.value) || addrvalid(ptr.value) || vecMbCommit(ptr.value)) 372 && ptr =/= enqPtrExt(0)) 373 val nextAddrReadyPtr = addrReadyPtrExt + PriorityEncoder(VecInit(addrReadyLookup.map(!_) :+ true.B)) 374 addrReadyPtrExt := nextAddrReadyPtr 375 376 (0 until StoreQueueSize).map(i => { 377 io.stAddrReadyVec(i) := RegNext(allocated(i) && (mmio(i) || addrvalid(i) || (isVec(i) && vecMbCommit(i)))) 378 }) 379 380 when (io.brqRedirect.valid) { 381 addrReadyPtrExt := Mux( 382 isAfter(cmtPtrExt(0), deqPtrExt(0)), 383 cmtPtrExt(0), 384 deqPtrExtNext(0) // for mmio insts, deqPtr may be ahead of cmtPtr 385 ) 386 } 387 388 io.stAddrReadySqPtr := addrReadyPtrExt 389 390 // update 391 val dataReadyLookupVec = (0 until IssuePtrMoveStride).map(dataReadyPtrExt + _.U) 392 val dataReadyLookup = dataReadyLookupVec.map(ptr => allocated(ptr.value) && 393 (mmio(ptr.value) || datavalid(ptr.value) || vecMbCommit(ptr.value)) 394 && ptr =/= enqPtrExt(0)) 395 val nextDataReadyPtr = dataReadyPtrExt + PriorityEncoder(VecInit(dataReadyLookup.map(!_) :+ true.B)) 396 dataReadyPtrExt := nextDataReadyPtr 397 398 (0 until StoreQueueSize).map(i => { 399 io.stDataReadyVec(i) := RegNext(allocated(i) && (mmio(i) || datavalid(i) || (isVec(i) && vecMbCommit(i)))) 400 }) 401 402 when (io.brqRedirect.valid) { 403 dataReadyPtrExt := Mux( 404 isAfter(cmtPtrExt(0), deqPtrExt(0)), 405 cmtPtrExt(0), 406 deqPtrExtNext(0) // for mmio insts, deqPtr may be ahead of cmtPtr 407 ) 408 } 409 410 io.stDataReadySqPtr := dataReadyPtrExt 411 io.stIssuePtr := enqPtrExt(0) 412 io.sqDeqPtr := deqPtrExt(0) 413 414 /** 415 * Writeback store from store units 416 * 417 * Most store instructions writeback to regfile in the previous cycle. 418 * However, 419 * (1) For an mmio instruction with exceptions, we need to mark it as addrvalid 420 * (in this way it will trigger an exception when it reaches ROB's head) 421 * instead of pending to avoid sending them to lower level. 422 * (2) For an mmio instruction without exceptions, we mark it as pending. 423 * When the instruction reaches ROB's head, StoreQueue sends it to uncache channel. 424 * Upon receiving the response, StoreQueue writes back the instruction 425 * through arbiter with store units. It will later commit as normal. 426 */ 427 428 // Write addr to sq 429 for (i <- 0 until StorePipelineWidth) { 430 paddrModule.io.wen(i) := false.B 431 vaddrModule.io.wen(i) := false.B 432 dataModule.io.mask.wen(i) := false.B 433 val stWbIndex = io.storeAddrIn(i).bits.uop.sqIdx.value 434 exceptionBuffer.io.storeAddrIn(i).valid := io.storeAddrIn(i).fire && !io.storeAddrIn(i).bits.miss && !io.storeAddrIn(i).bits.isvec 435 exceptionBuffer.io.storeAddrIn(i).bits := io.storeAddrIn(i).bits 436 // will re-enter exceptionbuffer at store_s2 437 exceptionBuffer.io.storeAddrIn(StorePipelineWidth + i).valid := false.B 438 exceptionBuffer.io.storeAddrIn(StorePipelineWidth + i).bits := 0.U.asTypeOf(new LsPipelineBundle) 439 440 when (io.storeAddrIn(i).fire) { 441 val addr_valid = !io.storeAddrIn(i).bits.miss 442 addrvalid(stWbIndex) := addr_valid //!io.storeAddrIn(i).bits.mmio 443 // pending(stWbIndex) := io.storeAddrIn(i).bits.mmio 444 445 paddrModule.io.waddr(i) := stWbIndex 446 paddrModule.io.wdata(i) := io.storeAddrIn(i).bits.paddr 447 paddrModule.io.wmask(i) := io.storeAddrIn(i).bits.mask 448 paddrModule.io.wlineflag(i) := io.storeAddrIn(i).bits.wlineflag 449 paddrModule.io.wen(i) := true.B 450 451 vaddrModule.io.waddr(i) := stWbIndex 452 vaddrModule.io.wdata(i) := io.storeAddrIn(i).bits.vaddr 453 vaddrModule.io.wmask(i) := io.storeAddrIn(i).bits.mask 454 vaddrModule.io.wlineflag(i) := io.storeAddrIn(i).bits.wlineflag 455 vaddrModule.io.wen(i) := true.B 456 457 debug_paddr(paddrModule.io.waddr(i)) := paddrModule.io.wdata(i) 458 459 // mmio(stWbIndex) := io.storeAddrIn(i).bits.mmio 460 461 uop(stWbIndex) := io.storeAddrIn(i).bits.uop 462 uop(stWbIndex).debugInfo := io.storeAddrIn(i).bits.uop.debugInfo 463 464 vecDataValid(stWbIndex) := io.storeAddrIn(i).bits.isvec 465 466 XSInfo("store addr write to sq idx %d pc 0x%x miss:%d vaddr %x paddr %x mmio %x isvec %x\n", 467 io.storeAddrIn(i).bits.uop.sqIdx.value, 468 io.storeAddrIn(i).bits.uop.pc, 469 io.storeAddrIn(i).bits.miss, 470 io.storeAddrIn(i).bits.vaddr, 471 io.storeAddrIn(i).bits.paddr, 472 io.storeAddrIn(i).bits.mmio, 473 io.storeAddrIn(i).bits.isvec 474 ) 475 } 476 477 // re-replinish mmio, for pma/pmp will get mmio one cycle later 478 val storeAddrInFireReg = RegNext(io.storeAddrIn(i).fire && !io.storeAddrIn(i).bits.miss) 479 val stWbIndexReg = RegNext(stWbIndex) 480 when (storeAddrInFireReg) { 481 pending(stWbIndexReg) := io.storeAddrInRe(i).mmio 482 mmio(stWbIndexReg) := io.storeAddrInRe(i).mmio 483 atomic(stWbIndexReg) := io.storeAddrInRe(i).atomic 484 hasException(stWbIndexReg) := ExceptionNO.selectByFu(uop(stWbIndexReg).exceptionVec, StaCfg).asUInt.orR || io.storeAddrInRe(i).af 485 waitStoreS2(stWbIndexReg) := false.B 486 } 487 // dcache miss info (one cycle later than storeIn) 488 // if dcache report a miss in sta pipeline, this store will trigger a prefetch when committing to sbuffer (if EnableAtCommitMissTrigger) 489 when (storeAddrInFireReg) { 490 prefetch(stWbIndexReg) := io.storeAddrInRe(i).miss 491 } 492 // enter exceptionbuffer again 493 when (storeAddrInFireReg) { 494 exceptionBuffer.io.storeAddrIn(StorePipelineWidth + i).valid := io.storeAddrInRe(i).af 495 exceptionBuffer.io.storeAddrIn(StorePipelineWidth + i).bits := RegEnable(io.storeAddrIn(i).bits, io.storeAddrIn(i).fire && !io.storeAddrIn(i).bits.miss) 496 exceptionBuffer.io.storeAddrIn(StorePipelineWidth + i).bits.uop.exceptionVec(storeAccessFault) := io.storeAddrInRe(i).af 497 } 498 499 when(vaddrModule.io.wen(i)){ 500 debug_vaddr(vaddrModule.io.waddr(i)) := vaddrModule.io.wdata(i) 501 } 502 } 503 504 // Write data to sq 505 // Now store data pipeline is actually 2 stages 506 for (i <- 0 until StorePipelineWidth) { 507 dataModule.io.data.wen(i) := false.B 508 val stWbIndex = io.storeDataIn(i).bits.uop.sqIdx.value 509 val isVec = FuType.isVStore(io.storeDataIn(i).bits.uop.fuType) 510 // sq data write takes 2 cycles: 511 // sq data write s0 512 when (io.storeDataIn(i).fire) { 513 // send data write req to data module 514 dataModule.io.data.waddr(i) := stWbIndex 515 dataModule.io.data.wdata(i) := Mux(io.storeDataIn(i).bits.uop.fuOpType === LSUOpType.cbo_zero, 516 0.U, 517 Mux(isVec, 518 io.storeDataIn(i).bits.data, 519 genVWdata(io.storeDataIn(i).bits.data, io.storeDataIn(i).bits.uop.fuOpType(2,0))) 520 ) 521 dataModule.io.data.wen(i) := true.B 522 523 debug_data(dataModule.io.data.waddr(i)) := dataModule.io.data.wdata(i) 524 525 XSInfo("store data write to sq idx %d pc 0x%x data %x -> %x\n", 526 io.storeDataIn(i).bits.uop.sqIdx.value, 527 io.storeDataIn(i).bits.uop.pc, 528 io.storeDataIn(i).bits.data, 529 dataModule.io.data.wdata(i) 530 ) 531 } 532 // sq data write s1 533 when ( 534 RegNext(io.storeDataIn(i).fire) 535 // && !RegNext(io.storeDataIn(i).bits.uop).robIdx.needFlush(io.brqRedirect) 536 ) { 537 datavalid(RegNext(stWbIndex)) := true.B 538 } 539 } 540 541 // Write mask to sq 542 for (i <- 0 until StorePipelineWidth) { 543 // sq mask write s0 544 when (io.storeMaskIn(i).fire) { 545 // send data write req to data module 546 dataModule.io.mask.waddr(i) := io.storeMaskIn(i).bits.sqIdx.value 547 dataModule.io.mask.wdata(i) := io.storeMaskIn(i).bits.mask 548 dataModule.io.mask.wen(i) := true.B 549 } 550 } 551 552 /** 553 * load forward query 554 * 555 * Check store queue for instructions that is older than the load. 556 * The response will be valid at the next cycle after req. 557 */ 558 // check over all lq entries and forward data from the first matched store 559 for (i <- 0 until LoadPipelineWidth) { 560 // Compare deqPtr (deqPtr) and forward.sqIdx, we have two cases: 561 // (1) if they have the same flag, we need to check range(tail, sqIdx) 562 // (2) if they have different flags, we need to check range(tail, VirtualLoadQueueSize) and range(0, sqIdx) 563 // Forward1: Mux(same_flag, range(tail, sqIdx), range(tail, VirtualLoadQueueSize)) 564 // Forward2: Mux(same_flag, 0.U, range(0, sqIdx) ) 565 // i.e. forward1 is the target entries with the same flag bits and forward2 otherwise 566 val differentFlag = deqPtrExt(0).flag =/= io.forward(i).sqIdx.flag 567 val forwardMask = io.forward(i).sqIdxMask 568 // all addrvalid terms need to be checked 569 // Real Vaild: all scalar stores, and vector store with (!inactive && !secondInvalid) 570 val addrRealValidVec = WireInit(VecInit((0 until StoreQueueSize).map(j => addrvalid(j) && allocated(j)))) 571 // vector store will consider all inactive || secondInvalid flows as valid 572 val addrValidVec = WireInit(VecInit((0 until StoreQueueSize).map(j => addrvalid(j) && allocated(j)))) 573 val dataValidVec = WireInit(VecInit((0 until StoreQueueSize).map(j => datavalid(j)))) 574 val allValidVec = WireInit(VecInit((0 until StoreQueueSize).map(j => addrvalid(j) && datavalid(j) && allocated(j)))) 575 576 val lfstEnable = Constantin.createRecord("LFSTEnable", LFSTEnable) 577 val storeSetHitVec = Mux(lfstEnable, 578 WireInit(VecInit((0 until StoreQueueSize).map(j => io.forward(i).uop.loadWaitBit && uop(j).robIdx === io.forward(i).uop.waitForRobIdx))), 579 WireInit(VecInit((0 until StoreQueueSize).map(j => uop(j).storeSetHit && uop(j).ssid === io.forward(i).uop.ssid))) 580 ) 581 582 val forwardMask1 = Mux(differentFlag, ~deqMask, deqMask ^ forwardMask) 583 val forwardMask2 = Mux(differentFlag, forwardMask, 0.U(StoreQueueSize.W)) 584 val canForward1 = forwardMask1 & allValidVec.asUInt 585 val canForward2 = forwardMask2 & allValidVec.asUInt 586 val needForward = Mux(differentFlag, ~deqMask | forwardMask, deqMask ^ forwardMask) 587 588 XSDebug(p"$i f1 ${Binary(canForward1)} f2 ${Binary(canForward2)} " + 589 p"sqIdx ${io.forward(i).sqIdx} pa ${Hexadecimal(io.forward(i).paddr)}\n" 590 ) 591 592 // do real fwd query (cam lookup in load_s1) 593 dataModule.io.needForward(i)(0) := canForward1 & vaddrModule.io.forwardMmask(i).asUInt 594 dataModule.io.needForward(i)(1) := canForward2 & vaddrModule.io.forwardMmask(i).asUInt 595 596 vaddrModule.io.forwardMdata(i) := io.forward(i).vaddr 597 vaddrModule.io.forwardDataMask(i) := io.forward(i).mask 598 paddrModule.io.forwardMdata(i) := io.forward(i).paddr 599 paddrModule.io.forwardDataMask(i) := io.forward(i).mask 600 601 // vaddr cam result does not equal to paddr cam result 602 // replay needed 603 // val vpmaskNotEqual = ((paddrModule.io.forwardMmask(i).asUInt ^ vaddrModule.io.forwardMmask(i).asUInt) & needForward) =/= 0.U 604 // val vaddrMatchFailed = vpmaskNotEqual && io.forward(i).valid 605 val vpmaskNotEqual = ( 606 (RegNext(paddrModule.io.forwardMmask(i).asUInt) ^ RegNext(vaddrModule.io.forwardMmask(i).asUInt)) & 607 RegNext(needForward) & 608 RegNext(addrRealValidVec.asUInt) 609 ) =/= 0.U 610 val vaddrMatchFailed = vpmaskNotEqual && RegNext(io.forward(i).valid) 611 when (vaddrMatchFailed) { 612 XSInfo("vaddrMatchFailed: pc %x pmask %x vmask %x\n", 613 RegNext(io.forward(i).uop.pc), 614 RegNext(needForward & paddrModule.io.forwardMmask(i).asUInt), 615 RegNext(needForward & vaddrModule.io.forwardMmask(i).asUInt) 616 ); 617 } 618 XSPerfAccumulate("vaddr_match_failed", vpmaskNotEqual) 619 XSPerfAccumulate("vaddr_match_really_failed", vaddrMatchFailed) 620 621 // Fast forward mask will be generated immediately (load_s1) 622 io.forward(i).forwardMaskFast := dataModule.io.forwardMaskFast(i) 623 624 // Forward result will be generated 1 cycle later (load_s2) 625 io.forward(i).forwardMask := dataModule.io.forwardMask(i) 626 io.forward(i).forwardData := dataModule.io.forwardData(i) 627 // If addr match, data not ready, mark it as dataInvalid 628 // load_s1: generate dataInvalid in load_s1 to set fastUop 629 val dataInvalidMask1 = (addrValidVec.asUInt & ~dataValidVec.asUInt & vaddrModule.io.forwardMmask(i).asUInt & forwardMask1.asUInt) 630 val dataInvalidMask2 = (addrValidVec.asUInt & ~dataValidVec.asUInt & vaddrModule.io.forwardMmask(i).asUInt & forwardMask2.asUInt) 631 val dataInvalidMask = dataInvalidMask1 | dataInvalidMask2 632 io.forward(i).dataInvalidFast := dataInvalidMask.orR 633 634 // make chisel happy 635 val dataInvalidMask1Reg = Wire(UInt(StoreQueueSize.W)) 636 dataInvalidMask1Reg := RegNext(dataInvalidMask1) 637 // make chisel happy 638 val dataInvalidMask2Reg = Wire(UInt(StoreQueueSize.W)) 639 dataInvalidMask2Reg := RegNext(dataInvalidMask2) 640 val dataInvalidMaskReg = dataInvalidMask1Reg | dataInvalidMask2Reg 641 642 // If SSID match, address not ready, mark it as addrInvalid 643 // load_s2: generate addrInvalid 644 val addrInvalidMask1 = (~addrValidVec.asUInt & storeSetHitVec.asUInt & forwardMask1.asUInt) 645 val addrInvalidMask2 = (~addrValidVec.asUInt & storeSetHitVec.asUInt & forwardMask2.asUInt) 646 // make chisel happy 647 val addrInvalidMask1Reg = Wire(UInt(StoreQueueSize.W)) 648 addrInvalidMask1Reg := RegNext(addrInvalidMask1) 649 // make chisel happy 650 val addrInvalidMask2Reg = Wire(UInt(StoreQueueSize.W)) 651 addrInvalidMask2Reg := RegNext(addrInvalidMask2) 652 val addrInvalidMaskReg = addrInvalidMask1Reg | addrInvalidMask2Reg 653 654 // load_s2 655 io.forward(i).dataInvalid := RegNext(io.forward(i).dataInvalidFast) 656 // check if vaddr forward mismatched 657 io.forward(i).matchInvalid := vaddrMatchFailed 658 659 // data invalid sq index 660 // check whether false fail 661 // check flag 662 val s2_differentFlag = RegNext(differentFlag) 663 val s2_enqPtrExt = RegNext(enqPtrExt(0)) 664 val s2_deqPtrExt = RegNext(deqPtrExt(0)) 665 666 // addr invalid sq index 667 // make chisel happy 668 val addrInvalidMaskRegWire = Wire(UInt(StoreQueueSize.W)) 669 addrInvalidMaskRegWire := addrInvalidMaskReg 670 val addrInvalidFlag = addrInvalidMaskRegWire.orR 671 val hasInvalidAddr = (~addrValidVec.asUInt & needForward).orR 672 673 val addrInvalidSqIdx1 = OHToUInt(Reverse(PriorityEncoderOH(Reverse(addrInvalidMask1Reg)))) 674 val addrInvalidSqIdx2 = OHToUInt(Reverse(PriorityEncoderOH(Reverse(addrInvalidMask2Reg)))) 675 val addrInvalidSqIdx = Mux(addrInvalidMask2Reg.orR, addrInvalidSqIdx2, addrInvalidSqIdx1) 676 677 // store-set content management 678 // +-----------------------+ 679 // | Search a SSID for the | 680 // | load operation | 681 // +-----------------------+ 682 // | 683 // V 684 // +-------------------+ 685 // | load wait strict? | 686 // +-------------------+ 687 // | 688 // V 689 // +----------------------+ 690 // Set| |Clean 691 // V V 692 // +------------------------+ +------------------------------+ 693 // | Waiting for all older | | Wait until the corresponding | 694 // | stores operations | | older store operations | 695 // +------------------------+ +------------------------------+ 696 697 698 699 when (RegNext(io.forward(i).uop.loadWaitStrict)) { 700 io.forward(i).addrInvalidSqIdx := RegNext(io.forward(i).uop.sqIdx - 1.U) 701 } .elsewhen (addrInvalidFlag) { 702 io.forward(i).addrInvalidSqIdx.flag := Mux(!s2_differentFlag || addrInvalidSqIdx >= s2_deqPtrExt.value, s2_deqPtrExt.flag, s2_enqPtrExt.flag) 703 io.forward(i).addrInvalidSqIdx.value := addrInvalidSqIdx 704 } .otherwise { 705 // may be store inst has been written to sbuffer already. 706 io.forward(i).addrInvalidSqIdx := RegNext(io.forward(i).uop.sqIdx) 707 } 708 io.forward(i).addrInvalid := Mux(RegNext(io.forward(i).uop.loadWaitStrict), RegNext(hasInvalidAddr), addrInvalidFlag) 709 710 // data invalid sq index 711 // make chisel happy 712 val dataInvalidMaskRegWire = Wire(UInt(StoreQueueSize.W)) 713 dataInvalidMaskRegWire := dataInvalidMaskReg 714 val dataInvalidFlag = dataInvalidMaskRegWire.orR 715 716 val dataInvalidSqIdx1 = OHToUInt(Reverse(PriorityEncoderOH(Reverse(dataInvalidMask1Reg)))) 717 val dataInvalidSqIdx2 = OHToUInt(Reverse(PriorityEncoderOH(Reverse(dataInvalidMask2Reg)))) 718 val dataInvalidSqIdx = Mux(dataInvalidMask2Reg.orR, dataInvalidSqIdx2, dataInvalidSqIdx1) 719 720 when (dataInvalidFlag) { 721 io.forward(i).dataInvalidSqIdx.flag := Mux(!s2_differentFlag || dataInvalidSqIdx >= s2_deqPtrExt.value, s2_deqPtrExt.flag, s2_enqPtrExt.flag) 722 io.forward(i).dataInvalidSqIdx.value := dataInvalidSqIdx 723 } .otherwise { 724 // may be store inst has been written to sbuffer already. 725 io.forward(i).dataInvalidSqIdx := RegNext(io.forward(i).uop.sqIdx) 726 } 727 } 728 729 /** 730 * Memory mapped IO / other uncached operations 731 * 732 * States: 733 * (1) writeback from store units: mark as pending 734 * (2) when they reach ROB's head, they can be sent to uncache channel 735 * (3) response from uncache channel: mark as datavalidmask.wen 736 * (4) writeback to ROB (and other units): mark as writebacked 737 * (5) ROB commits the instruction: same as normal instructions 738 */ 739 //(2) when they reach ROB's head, they can be sent to uncache channel 740 // TODO: CAN NOT deal with vector mmio now! 741 val s_idle :: s_req :: s_resp :: s_wb :: s_wait :: Nil = Enum(5) 742 val uncacheState = RegInit(s_idle) 743 val uncacheUop = Reg(new DynInst) 744 switch(uncacheState) { 745 is(s_idle) { 746 when(RegNext(io.rob.pendingst && uop(deqPtr).robIdx === io.rob.pendingPtr && pending(deqPtr) && allocated(deqPtr) && datavalid(deqPtr) && addrvalid(deqPtr))) { 747 uncacheState := s_req 748 uncacheUop := uop(deqPtr) 749 } 750 } 751 is(s_req) { 752 when (io.uncache.req.fire) { 753 when (io.uncacheOutstanding) { 754 uncacheState := s_wb 755 } .otherwise { 756 uncacheState := s_resp 757 } 758 } 759 } 760 is(s_resp) { 761 when(io.uncache.resp.fire) { 762 uncacheState := s_wb 763 764 when (io.uncache.resp.bits.nderr) { 765 uop(deqPtr).exceptionVec(storeAccessFault) := true.B 766 } 767 } 768 } 769 is(s_wb) { 770 when (io.mmioStout.fire || io.vecmmioStout.fire) { 771 uncacheState := s_wait 772 } 773 } 774 is(s_wait) { 775 // A MMIO store can always move cmtPtrExt as it must be ROB head 776 when(scommit > 0.U) { 777 uncacheState := s_idle // ready for next mmio 778 } 779 } 780 } 781 io.uncache.req.valid := uncacheState === s_req 782 783 io.uncache.req.bits := DontCare 784 io.uncache.req.bits.cmd := MemoryOpConstants.M_XWR 785 io.uncache.req.bits.addr := paddrModule.io.rdata(0) // data(deqPtr) -> rdata(0) 786 io.uncache.req.bits.data := shiftDataToLow(paddrModule.io.rdata(0), dataModule.io.rdata(0).data) 787 io.uncache.req.bits.mask := shiftMaskToLow(paddrModule.io.rdata(0), dataModule.io.rdata(0).mask) 788 789 // CBO op type check can be delayed for 1 cycle, 790 // as uncache op will not start in s_idle 791 val cbo_mmio_addr = paddrModule.io.rdata(0) >> 2 << 2 // clear lowest 2 bits for op 792 val cbo_mmio_op = 0.U //TODO 793 val cbo_mmio_data = cbo_mmio_addr | cbo_mmio_op 794 when(RegNext(LSUOpType.isCbo(uop(deqPtr).fuOpType))){ 795 io.uncache.req.bits.addr := DontCare // TODO 796 io.uncache.req.bits.data := paddrModule.io.rdata(0) 797 io.uncache.req.bits.mask := DontCare // TODO 798 } 799 800 io.uncache.req.bits.atomic := atomic(RegNext(rdataPtrExtNext(0)).value) 801 802 when(io.uncache.req.fire){ 803 // mmio store should not be committed until uncache req is sent 804 pending(deqPtr) := false.B 805 806 XSDebug( 807 p"uncache req: pc ${Hexadecimal(uop(deqPtr).pc)} " + 808 p"addr ${Hexadecimal(io.uncache.req.bits.addr)} " + 809 p"data ${Hexadecimal(io.uncache.req.bits.data)} " + 810 p"op ${Hexadecimal(io.uncache.req.bits.cmd)} " + 811 p"mask ${Hexadecimal(io.uncache.req.bits.mask)}\n" 812 ) 813 } 814 815 // (3) response from uncache channel: mark as datavalid 816 io.uncache.resp.ready := true.B 817 818 // (4) scalar store: writeback to ROB (and other units): mark as writebacked 819 io.mmioStout.valid := uncacheState === s_wb && !isVec(deqPtr) 820 io.mmioStout.bits.uop := uncacheUop 821 io.mmioStout.bits.uop.sqIdx := deqPtrExt(0) 822 io.mmioStout.bits.data := shiftDataToLow(paddrModule.io.rdata(0), dataModule.io.rdata(0).data) // dataModule.io.rdata.read(deqPtr) 823 io.mmioStout.bits.debug.isMMIO := true.B 824 io.mmioStout.bits.debug.paddr := DontCare 825 io.mmioStout.bits.debug.isPerfCnt := false.B 826 io.mmioStout.bits.debug.vaddr := DontCare 827 // Remove MMIO inst from store queue after MMIO request is being sent 828 // That inst will be traced by uncache state machine 829 when (io.mmioStout.fire) { 830 allocated(deqPtr) := false.B 831 } 832 833 // (4) or vector store: 834 // TODO: implement it! 835 io.vecmmioStout := DontCare 836 io.vecmmioStout.valid := uncacheState === s_wb && isVec(deqPtr) 837 io.vecmmioStout.bits.uop := uop(deqPtr) 838 io.vecmmioStout.bits.uop.sqIdx := deqPtrExt(0) 839 io.vecmmioStout.bits.data := shiftDataToLow(paddrModule.io.rdata(0), dataModule.io.rdata(0).data) // dataModule.io.rdata.read(deqPtr) 840 io.vecmmioStout.bits.debug.isMMIO := true.B 841 io.vecmmioStout.bits.debug.paddr := DontCare 842 io.vecmmioStout.bits.debug.isPerfCnt := false.B 843 io.vecmmioStout.bits.debug.vaddr := DontCare 844 // Remove MMIO inst from store queue after MMIO request is being sent 845 // That inst will be traced by uncache state machine 846 when (io.vecmmioStout.fire) { 847 allocated(deqPtr) := false.B 848 } 849 850 /** 851 * ROB commits store instructions (mark them as committed) 852 * 853 * (1) When store commits, mark it as committed. 854 * (2) They will not be cancelled and can be sent to lower level. 855 */ 856 XSError(uncacheState =/= s_idle && uncacheState =/= s_wait && commitCount > 0.U, 857 "should not commit instruction when MMIO has not been finished\n") 858 859 val commitVec = WireInit(VecInit(Seq.fill(CommitWidth)(false.B))) 860 val needCancel = Wire(Vec(StoreQueueSize, Bool())) // Will be assigned later 861 dontTouch(commitVec) 862 // TODO: Deal with vector store mmio 863 for (i <- 0 until CommitWidth) { 864 when (allocated(cmtPtrExt(i).value) && isNotAfter(uop(cmtPtrExt(i).value).robIdx, RegNext(io.rob.pendingPtr)) && !needCancel(cmtPtrExt(i).value) && (!waitStoreS2(cmtPtrExt(i).value) || isVec(cmtPtrExt(i).value))) { 865 if (i == 0){ 866 // TODO: fixme for vector mmio 867 when ((uncacheState === s_idle) || (uncacheState === s_wait && scommit > 0.U)){ 868 when ((isVec(cmtPtrExt(i).value) && vecMbCommit(cmtPtrExt(i).value)) || !isVec(cmtPtrExt(i).value)) { 869 committed(cmtPtrExt(0).value) := true.B 870 commitVec(0) := true.B 871 } 872 } 873 } else { 874 when ((isVec(cmtPtrExt(i).value) && vecMbCommit(cmtPtrExt(i).value)) || !isVec(cmtPtrExt(i).value)) { 875 committed(cmtPtrExt(i).value) := commitVec(i - 1) || committed(cmtPtrExt(i).value) 876 commitVec(i) := commitVec(i - 1) 877 } 878 } 879 } 880 } 881 882 commitCount := PopCount(commitVec) 883 cmtPtrExt := cmtPtrExt.map(_ + commitCount) 884 885 // committed stores will not be cancelled and can be sent to lower level. 886 // remove retired insts from sq, add retired store to sbuffer 887 888 // Read data from data module 889 // As store queue grows larger and larger, time needed to read data from data 890 // module keeps growing higher. Now we give data read a whole cycle. 891 for (i <- 0 until EnsbufferWidth) { 892 val ptr = rdataPtrExt(i).value 893 val mmioStall = if(i == 0) mmio(rdataPtrExt(0).value) else (mmio(rdataPtrExt(i).value) || mmio(rdataPtrExt(i-1).value)) 894 val exceptionValid = if(i == 0) hasException(rdataPtrExt(0).value) else { 895 hasException(rdataPtrExt(i).value) || (hasException(rdataPtrExt(i-1).value) && uop(rdataPtrExt(i).value).robIdx === uop(rdataPtrExt(i-1).value).robIdx) 896 } 897 // Vector instructions that prevent triggered exceptions from being written to the 'databuffer'. 898 val vecHasExceptionFlagValid = vecExceptionFlag.valid && isVec(ptr) && vecExceptionFlag.bits.robIdx === uop(ptr).robIdx 899 dataBuffer.io.enq(i).valid := allocated(ptr) && committed(ptr) && ((!isVec(ptr) && (allvalid(ptr) || hasException(ptr))) || vecMbCommit(ptr)) && !mmioStall 900 // Note that store data/addr should both be valid after store's commit 901 assert(!dataBuffer.io.enq(i).valid || allvalid(ptr) || (allocated(ptr) && vecMbCommit(ptr))) 902 dataBuffer.io.enq(i).bits.addr := paddrModule.io.rdata(i) 903 dataBuffer.io.enq(i).bits.vaddr := vaddrModule.io.rdata(i) 904 dataBuffer.io.enq(i).bits.data := dataModule.io.rdata(i).data 905 dataBuffer.io.enq(i).bits.mask := dataModule.io.rdata(i).mask 906 dataBuffer.io.enq(i).bits.wline := paddrModule.io.rlineflag(i) 907 dataBuffer.io.enq(i).bits.sqPtr := rdataPtrExt(i) 908 dataBuffer.io.enq(i).bits.prefetch := prefetch(ptr) 909 // when scalar has exception, will also not write into sbuffer 910 dataBuffer.io.enq(i).bits.vecValid := (!isVec(ptr) || vecDataValid(ptr)) && !exceptionValid && !vecHasExceptionFlagValid 911// dataBuffer.io.enq(i).bits.vecValid := (!isVec(ptr) || vecDataValid(ptr)) && !hasException(ptr) 912 } 913 914 // Send data stored in sbufferReqBitsReg to sbuffer 915 for (i <- 0 until EnsbufferWidth) { 916 io.sbuffer(i).valid := dataBuffer.io.deq(i).valid 917 dataBuffer.io.deq(i).ready := io.sbuffer(i).ready 918 // Write line request should have all 1 mask 919 assert(!(io.sbuffer(i).valid && io.sbuffer(i).bits.wline && io.sbuffer(i).bits.vecValid && !io.sbuffer(i).bits.mask.andR)) 920 io.sbuffer(i).bits := DontCare 921 io.sbuffer(i).bits.cmd := MemoryOpConstants.M_XWR 922 io.sbuffer(i).bits.addr := dataBuffer.io.deq(i).bits.addr 923 io.sbuffer(i).bits.vaddr := dataBuffer.io.deq(i).bits.vaddr 924 io.sbuffer(i).bits.data := dataBuffer.io.deq(i).bits.data 925 io.sbuffer(i).bits.mask := dataBuffer.io.deq(i).bits.mask 926 io.sbuffer(i).bits.wline := dataBuffer.io.deq(i).bits.wline && dataBuffer.io.deq(i).bits.vecValid 927 io.sbuffer(i).bits.prefetch := dataBuffer.io.deq(i).bits.prefetch 928 io.sbuffer(i).bits.vecValid := dataBuffer.io.deq(i).bits.vecValid 929 // io.sbuffer(i).fire is RegNexted, as sbuffer data write takes 2 cycles. 930 // Before data write finish, sbuffer is unable to provide store to load 931 // forward data. As an workaround, deqPtrExt and allocated flag update 932 // is delayed so that load can get the right data from store queue. 933 val ptr = dataBuffer.io.deq(i).bits.sqPtr.value 934 when (RegNext(io.sbuffer(i).fire)) { 935 allocated(RegEnable(ptr, io.sbuffer(i).fire)) := false.B 936 XSDebug("sbuffer "+i+" fire: ptr %d\n", ptr) 937 } 938 } 939 940 // All vector instruction uop normally dequeue, but the Uop after the exception is raised does not write to the 'sbuffer'. 941 // Flags are used to record whether there are any exceptions when the queue is displayed. 942 // This is determined each time a write is made to the 'databuffer', prevent subsequent uop of the same instruction from writing to the 'dataBuffer'. 943 val vecCommitHasException = (0 until EnsbufferWidth).map{ i => 944 val ptr = rdataPtrExt(i).value 945 val mmioStall = if(i == 0) mmio(rdataPtrExt(0).value) else (mmio(rdataPtrExt(i).value) || mmio(rdataPtrExt(i-1).value)) 946 val exceptionVliad = allocated(ptr) && committed(ptr) && vecMbCommit(ptr) && !mmioStall && isVec(ptr) && vecDataValid(ptr) && hasException(ptr) 947 (exceptionVliad, uop(ptr)) 948 } 949 950 val vecCommitHasExceptionValid = vecCommitHasException.map(_._1) 951 val vecCommitHasExceptionUop = vecCommitHasException.map(_._2) 952 val vecCommitHasExceptionValidOR = vecCommitHasExceptionValid.reduce(_ || _) 953 // Just select the last Uop tah has an exception. 954 val vecCommitHasExceptionSelectUop = ParallelPosteriorityMux(vecCommitHasExceptionValid, vecCommitHasExceptionUop) 955 // If the last Uop with an exception is the LastUop of this instruction, the flag is not set. 956 val vecCommitLastUop = vecCommitHasExceptionSelectUop.lastUop 957 958 val vecExceptionFlagCancel = (0 until EnsbufferWidth).map{ i => 959 val ptr = rdataPtrExt(i).value 960 val mmioStall = if(i == 0) mmio(rdataPtrExt(0).value) else (mmio(rdataPtrExt(i).value) || mmio(rdataPtrExt(i-1).value)) 961 val vecLastUopCommit = uop(ptr).lastUop && (uop(ptr).robIdx === vecExceptionFlag.bits.robIdx) && 962 allocated(ptr) && committed(ptr) && vecMbCommit(ptr) && !mmioStall && isVec(ptr) && vecDataValid(ptr) 963 vecLastUopCommit 964 }.reduce(_ || _) 965 966 // When a LastUop with an exception instruction is commited, clear the flag. 967 when(!vecExceptionFlag.valid && vecCommitHasExceptionValidOR && !vecCommitLastUop) { 968 vecExceptionFlag.valid := true.B 969 vecExceptionFlag.bits := vecCommitHasExceptionSelectUop 970 }.elsewhen(vecExceptionFlag.valid && vecExceptionFlagCancel) { 971 vecExceptionFlag.valid := false.B 972 vecExceptionFlag.bits := 0.U.asTypeOf(new DynInst) 973 } 974 975 // A dumb defensive code. The flag should not be placed for a long period of time. 976 // A relatively large timeout period, not have any special meaning. 977 // If an assert appears and you confirm that it is not a Bug: Increase the timeout or remove the assert. 978 TimeOutAssert(vecExceptionFlag.valid, 3000, "vecExceptionFlag timeout, Plase check for bugs or add timeouts.") 979 980 // Initialize when unenabled difftest. 981 for (i <- 0 until EnsbufferWidth) { 982 io.sbufferVecDifftestInfo(i) := DontCare 983 } 984 // Consistent with the logic above. 985 // Only the vector store difftest required signal is separated from the rtl code. 986 if (env.EnableDifftest) { 987 for (i <- 0 until EnsbufferWidth) { 988 val ptr = rdataPtrExt(i).value 989 val mmioStall = if(i == 0) mmio(rdataPtrExt(0).value) else (mmio(rdataPtrExt(i).value) || mmio(rdataPtrExt(i-1).value)) 990 difftestBuffer.get.io.enq(i).valid := allocated(ptr) && committed(ptr) && (!isVec(ptr) || vecMbCommit(ptr)) && !mmioStall 991 difftestBuffer.get.io.enq(i).bits := uop(ptr) 992 } 993 for (i <- 0 until EnsbufferWidth) { 994 io.sbufferVecDifftestInfo(i).valid := difftestBuffer.get.io.deq(i).valid 995 difftestBuffer.get.io.deq(i).ready := io.sbufferVecDifftestInfo(i).ready 996 997 io.sbufferVecDifftestInfo(i).bits := difftestBuffer.get.io.deq(i).bits 998 } 999 } 1000 1001 (1 until EnsbufferWidth).foreach(i => when(io.sbuffer(i).fire) { assert(io.sbuffer(i - 1).fire) }) 1002 if (coreParams.dcacheParametersOpt.isEmpty) { 1003 for (i <- 0 until EnsbufferWidth) { 1004 val ptr = deqPtrExt(i).value 1005 val ram = DifftestMem(64L * 1024 * 1024 * 1024, 8) 1006 val wen = allocated(ptr) && committed(ptr) && !mmio(ptr) 1007 val waddr = ((paddrModule.io.rdata(i) - "h80000000".U) >> 3).asUInt 1008 val wdata = Mux(paddrModule.io.rdata(i)(3), dataModule.io.rdata(i).data(127, 64), dataModule.io.rdata(i).data(63, 0)) 1009 val wmask = Mux(paddrModule.io.rdata(i)(3), dataModule.io.rdata(i).mask(15, 8), dataModule.io.rdata(i).mask(7, 0)) 1010 when (wen) { 1011 ram.write(waddr, wdata.asTypeOf(Vec(8, UInt(8.W))), wmask.asBools) 1012 } 1013 } 1014 } 1015 1016 // Read vaddr for mem exception 1017 io.exceptionAddr.vaddr := exceptionBuffer.io.exceptionAddr.vaddr 1018 io.exceptionAddr.gpaddr := exceptionBuffer.io.exceptionAddr.gpaddr 1019 io.exceptionAddr.vstart := exceptionBuffer.io.exceptionAddr.vstart 1020 io.exceptionAddr.vl := exceptionBuffer.io.exceptionAddr.vl 1021 1022 // vector commit or replay from 1023 val vecCommittmp = Wire(Vec(StoreQueueSize, Vec(VecStorePipelineWidth, Bool()))) 1024 val vecCommit = Wire(Vec(StoreQueueSize, Bool())) 1025 for (i <- 0 until StoreQueueSize) { 1026 val fbk = io.vecFeedback 1027 for (j <- 0 until VecStorePipelineWidth) { 1028 vecCommittmp(i)(j) := fbk(j).valid && (fbk(j).bits.isCommit || fbk(j).bits.isFlush) && 1029 uop(i).robIdx === fbk(j).bits.robidx && uop(i).uopIdx === fbk(j).bits.uopidx && allocated(i) 1030 } 1031 vecCommit(i) := vecCommittmp(i).reduce(_ || _) 1032 1033 when (vecCommit(i)) { 1034 vecMbCommit(i) := true.B 1035 } 1036 } 1037 1038 // misprediction recovery / exception redirect 1039 // invalidate sq term using robIdx 1040 for (i <- 0 until StoreQueueSize) { 1041 needCancel(i) := uop(i).robIdx.needFlush(io.brqRedirect) && allocated(i) && !committed(i) && 1042 (!isVec(i) || !(uop(i).robIdx === io.brqRedirect.bits.robIdx)) 1043 when (needCancel(i)) { 1044 allocated(i) := false.B 1045 } 1046 } 1047 1048 /** 1049* update pointers 1050**/ 1051 val enqCancelValid = canEnqueue.zip(io.enq.req).map{case (v , x) => 1052 v && x.bits.robIdx.needFlush(io.brqRedirect) 1053 } 1054 val enqCancelNum = enqCancelValid.zip(io.enq.req).map{case (v, req) => 1055 Mux(v, req.bits.numLsElem, 0.U) 1056 } 1057 val lastEnqCancel = RegNext(enqCancelNum.reduce(_ + _)) // 1 cycle after redirect 1058 1059 val lastCycleCancelCount = PopCount(RegNext(needCancel)) // 1 cycle after redirect 1060 val lastCycleRedirect = RegNext(io.brqRedirect.valid) // 1 cycle after redirect 1061 val enqNumber = validVStoreFlow.reduce(_ + _) 1062 1063 val lastlastCycleRedirect=RegNext(lastCycleRedirect)// 2 cycle after redirect 1064 val redirectCancelCount = RegEnable(lastCycleCancelCount + lastEnqCancel, lastCycleRedirect) // 2 cycle after redirect 1065 1066 when (lastlastCycleRedirect) { 1067 // we recover the pointers in 2 cycle after redirect for better timing 1068 enqPtrExt := VecInit(enqPtrExt.map(_ - redirectCancelCount)) 1069 }.otherwise { 1070 // lastCycleRedirect.valid or nornal case 1071 // when lastCycleRedirect.valid, enqNumber === 0.U, enqPtrExt will not change 1072 enqPtrExt := VecInit(enqPtrExt.map(_ + enqNumber)) 1073 } 1074 assert(!(lastCycleRedirect && enqNumber =/= 0.U)) 1075 1076 deqPtrExt := deqPtrExtNext 1077 rdataPtrExt := rdataPtrExtNext 1078 1079 // val dequeueCount = Mux(io.sbuffer(1).fire, 2.U, Mux(io.sbuffer(0).fire || io.mmioStout.fire, 1.U, 0.U)) 1080 1081 // If redirect at T0, sqCancelCnt is at T2 1082 io.sqCancelCnt := redirectCancelCount 1083 val ForceWriteUpper = Wire(UInt(log2Up(StoreQueueSize + 1).W)) 1084 ForceWriteUpper := Constantin.createRecord(s"ForceWriteUpper_${p(XSCoreParamsKey).HartId}", initValue = 60) 1085 val ForceWriteLower = Wire(UInt(log2Up(StoreQueueSize + 1).W)) 1086 ForceWriteLower := Constantin.createRecord(s"ForceWriteLower_${p(XSCoreParamsKey).HartId}", initValue = 55) 1087 1088 val valid_cnt = PopCount(allocated) 1089 io.force_write := RegNext(Mux(valid_cnt >= ForceWriteUpper, true.B, valid_cnt >= ForceWriteLower && io.force_write), init = false.B) 1090 1091 // io.sqempty will be used by sbuffer 1092 // We delay it for 1 cycle for better timing 1093 // When sbuffer need to check if it is empty, the pipeline is blocked, which means delay io.sqempty 1094 // for 1 cycle will also promise that sq is empty in that cycle 1095 io.sqEmpty := RegNext( 1096 enqPtrExt(0).value === deqPtrExt(0).value && 1097 enqPtrExt(0).flag === deqPtrExt(0).flag 1098 ) 1099 // perf counter 1100 QueuePerf(StoreQueueSize, validCount, !allowEnqueue) 1101 val vecValidVec = WireInit(VecInit((0 until StoreQueueSize).map(i => allocated(i) && isVec(i)))) 1102 QueuePerf(StoreQueueSize, PopCount(vecValidVec), !allowEnqueue) 1103 io.sqFull := !allowEnqueue 1104 XSPerfAccumulate("mmioCycle", uncacheState =/= s_idle) // lq is busy dealing with uncache req 1105 XSPerfAccumulate("mmioCnt", io.uncache.req.fire) 1106 XSPerfAccumulate("mmio_wb_success", io.mmioStout.fire || io.vecmmioStout.fire) 1107 XSPerfAccumulate("mmio_wb_blocked", (io.mmioStout.valid && !io.mmioStout.ready) || (io.vecmmioStout.valid && !io.vecmmioStout.ready)) 1108 XSPerfAccumulate("validEntryCnt", distanceBetween(enqPtrExt(0), deqPtrExt(0))) 1109 XSPerfAccumulate("cmtEntryCnt", distanceBetween(cmtPtrExt(0), deqPtrExt(0))) 1110 XSPerfAccumulate("nCmtEntryCnt", distanceBetween(enqPtrExt(0), cmtPtrExt(0))) 1111 1112 val perfValidCount = distanceBetween(enqPtrExt(0), deqPtrExt(0)) 1113 val perfEvents = Seq( 1114 ("mmioCycle ", uncacheState =/= s_idle), 1115 ("mmioCnt ", io.uncache.req.fire), 1116 ("mmio_wb_success", io.mmioStout.fire || io.vecmmioStout.fire), 1117 ("mmio_wb_blocked", (io.mmioStout.valid && !io.mmioStout.ready) || (io.vecmmioStout.valid && !io.vecmmioStout.ready)), 1118 ("stq_1_4_valid ", (perfValidCount < (StoreQueueSize.U/4.U))), 1119 ("stq_2_4_valid ", (perfValidCount > (StoreQueueSize.U/4.U)) & (perfValidCount <= (StoreQueueSize.U/2.U))), 1120 ("stq_3_4_valid ", (perfValidCount > (StoreQueueSize.U/2.U)) & (perfValidCount <= (StoreQueueSize.U*3.U/4.U))), 1121 ("stq_4_4_valid ", (perfValidCount > (StoreQueueSize.U*3.U/4.U))), 1122 ) 1123 generatePerfEvent() 1124 1125 // debug info 1126 XSDebug("enqPtrExt %d:%d deqPtrExt %d:%d\n", enqPtrExt(0).flag, enqPtr, deqPtrExt(0).flag, deqPtr) 1127 1128 def PrintFlag(flag: Bool, name: String): Unit = { 1129 when(flag) { 1130 XSDebug(false, true.B, name) 1131 }.otherwise { 1132 XSDebug(false, true.B, " ") 1133 } 1134 } 1135 1136 for (i <- 0 until StoreQueueSize) { 1137 XSDebug(i + ": pc %x va %x pa %x data %x ", 1138 uop(i).pc, 1139 debug_vaddr(i), 1140 debug_paddr(i), 1141 debug_data(i) 1142 ) 1143 PrintFlag(allocated(i), "a") 1144 PrintFlag(allocated(i) && addrvalid(i), "a") 1145 PrintFlag(allocated(i) && datavalid(i), "d") 1146 PrintFlag(allocated(i) && committed(i), "c") 1147 PrintFlag(allocated(i) && pending(i), "p") 1148 PrintFlag(allocated(i) && mmio(i), "m") 1149 XSDebug(false, true.B, "\n") 1150 } 1151 1152} 1153