1/*************************************************************************************** 2* Copyright (c) 2020-2021 Institute of Computing Technology, Chinese Academy of Sciences 3* Copyright (c) 2020-2021 Peng Cheng Laboratory 4* 5* XiangShan is licensed under Mulan PSL v2. 6* You can use this software according to the terms and conditions of the Mulan PSL v2. 7* You may obtain a copy of Mulan PSL v2 at: 8* http://license.coscl.org.cn/MulanPSL2 9* 10* THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND, 11* EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT, 12* MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE. 13* 14* See the Mulan PSL v2 for more details. 15***************************************************************************************/ 16 17package xiangshan.mem 18 19import chipsalliance.rocketchip.config.Parameters 20import chisel3._ 21import chisel3.util._ 22import utils._ 23import utility._ 24import xiangshan._ 25import xiangshan.cache._ 26import xiangshan.cache.{DCacheWordIO, DCacheLineIO, MemoryOpConstants} 27import xiangshan.backend.rob.{RobLsqIO, RobPtr} 28import difftest._ 29import device.RAMHelper 30 31class SqPtr(implicit p: Parameters) extends CircularQueuePtr[SqPtr]( 32 p => p(XSCoreParamsKey).StoreQueueSize 33){ 34} 35 36object SqPtr { 37 def apply(f: Bool, v: UInt)(implicit p: Parameters): SqPtr = { 38 val ptr = Wire(new SqPtr) 39 ptr.flag := f 40 ptr.value := v 41 ptr 42 } 43} 44 45class SqEnqIO(implicit p: Parameters) extends XSBundle { 46 val canAccept = Output(Bool()) 47 val lqCanAccept = Input(Bool()) 48 val needAlloc = Vec(exuParameters.LsExuCnt, Input(Bool())) 49 val req = Vec(exuParameters.LsExuCnt, Flipped(ValidIO(new MicroOp))) 50 val resp = Vec(exuParameters.LsExuCnt, Output(new SqPtr)) 51} 52 53class DataBufferEntry (implicit p: Parameters) extends DCacheBundle { 54 val addr = UInt(PAddrBits.W) 55 val vaddr = UInt(VAddrBits.W) 56 val data = UInt(DataBits.W) 57 val mask = UInt((DataBits/8).W) 58 val wline = Bool() 59 val sqPtr = new SqPtr 60} 61 62// Store Queue 63class StoreQueue(implicit p: Parameters) extends XSModule 64 with HasDCacheParameters with HasCircularQueuePtrHelper with HasPerfEvents { 65 val io = IO(new Bundle() { 66 val hartId = Input(UInt(8.W)) 67 val enq = new SqEnqIO 68 val brqRedirect = Flipped(ValidIO(new Redirect)) 69 val storeAddrIn = Vec(StorePipelineWidth, Flipped(Valid(new LsPipelineBundle))) // store addr, data is not included 70 val storeAddrInRe = Vec(StorePipelineWidth, Input(new LsPipelineBundle())) // store more mmio and exception 71 val storeDataIn = Vec(StorePipelineWidth, Flipped(Valid(new ExuOutput))) // store data, send to sq from rs 72 val storeMaskIn = Vec(StorePipelineWidth, Flipped(Valid(new StoreMaskBundle))) // store mask, send to sq from rs 73 val sbuffer = Vec(EnsbufferWidth, Decoupled(new DCacheWordReqWithVaddr)) // write committed store to sbuffer 74 val uncacheOutstanding = Input(Bool()) 75 val mmioStout = DecoupledIO(new ExuOutput) // writeback uncached store 76 val forward = Vec(LoadPipelineWidth, Flipped(new PipeLoadForwardQueryIO)) 77 val rob = Flipped(new RobLsqIO) 78 val uncache = new UncacheWordIO 79 // val refill = Flipped(Valid(new DCacheLineReq )) 80 val exceptionAddr = new ExceptionAddrIO 81 val sqEmpty = Output(Bool()) 82 val stAddrReadySqPtr = Output(new SqPtr) 83 val stAddrReadyVec = Output(Vec(StoreQueueSize, Bool())) 84 val stDataReadySqPtr = Output(new SqPtr) 85 val stDataReadyVec = Output(Vec(StoreQueueSize, Bool())) 86 val stIssuePtr = Output(new SqPtr) 87 val sqDeqPtr = Output(new SqPtr) 88 val sqFull = Output(Bool()) 89 val sqCancelCnt = Output(UInt(log2Up(StoreQueueSize + 1).W)) 90 val sqDeq = Output(UInt(log2Ceil(EnsbufferWidth + 1).W)) 91 }) 92 93 println("StoreQueue: size:" + StoreQueueSize) 94 95 // data modules 96 val uop = Reg(Vec(StoreQueueSize, new MicroOp)) 97 // val data = Reg(Vec(StoreQueueSize, new LsqEntry)) 98 val dataModule = Module(new SQDataModule( 99 numEntries = StoreQueueSize, 100 numRead = EnsbufferWidth, 101 numWrite = StorePipelineWidth, 102 numForward = StorePipelineWidth 103 )) 104 dataModule.io := DontCare 105 val paddrModule = Module(new SQAddrModule( 106 dataWidth = PAddrBits, 107 numEntries = StoreQueueSize, 108 numRead = EnsbufferWidth, 109 numWrite = StorePipelineWidth, 110 numForward = StorePipelineWidth 111 )) 112 paddrModule.io := DontCare 113 val vaddrModule = Module(new SQAddrModule( 114 dataWidth = VAddrBits, 115 numEntries = StoreQueueSize, 116 numRead = EnsbufferWidth + 1, // sbuffer + badvaddr 1 (TODO) 117 numWrite = StorePipelineWidth, 118 numForward = StorePipelineWidth 119 )) 120 vaddrModule.io := DontCare 121 val dataBuffer = Module(new DatamoduleResultBuffer(new DataBufferEntry)) 122 val debug_paddr = Reg(Vec(StoreQueueSize, UInt((PAddrBits).W))) 123 val debug_vaddr = Reg(Vec(StoreQueueSize, UInt((VAddrBits).W))) 124 val debug_data = Reg(Vec(StoreQueueSize, UInt((XLEN).W))) 125 126 // state & misc 127 val allocated = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // sq entry has been allocated 128 val addrvalid = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // non-mmio addr is valid 129 val datavalid = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // non-mmio data is valid 130 val allvalid = VecInit((0 until StoreQueueSize).map(i => addrvalid(i) && datavalid(i))) // non-mmio data & addr is valid 131 val committed = Reg(Vec(StoreQueueSize, Bool())) // inst has been committed by rob 132 val pending = Reg(Vec(StoreQueueSize, Bool())) // mmio pending: inst is an mmio inst, it will not be executed until it reachs the end of rob 133 val mmio = Reg(Vec(StoreQueueSize, Bool())) // mmio: inst is an mmio inst 134 val atomic = Reg(Vec(StoreQueueSize, Bool())) 135 136 // ptr 137 val enqPtrExt = RegInit(VecInit((0 until io.enq.req.length).map(_.U.asTypeOf(new SqPtr)))) 138 val rdataPtrExt = RegInit(VecInit((0 until EnsbufferWidth).map(_.U.asTypeOf(new SqPtr)))) 139 val deqPtrExt = RegInit(VecInit((0 until EnsbufferWidth).map(_.U.asTypeOf(new SqPtr)))) 140 val cmtPtrExt = RegInit(VecInit((0 until CommitWidth).map(_.U.asTypeOf(new SqPtr)))) 141 val addrReadyPtrExt = RegInit(0.U.asTypeOf(new SqPtr)) 142 val dataReadyPtrExt = RegInit(0.U.asTypeOf(new SqPtr)) 143 val validCounter = RegInit(0.U(log2Ceil(VirtualLoadQueueSize + 1).W)) 144 145 val enqPtr = enqPtrExt(0).value 146 val deqPtr = deqPtrExt(0).value 147 val cmtPtr = cmtPtrExt(0).value 148 149 val validCount = distanceBetween(enqPtrExt(0), deqPtrExt(0)) 150 val allowEnqueue = validCount <= (StoreQueueSize - StorePipelineWidth).U 151 152 val deqMask = UIntToMask(deqPtr, StoreQueueSize) 153 val enqMask = UIntToMask(enqPtr, StoreQueueSize) 154 155 val commitCount = RegNext(io.rob.scommit) 156 157 // store can be committed by ROB 158 io.rob.mmio := DontCare 159 io.rob.uop := DontCare 160 161 // Read dataModule 162 assert(EnsbufferWidth <= 2) 163 // rdataPtrExtNext and rdataPtrExtNext+1 entry will be read from dataModule 164 val rdataPtrExtNext = WireInit(Mux(dataBuffer.io.enq(1).fire(), 165 VecInit(rdataPtrExt.map(_ + 2.U)), 166 Mux(dataBuffer.io.enq(0).fire() || io.mmioStout.fire(), 167 VecInit(rdataPtrExt.map(_ + 1.U)), 168 rdataPtrExt 169 ) 170 )) 171 172 // deqPtrExtNext traces which inst is about to leave store queue 173 // 174 // io.sbuffer(i).fire() is RegNexted, as sbuffer data write takes 2 cycles. 175 // Before data write finish, sbuffer is unable to provide store to load 176 // forward data. As an workaround, deqPtrExt and allocated flag update 177 // is delayed so that load can get the right data from store queue. 178 // 179 // Modify deqPtrExtNext and io.sqDeq with care! 180 val deqPtrExtNext = Mux(RegNext(io.sbuffer(1).fire()), 181 VecInit(deqPtrExt.map(_ + 2.U)), 182 Mux(RegNext(io.sbuffer(0).fire()) || io.mmioStout.fire(), 183 VecInit(deqPtrExt.map(_ + 1.U)), 184 deqPtrExt 185 ) 186 ) 187 io.sqDeq := RegNext(Mux(RegNext(io.sbuffer(1).fire()), 2.U, 188 Mux(RegNext(io.sbuffer(0).fire()) || io.mmioStout.fire(), 1.U, 0.U) 189 )) 190 assert(!RegNext(RegNext(io.sbuffer(0).fire()) && io.mmioStout.fire())) 191 192 for (i <- 0 until EnsbufferWidth) { 193 dataModule.io.raddr(i) := rdataPtrExtNext(i).value 194 paddrModule.io.raddr(i) := rdataPtrExtNext(i).value 195 vaddrModule.io.raddr(i) := rdataPtrExtNext(i).value 196 } 197 198 // no inst will be committed 1 cycle before tval update 199 vaddrModule.io.raddr(EnsbufferWidth) := (cmtPtrExt(0) + commitCount).value 200 201 /** 202 * Enqueue at dispatch 203 * 204 * Currently, StoreQueue only allows enqueue when #emptyEntries > EnqWidth 205 */ 206 io.enq.canAccept := allowEnqueue 207 val canEnqueue = io.enq.req.map(_.valid) 208 val enqCancel = io.enq.req.map(_.bits.robIdx.needFlush(io.brqRedirect)) 209 for (i <- 0 until io.enq.req.length) { 210 val offset = if (i == 0) 0.U else PopCount(io.enq.needAlloc.take(i)) 211 val sqIdx = enqPtrExt(offset) 212 val index = io.enq.req(i).bits.sqIdx.value 213 when (canEnqueue(i) && !enqCancel(i)) { 214 uop(index) := io.enq.req(i).bits 215 // NOTE: the index will be used when replay 216 uop(index).sqIdx := sqIdx 217 allocated(index) := true.B 218 datavalid(index) := false.B 219 addrvalid(index) := false.B 220 committed(index) := false.B 221 pending(index) := false.B 222 mmio(index) := false.B 223 224 XSError(!io.enq.canAccept || !io.enq.lqCanAccept, s"must accept $i\n") 225 XSError(index =/= sqIdx.value, s"must be the same entry $i\n") 226 } 227 io.enq.resp(i) := sqIdx 228 } 229 XSDebug(p"(ready, valid): ${io.enq.canAccept}, ${Binary(Cat(io.enq.req.map(_.valid)))}\n") 230 231 /** 232 * Update addr/dataReadyPtr when issue from rs 233 */ 234 // update issuePtr 235 val IssuePtrMoveStride = 4 236 require(IssuePtrMoveStride >= 2) 237 238 val addrReadyLookupVec = (0 until IssuePtrMoveStride).map(addrReadyPtrExt + _.U) 239 val addrReadyLookup = addrReadyLookupVec.map(ptr => allocated(ptr.value) && (mmio(ptr.value) || addrvalid(ptr.value)) && ptr =/= enqPtrExt(0)) 240 val nextAddrReadyPtr = addrReadyPtrExt + PriorityEncoder(VecInit(addrReadyLookup.map(!_) :+ true.B)) 241 addrReadyPtrExt := nextAddrReadyPtr 242 243 (0 until StoreQueueSize).map(i => { 244 io.stAddrReadyVec(i) := RegNext(allocated(i) && (mmio(i) || addrvalid(i))) 245 }) 246 247 when (io.brqRedirect.valid) { 248 addrReadyPtrExt := Mux( 249 isAfter(cmtPtrExt(0), deqPtrExt(0)), 250 cmtPtrExt(0), 251 deqPtrExtNext(0) // for mmio insts, deqPtr may be ahead of cmtPtr 252 ) 253 } 254 255 io.stAddrReadySqPtr := addrReadyPtrExt 256 257 // update 258 val dataReadyLookupVec = (0 until IssuePtrMoveStride).map(dataReadyPtrExt + _.U) 259 val dataReadyLookup = dataReadyLookupVec.map(ptr => allocated(ptr.value) && (mmio(ptr.value) || datavalid(ptr.value)) && ptr =/= enqPtrExt(0)) 260 val nextDataReadyPtr = dataReadyPtrExt + PriorityEncoder(VecInit(dataReadyLookup.map(!_) :+ true.B)) 261 dataReadyPtrExt := nextDataReadyPtr 262 263 (0 until StoreQueueSize).map(i => { 264 io.stDataReadyVec(i) := RegNext(allocated(i) && (mmio(i) || datavalid(i))) 265 }) 266 267 when (io.brqRedirect.valid) { 268 dataReadyPtrExt := Mux( 269 isAfter(cmtPtrExt(0), deqPtrExt(0)), 270 cmtPtrExt(0), 271 deqPtrExtNext(0) // for mmio insts, deqPtr may be ahead of cmtPtr 272 ) 273 } 274 275 io.stDataReadySqPtr := dataReadyPtrExt 276 io.stIssuePtr := enqPtrExt(0) 277 io.sqDeqPtr := deqPtrExt(0) 278 279 /** 280 * Writeback store from store units 281 * 282 * Most store instructions writeback to regfile in the previous cycle. 283 * However, 284 * (1) For an mmio instruction with exceptions, we need to mark it as addrvalid 285 * (in this way it will trigger an exception when it reaches ROB's head) 286 * instead of pending to avoid sending them to lower level. 287 * (2) For an mmio instruction without exceptions, we mark it as pending. 288 * When the instruction reaches ROB's head, StoreQueue sends it to uncache channel. 289 * Upon receiving the response, StoreQueue writes back the instruction 290 * through arbiter with store units. It will later commit as normal. 291 */ 292 293 // Write addr to sq 294 for (i <- 0 until StorePipelineWidth) { 295 paddrModule.io.wen(i) := false.B 296 vaddrModule.io.wen(i) := false.B 297 dataModule.io.mask.wen(i) := false.B 298 val stWbIndex = io.storeAddrIn(i).bits.uop.sqIdx.value 299 when (io.storeAddrIn(i).fire()) { 300 val addr_valid = !io.storeAddrIn(i).bits.miss 301 addrvalid(stWbIndex) := addr_valid //!io.storeAddrIn(i).bits.mmio 302 // pending(stWbIndex) := io.storeAddrIn(i).bits.mmio 303 304 paddrModule.io.waddr(i) := stWbIndex 305 paddrModule.io.wdata(i) := io.storeAddrIn(i).bits.paddr 306 paddrModule.io.wmask(i) := io.storeAddrIn(i).bits.mask 307 paddrModule.io.wlineflag(i) := io.storeAddrIn(i).bits.wlineflag 308 paddrModule.io.wen(i) := true.B 309 310 vaddrModule.io.waddr(i) := stWbIndex 311 vaddrModule.io.wdata(i) := io.storeAddrIn(i).bits.vaddr 312 vaddrModule.io.wmask(i) := io.storeAddrIn(i).bits.mask 313 vaddrModule.io.wlineflag(i) := io.storeAddrIn(i).bits.wlineflag 314 vaddrModule.io.wen(i) := true.B 315 316 debug_paddr(paddrModule.io.waddr(i)) := paddrModule.io.wdata(i) 317 318 // mmio(stWbIndex) := io.storeAddrIn(i).bits.mmio 319 320 uop(stWbIndex).ctrl := io.storeAddrIn(i).bits.uop.ctrl 321 uop(stWbIndex).debugInfo := io.storeAddrIn(i).bits.uop.debugInfo 322 XSInfo("store addr write to sq idx %d pc 0x%x miss:%d vaddr %x paddr %x mmio %x\n", 323 io.storeAddrIn(i).bits.uop.sqIdx.value, 324 io.storeAddrIn(i).bits.uop.cf.pc, 325 io.storeAddrIn(i).bits.miss, 326 io.storeAddrIn(i).bits.vaddr, 327 io.storeAddrIn(i).bits.paddr, 328 io.storeAddrIn(i).bits.mmio 329 ) 330 } 331 332 // re-replinish mmio, for pma/pmp will get mmio one cycle later 333 val storeAddrInFireReg = RegNext(io.storeAddrIn(i).fire() && !io.storeAddrIn(i).bits.miss) 334 val stWbIndexReg = RegNext(stWbIndex) 335 when (storeAddrInFireReg) { 336 pending(stWbIndexReg) := io.storeAddrInRe(i).mmio 337 mmio(stWbIndexReg) := io.storeAddrInRe(i).mmio 338 atomic(stWbIndexReg) := io.storeAddrInRe(i).atomic 339 } 340 341 when(vaddrModule.io.wen(i)){ 342 debug_vaddr(vaddrModule.io.waddr(i)) := vaddrModule.io.wdata(i) 343 } 344 } 345 346 // Write data to sq 347 // Now store data pipeline is actually 2 stages 348 for (i <- 0 until StorePipelineWidth) { 349 dataModule.io.data.wen(i) := false.B 350 val stWbIndex = io.storeDataIn(i).bits.uop.sqIdx.value 351 // sq data write takes 2 cycles: 352 // sq data write s0 353 when (io.storeDataIn(i).fire()) { 354 // send data write req to data module 355 dataModule.io.data.waddr(i) := stWbIndex 356 dataModule.io.data.wdata(i) := Mux(io.storeDataIn(i).bits.uop.ctrl.fuOpType === LSUOpType.cbo_zero, 357 0.U, 358 genWdata(io.storeDataIn(i).bits.data, io.storeDataIn(i).bits.uop.ctrl.fuOpType(1,0)) 359 ) 360 dataModule.io.data.wen(i) := true.B 361 362 debug_data(dataModule.io.data.waddr(i)) := dataModule.io.data.wdata(i) 363 364 XSInfo("store data write to sq idx %d pc 0x%x data %x -> %x\n", 365 io.storeDataIn(i).bits.uop.sqIdx.value, 366 io.storeDataIn(i).bits.uop.cf.pc, 367 io.storeDataIn(i).bits.data, 368 dataModule.io.data.wdata(i) 369 ) 370 } 371 // sq data write s1 372 when ( 373 RegNext(io.storeDataIn(i).fire()) 374 // && !RegNext(io.storeDataIn(i).bits.uop).robIdx.needFlush(io.brqRedirect) 375 ) { 376 datavalid(RegNext(stWbIndex)) := true.B 377 } 378 } 379 380 // Write mask to sq 381 for (i <- 0 until StorePipelineWidth) { 382 // sq mask write s0 383 when (io.storeMaskIn(i).fire()) { 384 // send data write req to data module 385 dataModule.io.mask.waddr(i) := io.storeMaskIn(i).bits.sqIdx.value 386 dataModule.io.mask.wdata(i) := io.storeMaskIn(i).bits.mask 387 dataModule.io.mask.wen(i) := true.B 388 } 389 } 390 391 /** 392 * load forward query 393 * 394 * Check store queue for instructions that is older than the load. 395 * The response will be valid at the next cycle after req. 396 */ 397 // check over all lq entries and forward data from the first matched store 398 for (i <- 0 until LoadPipelineWidth) { 399 // Compare deqPtr (deqPtr) and forward.sqIdx, we have two cases: 400 // (1) if they have the same flag, we need to check range(tail, sqIdx) 401 // (2) if they have different flags, we need to check range(tail, VirtualLoadQueueSize) and range(0, sqIdx) 402 // Forward1: Mux(same_flag, range(tail, sqIdx), range(tail, VirtualLoadQueueSize)) 403 // Forward2: Mux(same_flag, 0.U, range(0, sqIdx) ) 404 // i.e. forward1 is the target entries with the same flag bits and forward2 otherwise 405 val differentFlag = deqPtrExt(0).flag =/= io.forward(i).sqIdx.flag 406 val forwardMask = io.forward(i).sqIdxMask 407 // all addrvalid terms need to be checked 408 val addrValidVec = WireInit(VecInit((0 until StoreQueueSize).map(i => addrvalid(i) && allocated(i)))) 409 val dataValidVec = WireInit(VecInit((0 until StoreQueueSize).map(i => datavalid(i)))) 410 val allValidVec = WireInit(VecInit((0 until StoreQueueSize).map(i => addrvalid(i) && datavalid(i) && allocated(i)))) 411 412 val storeSetHitVec = 413 if (LFSTEnable) { 414 WireInit(VecInit((0 until StoreQueueSize).map(j => io.forward(i).uop.cf.loadWaitBit && uop(j).robIdx === io.forward(i).uop.cf.waitForRobIdx))) 415 } else { 416 WireInit(VecInit((0 until StoreQueueSize).map(j => uop(j).cf.storeSetHit && uop(j).cf.ssid === io.forward(i).uop.cf.ssid))) 417 } 418 419 val forwardMask1 = Mux(differentFlag, ~deqMask, deqMask ^ forwardMask) 420 val forwardMask2 = Mux(differentFlag, forwardMask, 0.U(StoreQueueSize.W)) 421 val canForward1 = forwardMask1 & allValidVec.asUInt 422 val canForward2 = forwardMask2 & allValidVec.asUInt 423 val needForward = Mux(differentFlag, ~deqMask | forwardMask, deqMask ^ forwardMask) 424 425 XSDebug(p"$i f1 ${Binary(canForward1)} f2 ${Binary(canForward2)} " + 426 p"sqIdx ${io.forward(i).sqIdx} pa ${Hexadecimal(io.forward(i).paddr)}\n" 427 ) 428 429 // do real fwd query (cam lookup in load_s1) 430 dataModule.io.needForward(i)(0) := canForward1 & vaddrModule.io.forwardMmask(i).asUInt 431 dataModule.io.needForward(i)(1) := canForward2 & vaddrModule.io.forwardMmask(i).asUInt 432 433 vaddrModule.io.forwardMdata(i) := io.forward(i).vaddr 434 vaddrModule.io.forwardDataMask(i) := io.forward(i).mask 435 paddrModule.io.forwardMdata(i) := io.forward(i).paddr 436 paddrModule.io.forwardDataMask(i) := io.forward(i).mask 437 438 439 // vaddr cam result does not equal to paddr cam result 440 // replay needed 441 // val vpmaskNotEqual = ((paddrModule.io.forwardMmask(i).asUInt ^ vaddrModule.io.forwardMmask(i).asUInt) & needForward) =/= 0.U 442 // val vaddrMatchFailed = vpmaskNotEqual && io.forward(i).valid 443 val vpmaskNotEqual = ( 444 (RegNext(paddrModule.io.forwardMmask(i).asUInt) ^ RegNext(vaddrModule.io.forwardMmask(i).asUInt)) & 445 RegNext(needForward) & 446 RegNext(addrValidVec.asUInt) 447 ) =/= 0.U 448 val vaddrMatchFailed = vpmaskNotEqual && RegNext(io.forward(i).valid) 449 when (vaddrMatchFailed) { 450 XSInfo("vaddrMatchFailed: pc %x pmask %x vmask %x\n", 451 RegNext(io.forward(i).uop.cf.pc), 452 RegNext(needForward & paddrModule.io.forwardMmask(i).asUInt), 453 RegNext(needForward & vaddrModule.io.forwardMmask(i).asUInt) 454 ); 455 } 456 XSPerfAccumulate("vaddr_match_failed", vpmaskNotEqual) 457 XSPerfAccumulate("vaddr_match_really_failed", vaddrMatchFailed) 458 459 // Fast forward mask will be generated immediately (load_s1) 460 io.forward(i).forwardMaskFast := dataModule.io.forwardMaskFast(i) 461 462 // Forward result will be generated 1 cycle later (load_s2) 463 io.forward(i).forwardMask := dataModule.io.forwardMask(i) 464 io.forward(i).forwardData := dataModule.io.forwardData(i) 465 // If addr match, data not ready, mark it as dataInvalid 466 // load_s1: generate dataInvalid in load_s1 to set fastUop 467 val dataInvalidMask1 = (addrValidVec.asUInt & ~dataValidVec.asUInt & vaddrModule.io.forwardMmask(i).asUInt & forwardMask1.asUInt) 468 val dataInvalidMask2 = (addrValidVec.asUInt & ~dataValidVec.asUInt & vaddrModule.io.forwardMmask(i).asUInt & forwardMask2.asUInt) 469 val dataInvalidMask = dataInvalidMask1 | dataInvalidMask2 470 io.forward(i).dataInvalidFast := dataInvalidMask.orR 471 472 // make chisel happy 473 val dataInvalidMask1Reg = Wire(UInt(StoreQueueSize.W)) 474 dataInvalidMask1Reg := RegNext(dataInvalidMask1) 475 // make chisel happy 476 val dataInvalidMask2Reg = Wire(UInt(StoreQueueSize.W)) 477 dataInvalidMask2Reg := RegNext(dataInvalidMask2) 478 val dataInvalidMaskReg = dataInvalidMask1Reg | dataInvalidMask2Reg 479 480 // If SSID match, address not ready, mark it as addrInvalid 481 // load_s2: generate addrInvalid 482 val addrInvalidMask1 = (~addrValidVec.asUInt & storeSetHitVec.asUInt & forwardMask1.asUInt) 483 val addrInvalidMask2 = (~addrValidVec.asUInt & storeSetHitVec.asUInt & forwardMask2.asUInt) 484 // make chisel happy 485 val addrInvalidMask1Reg = Wire(UInt(StoreQueueSize.W)) 486 addrInvalidMask1Reg := RegNext(addrInvalidMask1) 487 // make chisel happy 488 val addrInvalidMask2Reg = Wire(UInt(StoreQueueSize.W)) 489 addrInvalidMask2Reg := RegNext(addrInvalidMask2) 490 val addrInvalidMaskReg = addrInvalidMask1Reg | addrInvalidMask2Reg 491 492 // load_s2 493 io.forward(i).dataInvalid := RegNext(io.forward(i).dataInvalidFast) 494 // check if vaddr forward mismatched 495 io.forward(i).matchInvalid := vaddrMatchFailed 496 497 // data invalid sq index 498 // check whether false fail 499 // check flag 500 val s2_differentFlag = RegNext(differentFlag) 501 val s2_enqPtrExt = RegNext(enqPtrExt(0)) 502 val s2_deqPtrExt = RegNext(deqPtrExt(0)) 503 504 // addr invalid sq index 505 // make chisel happy 506 val addrInvalidMaskRegWire = Wire(UInt(StoreQueueSize.W)) 507 addrInvalidMaskRegWire := addrInvalidMaskReg 508 val addrInvalidFlag = addrInvalidMaskRegWire.orR 509 val hasInvalidAddr = (~addrValidVec.asUInt & needForward).orR 510 511 val addrInvalidSqIdx1 = OHToUInt(Reverse(PriorityEncoderOH(Reverse(addrInvalidMask1Reg)))) 512 val addrInvalidSqIdx2 = OHToUInt(Reverse(PriorityEncoderOH(Reverse(addrInvalidMask2Reg)))) 513 val addrInvalidSqIdx = Mux(addrInvalidMask2Reg.orR, addrInvalidSqIdx2, addrInvalidSqIdx1) 514 515 // store-set content management 516 // +-----------------------+ 517 // | Search a SSID for the | 518 // | load operation | 519 // +-----------------------+ 520 // | 521 // V 522 // +-------------------+ 523 // | load wait strict? | 524 // +-------------------+ 525 // | 526 // V 527 // +----------------------+ 528 // Set| |Clean 529 // V V 530 // +------------------------+ +------------------------------+ 531 // | Waiting for all older | | Wait until the corresponding | 532 // | stores operations | | older store operations | 533 // +------------------------+ +------------------------------+ 534 535 536 537 when (RegNext(io.forward(i).uop.cf.loadWaitStrict)) { 538 io.forward(i).addrInvalidSqIdx := RegNext(io.forward(i).uop.sqIdx - 1.U) 539 } .elsewhen (addrInvalidFlag) { 540 io.forward(i).addrInvalidSqIdx.flag := Mux(!s2_differentFlag || addrInvalidSqIdx >= s2_deqPtrExt.value, s2_deqPtrExt.flag, s2_enqPtrExt.flag) 541 io.forward(i).addrInvalidSqIdx.value := addrInvalidSqIdx 542 } .otherwise { 543 // may be store inst has been written to sbuffer already. 544 io.forward(i).addrInvalidSqIdx := RegNext(io.forward(i).uop.sqIdx) 545 } 546 io.forward(i).addrInvalid := Mux(RegNext(io.forward(i).uop.cf.loadWaitStrict), RegNext(hasInvalidAddr), addrInvalidFlag) 547 548 // data invalid sq index 549 // make chisel happy 550 val dataInvalidMaskRegWire = Wire(UInt(StoreQueueSize.W)) 551 dataInvalidMaskRegWire := dataInvalidMaskReg 552 val dataInvalidFlag = dataInvalidMaskRegWire.orR 553 554 val dataInvalidSqIdx1 = OHToUInt(Reverse(PriorityEncoderOH(Reverse(dataInvalidMask1Reg)))) 555 val dataInvalidSqIdx2 = OHToUInt(Reverse(PriorityEncoderOH(Reverse(dataInvalidMask2Reg)))) 556 val dataInvalidSqIdx = Mux(dataInvalidMask2Reg.orR, dataInvalidSqIdx2, dataInvalidSqIdx1) 557 558 when (dataInvalidFlag) { 559 io.forward(i).dataInvalidSqIdx.flag := Mux(!s2_differentFlag || dataInvalidSqIdx >= s2_deqPtrExt.value, s2_deqPtrExt.flag, s2_enqPtrExt.flag) 560 io.forward(i).dataInvalidSqIdx.value := dataInvalidSqIdx 561 } .otherwise { 562 // may be store inst has been written to sbuffer already. 563 io.forward(i).dataInvalidSqIdx := RegNext(io.forward(i).uop.sqIdx) 564 } 565 } 566 567 /** 568 * Memory mapped IO / other uncached operations 569 * 570 * States: 571 * (1) writeback from store units: mark as pending 572 * (2) when they reach ROB's head, they can be sent to uncache channel 573 * (3) response from uncache channel: mark as datavalidmask.wen 574 * (4) writeback to ROB (and other units): mark as writebacked 575 * (5) ROB commits the instruction: same as normal instructions 576 */ 577 //(2) when they reach ROB's head, they can be sent to uncache channel 578 val s_idle :: s_req :: s_resp :: s_wb :: s_wait :: Nil = Enum(5) 579 val uncacheState = RegInit(s_idle) 580 switch(uncacheState) { 581 is(s_idle) { 582 when(RegNext(io.rob.pendingst && pending(deqPtr) && allocated(deqPtr) && datavalid(deqPtr) && addrvalid(deqPtr))) { 583 uncacheState := s_req 584 } 585 } 586 is(s_req) { 587 when (io.uncache.req.fire) { 588 when (io.uncacheOutstanding) { 589 uncacheState := s_wb 590 } .otherwise { 591 uncacheState := s_resp 592 } 593 } 594 } 595 is(s_resp) { 596 when(io.uncache.resp.fire()) { 597 uncacheState := s_wb 598 } 599 } 600 is(s_wb) { 601 when (io.mmioStout.fire()) { 602 uncacheState := s_wait 603 } 604 } 605 is(s_wait) { 606 when(commitCount > 0.U) { 607 uncacheState := s_idle // ready for next mmio 608 } 609 } 610 } 611 io.uncache.req.valid := uncacheState === s_req 612 613 io.uncache.req.bits := DontCare 614 io.uncache.req.bits.cmd := MemoryOpConstants.M_XWR 615 io.uncache.req.bits.addr := paddrModule.io.rdata(0) // data(deqPtr) -> rdata(0) 616 io.uncache.req.bits.data := dataModule.io.rdata(0).data 617 io.uncache.req.bits.mask := dataModule.io.rdata(0).mask 618 619 // CBO op type check can be delayed for 1 cycle, 620 // as uncache op will not start in s_idle 621 val cbo_mmio_addr = paddrModule.io.rdata(0) >> 2 << 2 // clear lowest 2 bits for op 622 val cbo_mmio_op = 0.U //TODO 623 val cbo_mmio_data = cbo_mmio_addr | cbo_mmio_op 624 when(RegNext(LSUOpType.isCbo(uop(deqPtr).ctrl.fuOpType))){ 625 io.uncache.req.bits.addr := DontCare // TODO 626 io.uncache.req.bits.data := paddrModule.io.rdata(0) 627 io.uncache.req.bits.mask := DontCare // TODO 628 } 629 630 io.uncache.req.bits.atomic := atomic(RegNext(rdataPtrExtNext(0)).value) 631 632 when(io.uncache.req.fire()){ 633 // mmio store should not be committed until uncache req is sent 634 pending(deqPtr) := false.B 635 636 XSDebug( 637 p"uncache req: pc ${Hexadecimal(uop(deqPtr).cf.pc)} " + 638 p"addr ${Hexadecimal(io.uncache.req.bits.addr)} " + 639 p"data ${Hexadecimal(io.uncache.req.bits.data)} " + 640 p"op ${Hexadecimal(io.uncache.req.bits.cmd)} " + 641 p"mask ${Hexadecimal(io.uncache.req.bits.mask)}\n" 642 ) 643 } 644 645 // (3) response from uncache channel: mark as datavalid 646 io.uncache.resp.ready := true.B 647 648 // (4) writeback to ROB (and other units): mark as writebacked 649 io.mmioStout.valid := uncacheState === s_wb 650 io.mmioStout.bits.uop := uop(deqPtr) 651 io.mmioStout.bits.uop.sqIdx := deqPtrExt(0) 652 io.mmioStout.bits.data := dataModule.io.rdata(0).data // dataModule.io.rdata.read(deqPtr) 653 io.mmioStout.bits.redirectValid := false.B 654 io.mmioStout.bits.redirect := DontCare 655 io.mmioStout.bits.debug.isMMIO := true.B 656 io.mmioStout.bits.debug.paddr := DontCare 657 io.mmioStout.bits.debug.isPerfCnt := false.B 658 io.mmioStout.bits.fflags := DontCare 659 io.mmioStout.bits.debug.vaddr := DontCare 660 // Remove MMIO inst from store queue after MMIO request is being sent 661 // That inst will be traced by uncache state machine 662 when (io.mmioStout.fire()) { 663 allocated(deqPtr) := false.B 664 } 665 666 /** 667 * ROB commits store instructions (mark them as committed) 668 * 669 * (1) When store commits, mark it as committed. 670 * (2) They will not be cancelled and can be sent to lower level. 671 */ 672 XSError(uncacheState =/= s_idle && uncacheState =/= s_wait && commitCount > 0.U, 673 "should not commit instruction when MMIO has not been finished\n") 674 for (i <- 0 until CommitWidth) { 675 when (commitCount > i.U) { // MMIO inst is not in progress 676 if(i == 0){ 677 // MMIO inst should not update committed flag 678 // Note that commit count has been delayed for 1 cycle 679 when(uncacheState === s_idle){ 680 committed(cmtPtrExt(0).value) := true.B 681 } 682 } else { 683 committed(cmtPtrExt(i).value) := true.B 684 } 685 } 686 } 687 cmtPtrExt := cmtPtrExt.map(_ + commitCount) 688 689 // committed stores will not be cancelled and can be sent to lower level. 690 // remove retired insts from sq, add retired store to sbuffer 691 692 // Read data from data module 693 // As store queue grows larger and larger, time needed to read data from data 694 // module keeps growing higher. Now we give data read a whole cycle. 695 696 val mmioStall = mmio(rdataPtrExt(0).value) 697 for (i <- 0 until EnsbufferWidth) { 698 val ptr = rdataPtrExt(i).value 699 dataBuffer.io.enq(i).valid := allocated(ptr) && committed(ptr) && !mmioStall 700 // Note that store data/addr should both be valid after store's commit 701 assert(!dataBuffer.io.enq(i).valid || allvalid(ptr)) 702 dataBuffer.io.enq(i).bits.addr := paddrModule.io.rdata(i) 703 dataBuffer.io.enq(i).bits.vaddr := vaddrModule.io.rdata(i) 704 dataBuffer.io.enq(i).bits.data := dataModule.io.rdata(i).data 705 dataBuffer.io.enq(i).bits.mask := dataModule.io.rdata(i).mask 706 dataBuffer.io.enq(i).bits.wline := paddrModule.io.rlineflag(i) 707 dataBuffer.io.enq(i).bits.sqPtr := rdataPtrExt(i) 708 } 709 710 // Send data stored in sbufferReqBitsReg to sbuffer 711 for (i <- 0 until EnsbufferWidth) { 712 io.sbuffer(i).valid := dataBuffer.io.deq(i).valid 713 dataBuffer.io.deq(i).ready := io.sbuffer(i).ready 714 // Write line request should have all 1 mask 715 assert(!(io.sbuffer(i).valid && io.sbuffer(i).bits.wline && !io.sbuffer(i).bits.mask.andR)) 716 io.sbuffer(i).bits := DontCare 717 io.sbuffer(i).bits.cmd := MemoryOpConstants.M_XWR 718 io.sbuffer(i).bits.addr := dataBuffer.io.deq(i).bits.addr 719 io.sbuffer(i).bits.vaddr := dataBuffer.io.deq(i).bits.vaddr 720 io.sbuffer(i).bits.data := dataBuffer.io.deq(i).bits.data 721 io.sbuffer(i).bits.mask := dataBuffer.io.deq(i).bits.mask 722 io.sbuffer(i).bits.wline := dataBuffer.io.deq(i).bits.wline 723 724 // io.sbuffer(i).fire() is RegNexted, as sbuffer data write takes 2 cycles. 725 // Before data write finish, sbuffer is unable to provide store to load 726 // forward data. As an workaround, deqPtrExt and allocated flag update 727 // is delayed so that load can get the right data from store queue. 728 val ptr = dataBuffer.io.deq(i).bits.sqPtr.value 729 when (RegNext(io.sbuffer(i).fire())) { 730 allocated(RegEnable(ptr, io.sbuffer(i).fire())) := false.B 731 XSDebug("sbuffer "+i+" fire: ptr %d\n", ptr) 732 } 733 } 734 (1 until EnsbufferWidth).foreach(i => when(io.sbuffer(i).fire) { assert(io.sbuffer(i - 1).fire) }) 735 if (coreParams.dcacheParametersOpt.isEmpty) { 736 for (i <- 0 until EnsbufferWidth) { 737 val ptr = deqPtrExt(i).value 738 val fakeRAM = Module(new RAMHelper(64L * 1024 * 1024 * 1024)) 739 fakeRAM.clk := clock 740 fakeRAM.en := allocated(ptr) && committed(ptr) && !mmio(ptr) 741 fakeRAM.rIdx := 0.U 742 fakeRAM.wIdx := (paddrModule.io.rdata(i) - "h80000000".U) >> 3 743 fakeRAM.wdata := dataModule.io.rdata(i).data 744 fakeRAM.wmask := MaskExpand(dataModule.io.rdata(i).mask) 745 fakeRAM.wen := allocated(ptr) && committed(ptr) && !mmio(ptr) 746 } 747 } 748 749 if (env.EnableDifftest) { 750 for (i <- 0 until EnsbufferWidth) { 751 val storeCommit = io.sbuffer(i).fire() 752 val waddr = SignExt(io.sbuffer(i).bits.addr, 64) 753 val wdata = io.sbuffer(i).bits.data & MaskExpand(io.sbuffer(i).bits.mask) 754 val wmask = io.sbuffer(i).bits.mask 755 756 val difftest = Module(new DifftestStoreEvent) 757 difftest.io.clock := clock 758 difftest.io.coreid := io.hartId 759 difftest.io.index := i.U 760 difftest.io.valid := RegNext(RegNext(storeCommit)) 761 difftest.io.storeAddr := RegNext(RegNext(waddr)) 762 difftest.io.storeData := RegNext(RegNext(wdata)) 763 difftest.io.storeMask := RegNext(RegNext(wmask)) 764 } 765 } 766 767 // Read vaddr for mem exception 768 io.exceptionAddr.vaddr := vaddrModule.io.rdata(EnsbufferWidth) 769 770 // misprediction recovery / exception redirect 771 // invalidate sq term using robIdx 772 val needCancel = Wire(Vec(StoreQueueSize, Bool())) 773 for (i <- 0 until StoreQueueSize) { 774 needCancel(i) := uop(i).robIdx.needFlush(io.brqRedirect) && allocated(i) && !committed(i) 775 when (needCancel(i)) { 776 allocated(i) := false.B 777 } 778 } 779 780 /** 781* update pointers 782**/ 783 val lastEnqCancel = PopCount(RegNext(VecInit(canEnqueue.zip(enqCancel).map(x => x._1 && x._2)))) // 1 cycle after redirect 784 val lastCycleCancelCount = PopCount(RegNext(needCancel)) // 1 cycle after redirect 785 val lastCycleRedirect = RegNext(io.brqRedirect.valid) // 1 cycle after redirect 786 val enqNumber = Mux(!lastCycleRedirect&&io.enq.canAccept && io.enq.lqCanAccept, PopCount(io.enq.req.map(_.valid)), 0.U) // 1 cycle after redirect 787 788 val lastlastCycleRedirect=RegNext(lastCycleRedirect)// 2 cycle after redirect 789 val redirectCancelCount = RegEnable(lastCycleCancelCount + lastEnqCancel, lastCycleRedirect) // 2 cycle after redirect 790 791 when (lastlastCycleRedirect) { 792 // we recover the pointers in 2 cycle after redirect for better timing 793 enqPtrExt := VecInit(enqPtrExt.map(_ - redirectCancelCount)) 794 }.otherwise { 795 // lastCycleRedirect.valid or nornal case 796 // when lastCycleRedirect.valid, enqNumber === 0.U, enqPtrExt will not change 797 enqPtrExt := VecInit(enqPtrExt.map(_ + enqNumber)) 798 } 799 assert(!(lastCycleRedirect && enqNumber =/= 0.U)) 800 801 deqPtrExt := deqPtrExtNext 802 rdataPtrExt := rdataPtrExtNext 803 804 // val dequeueCount = Mux(io.sbuffer(1).fire(), 2.U, Mux(io.sbuffer(0).fire() || io.mmioStout.fire(), 1.U, 0.U)) 805 806 // If redirect at T0, sqCancelCnt is at T2 807 io.sqCancelCnt := redirectCancelCount 808 809 // io.sqempty will be used by sbuffer 810 // We delay it for 1 cycle for better timing 811 // When sbuffer need to check if it is empty, the pipeline is blocked, which means delay io.sqempty 812 // for 1 cycle will also promise that sq is empty in that cycle 813 io.sqEmpty := RegNext( 814 enqPtrExt(0).value === deqPtrExt(0).value && 815 enqPtrExt(0).flag === deqPtrExt(0).flag 816 ) 817 // perf counter 818 QueuePerf(StoreQueueSize, validCount, !allowEnqueue) 819 io.sqFull := !allowEnqueue 820 XSPerfAccumulate("mmioCycle", uncacheState =/= s_idle) // lq is busy dealing with uncache req 821 XSPerfAccumulate("mmioCnt", io.uncache.req.fire()) 822 XSPerfAccumulate("mmio_wb_success", io.mmioStout.fire()) 823 XSPerfAccumulate("mmio_wb_blocked", io.mmioStout.valid && !io.mmioStout.ready) 824 XSPerfAccumulate("validEntryCnt", distanceBetween(enqPtrExt(0), deqPtrExt(0))) 825 XSPerfAccumulate("cmtEntryCnt", distanceBetween(cmtPtrExt(0), deqPtrExt(0))) 826 XSPerfAccumulate("nCmtEntryCnt", distanceBetween(enqPtrExt(0), cmtPtrExt(0))) 827 828 val perfValidCount = distanceBetween(enqPtrExt(0), deqPtrExt(0)) 829 val perfEvents = Seq( 830 ("mmioCycle ", uncacheState =/= s_idle), 831 ("mmioCnt ", io.uncache.req.fire()), 832 ("mmio_wb_success", io.mmioStout.fire()), 833 ("mmio_wb_blocked", io.mmioStout.valid && !io.mmioStout.ready), 834 ("stq_1_4_valid ", (perfValidCount < (StoreQueueSize.U/4.U))), 835 ("stq_2_4_valid ", (perfValidCount > (StoreQueueSize.U/4.U)) & (perfValidCount <= (StoreQueueSize.U/2.U))), 836 ("stq_3_4_valid ", (perfValidCount > (StoreQueueSize.U/2.U)) & (perfValidCount <= (StoreQueueSize.U*3.U/4.U))), 837 ("stq_4_4_valid ", (perfValidCount > (StoreQueueSize.U*3.U/4.U))), 838 ) 839 generatePerfEvent() 840 841 // debug info 842 XSDebug("enqPtrExt %d:%d deqPtrExt %d:%d\n", enqPtrExt(0).flag, enqPtr, deqPtrExt(0).flag, deqPtr) 843 844 def PrintFlag(flag: Bool, name: String): Unit = { 845 when(flag) { 846 XSDebug(false, true.B, name) 847 }.otherwise { 848 XSDebug(false, true.B, " ") 849 } 850 } 851 852 for (i <- 0 until StoreQueueSize) { 853 XSDebug(i + ": pc %x va %x pa %x data %x ", 854 uop(i).cf.pc, 855 debug_vaddr(i), 856 debug_paddr(i), 857 debug_data(i) 858 ) 859 PrintFlag(allocated(i), "a") 860 PrintFlag(allocated(i) && addrvalid(i), "a") 861 PrintFlag(allocated(i) && datavalid(i), "d") 862 PrintFlag(allocated(i) && committed(i), "c") 863 PrintFlag(allocated(i) && pending(i), "p") 864 PrintFlag(allocated(i) && mmio(i), "m") 865 XSDebug(false, true.B, "\n") 866 } 867 868} 869