xref: /XiangShan/src/main/scala/xiangshan/mem/lsqueue/StoreQueue.scala (revision b1e920234888fd3e5463ceb2a99c9bdca087f585)
1/***************************************************************************************
2* Copyright (c) 2020-2021 Institute of Computing Technology, Chinese Academy of Sciences
3* Copyright (c) 2020-2021 Peng Cheng Laboratory
4*
5* XiangShan is licensed under Mulan PSL v2.
6* You can use this software according to the terms and conditions of the Mulan PSL v2.
7* You may obtain a copy of Mulan PSL v2 at:
8*          http://license.coscl.org.cn/MulanPSL2
9*
10* THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND,
11* EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT,
12* MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE.
13*
14* See the Mulan PSL v2 for more details.
15***************************************************************************************/
16
17package xiangshan.mem
18
19import org.chipsalliance.cde.config.Parameters
20import chisel3._
21import chisel3.util._
22import utils._
23import utility._
24import xiangshan._
25import xiangshan.cache._
26import xiangshan.cache.{DCacheLineIO, DCacheWordIO, MemoryOpConstants}
27import xiangshan.backend._
28import xiangshan.backend.rob.{RobLsqIO, RobPtr}
29import difftest._
30import device.RAMHelper
31import xiangshan.backend.Bundles.{DynInst, MemExuOutput}
32
33class SqPtr(implicit p: Parameters) extends CircularQueuePtr[SqPtr](
34  p => p(XSCoreParamsKey).StoreQueueSize
35){
36}
37
38object SqPtr {
39  def apply(f: Bool, v: UInt)(implicit p: Parameters): SqPtr = {
40    val ptr = Wire(new SqPtr)
41    ptr.flag := f
42    ptr.value := v
43    ptr
44  }
45}
46
47class SqEnqIO(implicit p: Parameters) extends MemBlockBundle {
48  val canAccept = Output(Bool())
49  val lqCanAccept = Input(Bool())
50  val needAlloc = Vec(LSQEnqWidth, Input(Bool()))
51  val req = Vec(LSQEnqWidth, Flipped(ValidIO(new DynInst)))
52  val resp = Vec(LSQEnqWidth, Output(new SqPtr))
53}
54
55class DataBufferEntry (implicit p: Parameters)  extends DCacheBundle {
56  val addr   = UInt(PAddrBits.W)
57  val vaddr  = UInt(VAddrBits.W)
58  val data   = UInt(VLEN.W)
59  val mask   = UInt((VLEN/8).W)
60  val wline = Bool()
61  val sqPtr  = new SqPtr
62  val prefetch = Bool()
63}
64
65// Store Queue
66class StoreQueue(implicit p: Parameters) extends XSModule
67  with HasDCacheParameters with HasCircularQueuePtrHelper with HasPerfEvents {
68  val io = IO(new Bundle() {
69    val hartId = Input(UInt(8.W))
70    val enq = new SqEnqIO
71    val brqRedirect = Flipped(ValidIO(new Redirect))
72    val storeAddrIn = Vec(StorePipelineWidth, Flipped(Valid(new LsPipelineBundle))) // store addr, data is not included
73    val storeAddrInRe = Vec(StorePipelineWidth, Input(new LsPipelineBundle())) // store more mmio and exception
74    val storeDataIn = Vec(StorePipelineWidth, Flipped(Valid(new MemExuOutput))) // store data, send to sq from rs
75    val storeMaskIn = Vec(StorePipelineWidth, Flipped(Valid(new StoreMaskBundle))) // store mask, send to sq from rs
76    val sbuffer = Vec(EnsbufferWidth, Decoupled(new DCacheWordReqWithVaddrAndPfFlag)) // write committed store to sbuffer
77    val uncacheOutstanding = Input(Bool())
78    val mmioStout = DecoupledIO(new MemExuOutput) // writeback uncached store
79    val forward = Vec(LoadPipelineWidth, Flipped(new PipeLoadForwardQueryIO))
80    val rob = Flipped(new RobLsqIO)
81    val uncache = new UncacheWordIO
82    // val refill = Flipped(Valid(new DCacheLineReq ))
83    val exceptionAddr = new ExceptionAddrIO
84    val sqEmpty = Output(Bool())
85    val stAddrReadySqPtr = Output(new SqPtr)
86    val stAddrReadyVec = Output(Vec(StoreQueueSize, Bool()))
87    val stDataReadySqPtr = Output(new SqPtr)
88    val stDataReadyVec = Output(Vec(StoreQueueSize, Bool()))
89    val stIssuePtr = Output(new SqPtr)
90    val sqDeqPtr = Output(new SqPtr)
91    val sqFull = Output(Bool())
92    val sqCancelCnt = Output(UInt(log2Up(StoreQueueSize + 1).W))
93    val sqDeq = Output(UInt(log2Ceil(EnsbufferWidth + 1).W))
94    val force_write = Output(Bool())
95    val vecStoreRetire = Flipped(ValidIO(new SqPtr))
96  })
97
98  println("StoreQueue: size:" + StoreQueueSize)
99
100  // data modules
101  val uop = Reg(Vec(StoreQueueSize, new DynInst))
102  // val data = Reg(Vec(StoreQueueSize, new LsqEntry))
103  val dataModule = Module(new SQDataModule(
104    numEntries = StoreQueueSize,
105    numRead = EnsbufferWidth,
106    numWrite = StorePipelineWidth,
107    numForward = LoadPipelineWidth
108  ))
109  dataModule.io := DontCare
110  val paddrModule = Module(new SQAddrModule(
111    dataWidth = PAddrBits,
112    numEntries = StoreQueueSize,
113    numRead = EnsbufferWidth,
114    numWrite = StorePipelineWidth,
115    numForward = LoadPipelineWidth
116  ))
117  paddrModule.io := DontCare
118  val vaddrModule = Module(new SQAddrModule(
119    dataWidth = VAddrBits,
120    numEntries = StoreQueueSize,
121    numRead = EnsbufferWidth + 1, // sbuffer + badvaddr 1 (TODO)
122    numWrite = StorePipelineWidth,
123    numForward = LoadPipelineWidth
124  ))
125  vaddrModule.io := DontCare
126  val dataBuffer = Module(new DatamoduleResultBuffer(new DataBufferEntry))
127  val debug_paddr = Reg(Vec(StoreQueueSize, UInt((PAddrBits).W)))
128  val debug_vaddr = Reg(Vec(StoreQueueSize, UInt((VAddrBits).W)))
129  val debug_data = Reg(Vec(StoreQueueSize, UInt((XLEN).W)))
130
131  // state & misc
132  val allocated = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // sq entry has been allocated
133  val addrvalid = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // non-mmio addr is valid
134  val datavalid = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // non-mmio data is valid
135  val allvalid  = VecInit((0 until StoreQueueSize).map(i => addrvalid(i) && datavalid(i))) // non-mmio data & addr is valid
136  val committed = Reg(Vec(StoreQueueSize, Bool())) // inst has been committed by rob
137  val pending = Reg(Vec(StoreQueueSize, Bool())) // mmio pending: inst is an mmio inst, it will not be executed until it reachs the end of rob
138  val mmio = Reg(Vec(StoreQueueSize, Bool())) // mmio: inst is an mmio inst
139  val atomic = Reg(Vec(StoreQueueSize, Bool()))
140  val prefetch = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // need prefetch when committing this store to sbuffer?
141  val vec = Reg(Vec(StoreQueueSize, Bool()))
142
143  // ptr
144  val enqPtrExt = RegInit(VecInit((0 until io.enq.req.length).map(_.U.asTypeOf(new SqPtr))))
145  val rdataPtrExt = RegInit(VecInit((0 until EnsbufferWidth).map(_.U.asTypeOf(new SqPtr))))
146  val deqPtrExt = RegInit(VecInit((0 until EnsbufferWidth).map(_.U.asTypeOf(new SqPtr))))
147  val cmtPtrExt = RegInit(VecInit((0 until CommitWidth).map(_.U.asTypeOf(new SqPtr))))
148  val addrReadyPtrExt = RegInit(0.U.asTypeOf(new SqPtr))
149  val dataReadyPtrExt = RegInit(0.U.asTypeOf(new SqPtr))
150  val validCounter = RegInit(0.U(log2Ceil(VirtualLoadQueueSize + 1).W))
151
152  val enqPtr = enqPtrExt(0).value
153  val deqPtr = deqPtrExt(0).value
154  val cmtPtr = cmtPtrExt(0).value
155
156  val validCount = distanceBetween(enqPtrExt(0), deqPtrExt(0))
157  val allowEnqueue = validCount <= (StoreQueueSize - StorePipelineWidth).U
158
159  val deqMask = UIntToMask(deqPtr, StoreQueueSize)
160  val enqMask = UIntToMask(enqPtr, StoreQueueSize)
161
162  val commitCount = RegNext(io.rob.scommit)
163
164  // store can be committed by ROB
165  io.rob.mmio := DontCare
166  io.rob.uop := DontCare
167
168  // Read dataModule
169  assert(EnsbufferWidth <= 2)
170  // rdataPtrExtNext and rdataPtrExtNext+1 entry will be read from dataModule
171  val rdataPtrExtNext = WireInit(Mux(dataBuffer.io.enq(1).fire,
172    VecInit(rdataPtrExt.map(_ + 2.U)),
173    Mux(dataBuffer.io.enq(0).fire || io.mmioStout.fire || io.vecStoreRetire.valid,
174      VecInit(rdataPtrExt.map(_ + 1.U)),
175      rdataPtrExt
176    )
177  ))
178
179  // deqPtrExtNext traces which inst is about to leave store queue
180  //
181  // io.sbuffer(i).fire is RegNexted, as sbuffer data write takes 2 cycles.
182  // Before data write finish, sbuffer is unable to provide store to load
183  // forward data. As an workaround, deqPtrExt and allocated flag update
184  // is delayed so that load can get the right data from store queue.
185  //
186  // Modify deqPtrExtNext and io.sqDeq with care!
187  val deqPtrExtNext = Mux(RegNext(io.sbuffer(1).fire),
188    VecInit(deqPtrExt.map(_ + 2.U)),
189    Mux(RegNext(io.sbuffer(0).fire) || io.mmioStout.fire || io.vecStoreRetire.valid,
190      VecInit(deqPtrExt.map(_ + 1.U)),
191      deqPtrExt
192    )
193  )
194  io.sqDeq := RegNext(Mux(RegNext(io.sbuffer(1).fire), 2.U,
195    Mux(RegNext(io.sbuffer(0).fire) || io.mmioStout.fire || io.vecStoreRetire.valid, 1.U, 0.U)
196  ))
197  assert(!RegNext(RegNext(io.sbuffer(0).fire) && io.mmioStout.fire))
198
199  for (i <- 0 until EnsbufferWidth) {
200    dataModule.io.raddr(i) := rdataPtrExtNext(i).value
201    paddrModule.io.raddr(i) := rdataPtrExtNext(i).value
202    vaddrModule.io.raddr(i) := rdataPtrExtNext(i).value
203  }
204
205  // no inst will be committed 1 cycle before tval update
206  vaddrModule.io.raddr(EnsbufferWidth) := (cmtPtrExt(0) + commitCount).value
207
208  /**
209    * Enqueue at dispatch
210    *
211    * Currently, StoreQueue only allows enqueue when #emptyEntries > EnqWidth
212    */
213  io.enq.canAccept := allowEnqueue
214  val canEnqueue = io.enq.req.map(_.valid)
215  val enqCancel = io.enq.req.map(_.bits.robIdx.needFlush(io.brqRedirect))
216  for (i <- 0 until io.enq.req.length) {
217    val offset = if (i == 0) 0.U else PopCount(io.enq.needAlloc.take(i))
218    val sqIdx = enqPtrExt(offset)
219    val index = io.enq.req(i).bits.sqIdx.value
220    when (canEnqueue(i) && !enqCancel(i)) {
221      uop(index) := io.enq.req(i).bits
222      // NOTE: the index will be used when replay
223      uop(index).sqIdx := sqIdx
224      allocated(index) := true.B
225      datavalid(index) := false.B
226      addrvalid(index) := false.B
227      committed(index) := false.B
228      pending(index) := false.B
229      prefetch(index) := false.B
230      mmio(index) := false.B
231      vec(index) := io.enq.req(i).bits.instr(6, 0) === "b0100111".U // TODO
232
233      XSError(!io.enq.canAccept || !io.enq.lqCanAccept, s"must accept $i\n")
234      XSError(index =/= sqIdx.value, s"must be the same entry $i\n")
235    }
236    io.enq.resp(i) := sqIdx
237  }
238  XSDebug(p"(ready, valid): ${io.enq.canAccept}, ${Binary(Cat(io.enq.req.map(_.valid)))}\n")
239
240  /**
241    * Update addr/dataReadyPtr when issue from rs
242    */
243  // update issuePtr
244  val IssuePtrMoveStride = 4
245  require(IssuePtrMoveStride >= 2)
246
247  val addrReadyLookupVec = (0 until IssuePtrMoveStride).map(addrReadyPtrExt + _.U)
248  val addrReadyLookup = addrReadyLookupVec.map(ptr => allocated(ptr.value) && (mmio(ptr.value) || addrvalid(ptr.value) || vec(ptr.value)) && ptr =/= enqPtrExt(0))
249  val nextAddrReadyPtr = addrReadyPtrExt + PriorityEncoder(VecInit(addrReadyLookup.map(!_) :+ true.B))
250  addrReadyPtrExt := nextAddrReadyPtr
251
252  (0 until StoreQueueSize).map(i => {
253    io.stAddrReadyVec(i) := RegNext(allocated(i) && (mmio(i) || addrvalid(i)))
254  })
255
256  when (io.brqRedirect.valid) {
257    addrReadyPtrExt := Mux(
258      isAfter(cmtPtrExt(0), deqPtrExt(0)),
259      cmtPtrExt(0),
260      deqPtrExtNext(0) // for mmio insts, deqPtr may be ahead of cmtPtr
261    )
262  }
263
264  io.stAddrReadySqPtr := addrReadyPtrExt
265
266  // update
267  val dataReadyLookupVec = (0 until IssuePtrMoveStride).map(dataReadyPtrExt + _.U)
268  val dataReadyLookup = dataReadyLookupVec.map(ptr => allocated(ptr.value) && (mmio(ptr.value) || datavalid(ptr.value) || vec(ptr.value)) && ptr =/= enqPtrExt(0))
269  val nextDataReadyPtr = dataReadyPtrExt + PriorityEncoder(VecInit(dataReadyLookup.map(!_) :+ true.B))
270  dataReadyPtrExt := nextDataReadyPtr
271
272  (0 until StoreQueueSize).map(i => {
273    io.stDataReadyVec(i) := RegNext(allocated(i) && (mmio(i) || datavalid(i)))
274  })
275
276  when (io.brqRedirect.valid) {
277    dataReadyPtrExt := Mux(
278      isAfter(cmtPtrExt(0), deqPtrExt(0)),
279      cmtPtrExt(0),
280      deqPtrExtNext(0) // for mmio insts, deqPtr may be ahead of cmtPtr
281    )
282  }
283
284  io.stDataReadySqPtr := dataReadyPtrExt
285  io.stIssuePtr := enqPtrExt(0)
286  io.sqDeqPtr := deqPtrExt(0)
287
288  /**
289    * Writeback store from store units
290    *
291    * Most store instructions writeback to regfile in the previous cycle.
292    * However,
293    *   (1) For an mmio instruction with exceptions, we need to mark it as addrvalid
294    * (in this way it will trigger an exception when it reaches ROB's head)
295    * instead of pending to avoid sending them to lower level.
296    *   (2) For an mmio instruction without exceptions, we mark it as pending.
297    * When the instruction reaches ROB's head, StoreQueue sends it to uncache channel.
298    * Upon receiving the response, StoreQueue writes back the instruction
299    * through arbiter with store units. It will later commit as normal.
300    */
301
302  // Write addr to sq
303  for (i <- 0 until StorePipelineWidth) {
304    paddrModule.io.wen(i) := false.B
305    vaddrModule.io.wen(i) := false.B
306    dataModule.io.mask.wen(i) := false.B
307    val stWbIndex = io.storeAddrIn(i).bits.uop.sqIdx.value
308    when (io.storeAddrIn(i).fire) {
309      val addr_valid = !io.storeAddrIn(i).bits.miss
310      addrvalid(stWbIndex) := addr_valid //!io.storeAddrIn(i).bits.mmio
311      // pending(stWbIndex) := io.storeAddrIn(i).bits.mmio
312
313      paddrModule.io.waddr(i) := stWbIndex
314      paddrModule.io.wdata(i) := io.storeAddrIn(i).bits.paddr
315      paddrModule.io.wmask(i) := io.storeAddrIn(i).bits.mask
316      paddrModule.io.wlineflag(i) := io.storeAddrIn(i).bits.wlineflag
317      paddrModule.io.wen(i) := true.B
318
319      vaddrModule.io.waddr(i) := stWbIndex
320      vaddrModule.io.wdata(i) := io.storeAddrIn(i).bits.vaddr
321      vaddrModule.io.wmask(i) := io.storeAddrIn(i).bits.mask
322      vaddrModule.io.wlineflag(i) := io.storeAddrIn(i).bits.wlineflag
323      vaddrModule.io.wen(i) := true.B
324
325      debug_paddr(paddrModule.io.waddr(i)) := paddrModule.io.wdata(i)
326
327      // mmio(stWbIndex) := io.storeAddrIn(i).bits.mmio
328
329      uop(stWbIndex) := io.storeAddrIn(i).bits.uop
330      uop(stWbIndex).debugInfo := io.storeAddrIn(i).bits.uop.debugInfo
331      XSInfo("store addr write to sq idx %d pc 0x%x miss:%d vaddr %x paddr %x mmio %x\n",
332        io.storeAddrIn(i).bits.uop.sqIdx.value,
333        io.storeAddrIn(i).bits.uop.pc,
334        io.storeAddrIn(i).bits.miss,
335        io.storeAddrIn(i).bits.vaddr,
336        io.storeAddrIn(i).bits.paddr,
337        io.storeAddrIn(i).bits.mmio
338      )
339    }
340
341    // re-replinish mmio, for pma/pmp will get mmio one cycle later
342    val storeAddrInFireReg = RegNext(io.storeAddrIn(i).fire && !io.storeAddrIn(i).bits.miss)
343    val stWbIndexReg = RegNext(stWbIndex)
344    when (storeAddrInFireReg) {
345      pending(stWbIndexReg) := io.storeAddrInRe(i).mmio
346      mmio(stWbIndexReg) := io.storeAddrInRe(i).mmio
347      atomic(stWbIndexReg) := io.storeAddrInRe(i).atomic
348    }
349    // dcache miss info (one cycle later than storeIn)
350    // if dcache report a miss in sta pipeline, this store will trigger a prefetch when committing to sbuffer (if EnableAtCommitMissTrigger)
351    when (storeAddrInFireReg) {
352      prefetch(stWbIndexReg) := io.storeAddrInRe(i).miss
353    }
354
355    when(vaddrModule.io.wen(i)){
356      debug_vaddr(vaddrModule.io.waddr(i)) := vaddrModule.io.wdata(i)
357    }
358  }
359
360  // Write data to sq
361  // Now store data pipeline is actually 2 stages
362  for (i <- 0 until StorePipelineWidth) {
363    dataModule.io.data.wen(i) := false.B
364    val stWbIndex = io.storeDataIn(i).bits.uop.sqIdx.value
365    // sq data write takes 2 cycles:
366    // sq data write s0
367    when (io.storeDataIn(i).fire) {
368      // send data write req to data module
369      dataModule.io.data.waddr(i) := stWbIndex
370      dataModule.io.data.wdata(i) := Mux(io.storeDataIn(i).bits.uop.fuOpType === LSUOpType.cbo_zero,
371        0.U,
372        genWdata(io.storeDataIn(i).bits.data, io.storeDataIn(i).bits.uop.fuOpType(1,0))
373      )
374      dataModule.io.data.wen(i) := true.B
375
376      debug_data(dataModule.io.data.waddr(i)) := dataModule.io.data.wdata(i)
377
378      XSInfo("store data write to sq idx %d pc 0x%x data %x -> %x\n",
379        io.storeDataIn(i).bits.uop.sqIdx.value,
380        io.storeDataIn(i).bits.uop.pc,
381        io.storeDataIn(i).bits.data,
382        dataModule.io.data.wdata(i)
383      )
384    }
385    // sq data write s1
386    when (
387      RegNext(io.storeDataIn(i).fire)
388      // && !RegNext(io.storeDataIn(i).bits.uop).robIdx.needFlush(io.brqRedirect)
389    ) {
390      datavalid(RegNext(stWbIndex)) := true.B
391    }
392  }
393
394  // Write mask to sq
395  for (i <- 0 until StorePipelineWidth) {
396    // sq mask write s0
397    when (io.storeMaskIn(i).fire) {
398      // send data write req to data module
399      dataModule.io.mask.waddr(i) := io.storeMaskIn(i).bits.sqIdx.value
400      dataModule.io.mask.wdata(i) := io.storeMaskIn(i).bits.mask
401      dataModule.io.mask.wen(i) := true.B
402    }
403  }
404
405  /**
406    * load forward query
407    *
408    * Check store queue for instructions that is older than the load.
409    * The response will be valid at the next cycle after req.
410    */
411  // check over all lq entries and forward data from the first matched store
412  for (i <- 0 until LoadPipelineWidth) {
413    // Compare deqPtr (deqPtr) and forward.sqIdx, we have two cases:
414    // (1) if they have the same flag, we need to check range(tail, sqIdx)
415    // (2) if they have different flags, we need to check range(tail, VirtualLoadQueueSize) and range(0, sqIdx)
416    // Forward1: Mux(same_flag, range(tail, sqIdx), range(tail, VirtualLoadQueueSize))
417    // Forward2: Mux(same_flag, 0.U,                   range(0, sqIdx)    )
418    // i.e. forward1 is the target entries with the same flag bits and forward2 otherwise
419    val differentFlag = deqPtrExt(0).flag =/= io.forward(i).sqIdx.flag
420    val forwardMask = io.forward(i).sqIdxMask
421    // all addrvalid terms need to be checked
422    val addrValidVec = WireInit(VecInit((0 until StoreQueueSize).map(i => addrvalid(i) && allocated(i))))
423    val dataValidVec = WireInit(VecInit((0 until StoreQueueSize).map(i => datavalid(i))))
424    val allValidVec  = WireInit(VecInit((0 until StoreQueueSize).map(i => addrvalid(i) && datavalid(i) && allocated(i))))
425
426    val storeSetHitVec =
427      if (LFSTEnable) {
428        WireInit(VecInit((0 until StoreQueueSize).map(j => io.forward(i).uop.loadWaitBit && uop(j).robIdx === io.forward(i).uop.waitForRobIdx)))
429      } else {
430        WireInit(VecInit((0 until StoreQueueSize).map(j => uop(j).storeSetHit && uop(j).ssid === io.forward(i).uop.ssid)))
431      }
432
433    val forwardMask1 = Mux(differentFlag, ~deqMask, deqMask ^ forwardMask)
434    val forwardMask2 = Mux(differentFlag, forwardMask, 0.U(StoreQueueSize.W))
435    val canForward1 = forwardMask1 & allValidVec.asUInt
436    val canForward2 = forwardMask2 & allValidVec.asUInt
437    val needForward = Mux(differentFlag, ~deqMask | forwardMask, deqMask ^ forwardMask)
438
439    XSDebug(p"$i f1 ${Binary(canForward1)} f2 ${Binary(canForward2)} " +
440      p"sqIdx ${io.forward(i).sqIdx} pa ${Hexadecimal(io.forward(i).paddr)}\n"
441    )
442
443    // do real fwd query (cam lookup in load_s1)
444    dataModule.io.needForward(i)(0) := canForward1 & vaddrModule.io.forwardMmask(i).asUInt
445    dataModule.io.needForward(i)(1) := canForward2 & vaddrModule.io.forwardMmask(i).asUInt
446
447    vaddrModule.io.forwardMdata(i) := io.forward(i).vaddr
448    vaddrModule.io.forwardDataMask(i) := io.forward(i).mask
449    paddrModule.io.forwardMdata(i) := io.forward(i).paddr
450    paddrModule.io.forwardDataMask(i) := io.forward(i).mask
451
452
453    // vaddr cam result does not equal to paddr cam result
454    // replay needed
455    // val vpmaskNotEqual = ((paddrModule.io.forwardMmask(i).asUInt ^ vaddrModule.io.forwardMmask(i).asUInt) & needForward) =/= 0.U
456    // val vaddrMatchFailed = vpmaskNotEqual && io.forward(i).valid
457    val vpmaskNotEqual = (
458      (RegNext(paddrModule.io.forwardMmask(i).asUInt) ^ RegNext(vaddrModule.io.forwardMmask(i).asUInt)) &
459      RegNext(needForward) &
460      RegNext(addrValidVec.asUInt)
461    ) =/= 0.U
462    val vaddrMatchFailed = vpmaskNotEqual && RegNext(io.forward(i).valid)
463    when (vaddrMatchFailed) {
464      XSInfo("vaddrMatchFailed: pc %x pmask %x vmask %x\n",
465        RegNext(io.forward(i).uop.pc),
466        RegNext(needForward & paddrModule.io.forwardMmask(i).asUInt),
467        RegNext(needForward & vaddrModule.io.forwardMmask(i).asUInt)
468      );
469    }
470    XSPerfAccumulate("vaddr_match_failed", vpmaskNotEqual)
471    XSPerfAccumulate("vaddr_match_really_failed", vaddrMatchFailed)
472
473    // Fast forward mask will be generated immediately (load_s1)
474    io.forward(i).forwardMaskFast := dataModule.io.forwardMaskFast(i)
475
476    // Forward result will be generated 1 cycle later (load_s2)
477    io.forward(i).forwardMask := dataModule.io.forwardMask(i)
478    io.forward(i).forwardData := dataModule.io.forwardData(i)
479    // If addr match, data not ready, mark it as dataInvalid
480    // load_s1: generate dataInvalid in load_s1 to set fastUop
481    val dataInvalidMask1 = (addrValidVec.asUInt & ~dataValidVec.asUInt & vaddrModule.io.forwardMmask(i).asUInt & forwardMask1.asUInt)
482    val dataInvalidMask2 = (addrValidVec.asUInt & ~dataValidVec.asUInt & vaddrModule.io.forwardMmask(i).asUInt & forwardMask2.asUInt)
483    val dataInvalidMask = dataInvalidMask1 | dataInvalidMask2
484    io.forward(i).dataInvalidFast := dataInvalidMask.orR
485
486    // make chisel happy
487    val dataInvalidMask1Reg = Wire(UInt(StoreQueueSize.W))
488    dataInvalidMask1Reg := RegNext(dataInvalidMask1)
489    // make chisel happy
490    val dataInvalidMask2Reg = Wire(UInt(StoreQueueSize.W))
491    dataInvalidMask2Reg := RegNext(dataInvalidMask2)
492    val dataInvalidMaskReg = dataInvalidMask1Reg | dataInvalidMask2Reg
493
494    // If SSID match, address not ready, mark it as addrInvalid
495    // load_s2: generate addrInvalid
496    val addrInvalidMask1 = (~addrValidVec.asUInt & storeSetHitVec.asUInt & forwardMask1.asUInt)
497    val addrInvalidMask2 = (~addrValidVec.asUInt & storeSetHitVec.asUInt & forwardMask2.asUInt)
498    // make chisel happy
499    val addrInvalidMask1Reg = Wire(UInt(StoreQueueSize.W))
500    addrInvalidMask1Reg := RegNext(addrInvalidMask1)
501    // make chisel happy
502    val addrInvalidMask2Reg = Wire(UInt(StoreQueueSize.W))
503    addrInvalidMask2Reg := RegNext(addrInvalidMask2)
504    val addrInvalidMaskReg = addrInvalidMask1Reg | addrInvalidMask2Reg
505
506    // load_s2
507    io.forward(i).dataInvalid := RegNext(io.forward(i).dataInvalidFast)
508    // check if vaddr forward mismatched
509    io.forward(i).matchInvalid := vaddrMatchFailed
510
511    // data invalid sq index
512    // check whether false fail
513    // check flag
514    val s2_differentFlag = RegNext(differentFlag)
515    val s2_enqPtrExt = RegNext(enqPtrExt(0))
516    val s2_deqPtrExt = RegNext(deqPtrExt(0))
517
518    // addr invalid sq index
519    // make chisel happy
520    val addrInvalidMaskRegWire = Wire(UInt(StoreQueueSize.W))
521    addrInvalidMaskRegWire := addrInvalidMaskReg
522    val addrInvalidFlag = addrInvalidMaskRegWire.orR
523    val hasInvalidAddr = (~addrValidVec.asUInt & needForward).orR
524
525    val addrInvalidSqIdx1 = OHToUInt(Reverse(PriorityEncoderOH(Reverse(addrInvalidMask1Reg))))
526    val addrInvalidSqIdx2 = OHToUInt(Reverse(PriorityEncoderOH(Reverse(addrInvalidMask2Reg))))
527    val addrInvalidSqIdx = Mux(addrInvalidMask2Reg.orR, addrInvalidSqIdx2, addrInvalidSqIdx1)
528
529    // store-set content management
530    //                +-----------------------+
531    //                | Search a SSID for the |
532    //                |    load operation     |
533    //                +-----------------------+
534    //                           |
535    //                           V
536    //                 +-------------------+
537    //                 | load wait strict? |
538    //                 +-------------------+
539    //                           |
540    //                           V
541    //               +----------------------+
542    //            Set|                      |Clean
543    //               V                      V
544    //  +------------------------+   +------------------------------+
545    //  | Waiting for all older  |   | Wait until the corresponding |
546    //  |   stores operations    |   | older store operations       |
547    //  +------------------------+   +------------------------------+
548
549
550
551    when (RegNext(io.forward(i).uop.loadWaitStrict)) {
552      io.forward(i).addrInvalidSqIdx := RegNext(io.forward(i).uop.sqIdx - 1.U)
553    } .elsewhen (addrInvalidFlag) {
554      io.forward(i).addrInvalidSqIdx.flag := Mux(!s2_differentFlag || addrInvalidSqIdx >= s2_deqPtrExt.value, s2_deqPtrExt.flag, s2_enqPtrExt.flag)
555      io.forward(i).addrInvalidSqIdx.value := addrInvalidSqIdx
556    } .otherwise {
557      // may be store inst has been written to sbuffer already.
558      io.forward(i).addrInvalidSqIdx := RegNext(io.forward(i).uop.sqIdx)
559    }
560    io.forward(i).addrInvalid := Mux(RegNext(io.forward(i).uop.loadWaitStrict), RegNext(hasInvalidAddr), addrInvalidFlag)
561
562    // data invalid sq index
563    // make chisel happy
564    val dataInvalidMaskRegWire = Wire(UInt(StoreQueueSize.W))
565    dataInvalidMaskRegWire := dataInvalidMaskReg
566    val dataInvalidFlag = dataInvalidMaskRegWire.orR
567
568    val dataInvalidSqIdx1 = OHToUInt(Reverse(PriorityEncoderOH(Reverse(dataInvalidMask1Reg))))
569    val dataInvalidSqIdx2 = OHToUInt(Reverse(PriorityEncoderOH(Reverse(dataInvalidMask2Reg))))
570    val dataInvalidSqIdx = Mux(dataInvalidMask2Reg.orR, dataInvalidSqIdx2, dataInvalidSqIdx1)
571
572    when (dataInvalidFlag) {
573      io.forward(i).dataInvalidSqIdx.flag := Mux(!s2_differentFlag || dataInvalidSqIdx >= s2_deqPtrExt.value, s2_deqPtrExt.flag, s2_enqPtrExt.flag)
574      io.forward(i).dataInvalidSqIdx.value := dataInvalidSqIdx
575    } .otherwise {
576      // may be store inst has been written to sbuffer already.
577      io.forward(i).dataInvalidSqIdx := RegNext(io.forward(i).uop.sqIdx)
578    }
579  }
580
581  /**
582    * Memory mapped IO / other uncached operations
583    *
584    * States:
585    * (1) writeback from store units: mark as pending
586    * (2) when they reach ROB's head, they can be sent to uncache channel
587    * (3) response from uncache channel: mark as datavalidmask.wen
588    * (4) writeback to ROB (and other units): mark as writebacked
589    * (5) ROB commits the instruction: same as normal instructions
590    */
591  //(2) when they reach ROB's head, they can be sent to uncache channel
592  val s_idle :: s_req :: s_resp :: s_wb :: s_wait :: Nil = Enum(5)
593  val uncacheState = RegInit(s_idle)
594  switch(uncacheState) {
595    is(s_idle) {
596      when(RegNext(io.rob.pendingst && pending(deqPtr) && allocated(deqPtr) && datavalid(deqPtr) && addrvalid(deqPtr))) {
597        uncacheState := s_req
598      }
599    }
600    is(s_req) {
601      when (io.uncache.req.fire) {
602        when (io.uncacheOutstanding) {
603          uncacheState := s_wb
604        } .otherwise {
605          uncacheState := s_resp
606        }
607      }
608    }
609    is(s_resp) {
610      when(io.uncache.resp.fire) {
611        uncacheState := s_wb
612      }
613    }
614    is(s_wb) {
615      when (io.mmioStout.fire) {
616        uncacheState := s_wait
617      }
618    }
619    is(s_wait) {
620      when(commitCount > 0.U) {
621        uncacheState := s_idle // ready for next mmio
622      }
623    }
624  }
625  io.uncache.req.valid := uncacheState === s_req
626
627  io.uncache.req.bits := DontCare
628  io.uncache.req.bits.cmd  := MemoryOpConstants.M_XWR
629  io.uncache.req.bits.addr := paddrModule.io.rdata(0) // data(deqPtr) -> rdata(0)
630  io.uncache.req.bits.data := shiftDataToLow(paddrModule.io.rdata(0), dataModule.io.rdata(0).data)
631  io.uncache.req.bits.mask := shiftMaskToLow(paddrModule.io.rdata(0), dataModule.io.rdata(0).mask)
632
633  // CBO op type check can be delayed for 1 cycle,
634  // as uncache op will not start in s_idle
635  val cbo_mmio_addr = paddrModule.io.rdata(0) >> 2 << 2 // clear lowest 2 bits for op
636  val cbo_mmio_op = 0.U //TODO
637  val cbo_mmio_data = cbo_mmio_addr | cbo_mmio_op
638  when(RegNext(LSUOpType.isCbo(uop(deqPtr).fuOpType))){
639    io.uncache.req.bits.addr := DontCare // TODO
640    io.uncache.req.bits.data := paddrModule.io.rdata(0)
641    io.uncache.req.bits.mask := DontCare // TODO
642  }
643
644  io.uncache.req.bits.atomic := atomic(RegNext(rdataPtrExtNext(0)).value)
645
646  when(io.uncache.req.fire){
647    // mmio store should not be committed until uncache req is sent
648    pending(deqPtr) := false.B
649
650    XSDebug(
651      p"uncache req: pc ${Hexadecimal(uop(deqPtr).pc)} " +
652      p"addr ${Hexadecimal(io.uncache.req.bits.addr)} " +
653      p"data ${Hexadecimal(io.uncache.req.bits.data)} " +
654      p"op ${Hexadecimal(io.uncache.req.bits.cmd)} " +
655      p"mask ${Hexadecimal(io.uncache.req.bits.mask)}\n"
656    )
657  }
658
659  // (3) response from uncache channel: mark as datavalid
660  io.uncache.resp.ready := true.B
661
662  // (4) writeback to ROB (and other units): mark as writebacked
663  io.mmioStout.valid := uncacheState === s_wb
664  io.mmioStout.bits.uop := uop(deqPtr)
665  io.mmioStout.bits.uop.sqIdx := deqPtrExt(0)
666  io.mmioStout.bits.data := shiftDataToLow(paddrModule.io.rdata(0), dataModule.io.rdata(0).data) // dataModule.io.rdata.read(deqPtr)
667  io.mmioStout.bits.debug.isMMIO := true.B
668  io.mmioStout.bits.debug.paddr := DontCare
669  io.mmioStout.bits.debug.isPerfCnt := false.B
670  io.mmioStout.bits.debug.vaddr := DontCare
671  // Remove MMIO inst from store queue after MMIO request is being sent
672  // That inst will be traced by uncache state machine
673  when (io.mmioStout.fire) {
674    allocated(deqPtr) := false.B
675  }
676
677  /**
678    * ROB commits store instructions (mark them as committed)
679    *
680    * (1) When store commits, mark it as committed.
681    * (2) They will not be cancelled and can be sent to lower level.
682    */
683  XSError(uncacheState =/= s_idle && uncacheState =/= s_wait && commitCount > 0.U,
684   "should not commit instruction when MMIO has not been finished\n")
685  for (i <- 0 until CommitWidth) {
686    when (commitCount > i.U) { // MMIO inst is not in progress
687      if(i == 0){
688        // MMIO inst should not update committed flag
689        // Note that commit count has been delayed for 1 cycle
690        when(uncacheState === s_idle){
691          committed(cmtPtrExt(0).value) := true.B
692        }
693      } else {
694        committed(cmtPtrExt(i).value) := true.B
695      }
696    }
697  }
698  cmtPtrExt := cmtPtrExt.map(_ + commitCount)
699
700  // committed stores will not be cancelled and can be sent to lower level.
701  // remove retired insts from sq, add retired store to sbuffer
702
703  // Read data from data module
704  // As store queue grows larger and larger, time needed to read data from data
705  // module keeps growing higher. Now we give data read a whole cycle.
706
707  // Vector stores are written to sbuffer by vector store flow queue rather than sq
708  when (io.vecStoreRetire.valid) {
709    assert(io.vecStoreRetire.bits === rdataPtrExt(0))
710    assert(vec(rdataPtrExt(0).value), "Vector store flow queue is trying to retire a scalar store")
711    assert(allocated(rdataPtrExt(0).value), "Vector store flow queue is trying to retire an invalid entry")
712    vec(rdataPtrExt(0).value) := false.B
713    allocated(rdataPtrExt(0).value) := false.B
714  }
715
716  val mmioStall = mmio(rdataPtrExt(0).value)
717  val vecStall = vec(rdataPtrExt(0).value)
718  for (i <- 0 until EnsbufferWidth) {
719    val ptr = rdataPtrExt(i).value
720    dataBuffer.io.enq(i).valid := allocated(ptr) && committed(ptr) && !mmioStall && !vecStall
721    // Note that store data/addr should both be valid after store's commit
722    assert(!dataBuffer.io.enq(i).valid || allvalid(ptr))
723    dataBuffer.io.enq(i).bits.addr     := paddrModule.io.rdata(i)
724    dataBuffer.io.enq(i).bits.vaddr    := vaddrModule.io.rdata(i)
725    dataBuffer.io.enq(i).bits.data     := dataModule.io.rdata(i).data
726    dataBuffer.io.enq(i).bits.mask     := dataModule.io.rdata(i).mask
727    dataBuffer.io.enq(i).bits.wline    := paddrModule.io.rlineflag(i)
728    dataBuffer.io.enq(i).bits.sqPtr    := rdataPtrExt(i)
729    dataBuffer.io.enq(i).bits.prefetch := prefetch(ptr)
730  }
731
732  // Send data stored in sbufferReqBitsReg to sbuffer
733  for (i <- 0 until EnsbufferWidth) {
734    io.sbuffer(i).valid := dataBuffer.io.deq(i).valid
735    dataBuffer.io.deq(i).ready := io.sbuffer(i).ready
736    // Write line request should have all 1 mask
737    assert(!(io.sbuffer(i).valid && io.sbuffer(i).bits.wline && !io.sbuffer(i).bits.mask.andR))
738    io.sbuffer(i).bits := DontCare
739    io.sbuffer(i).bits.cmd   := MemoryOpConstants.M_XWR
740    io.sbuffer(i).bits.addr  := dataBuffer.io.deq(i).bits.addr
741    io.sbuffer(i).bits.vaddr := dataBuffer.io.deq(i).bits.vaddr
742    io.sbuffer(i).bits.data  := dataBuffer.io.deq(i).bits.data
743    io.sbuffer(i).bits.mask  := dataBuffer.io.deq(i).bits.mask
744    io.sbuffer(i).bits.wline := dataBuffer.io.deq(i).bits.wline
745    io.sbuffer(i).bits.prefetch := dataBuffer.io.deq(i).bits.prefetch
746
747    // io.sbuffer(i).fire is RegNexted, as sbuffer data write takes 2 cycles.
748    // Before data write finish, sbuffer is unable to provide store to load
749    // forward data. As an workaround, deqPtrExt and allocated flag update
750    // is delayed so that load can get the right data from store queue.
751    val ptr = dataBuffer.io.deq(i).bits.sqPtr.value
752    when (RegNext(io.sbuffer(i).fire)) {
753      allocated(RegEnable(ptr, io.sbuffer(i).fire)) := false.B
754      XSDebug("sbuffer "+i+" fire: ptr %d\n", ptr)
755    }
756  }
757  (1 until EnsbufferWidth).foreach(i => when(io.sbuffer(i).fire) { assert(io.sbuffer(i - 1).fire) })
758  if (coreParams.dcacheParametersOpt.isEmpty) {
759    for (i <- 0 until EnsbufferWidth) {
760      val ptr = deqPtrExt(i).value
761      val fakeRAM = Module(new RAMHelper(64L * 1024 * 1024 * 1024))
762      fakeRAM.clk   := clock
763      fakeRAM.en    := allocated(ptr) && committed(ptr) && !mmio(ptr)
764      fakeRAM.rIdx  := 0.U
765      fakeRAM.wIdx  := (paddrModule.io.rdata(i) - "h80000000".U) >> 3
766      fakeRAM.wdata := Mux(paddrModule.io.rdata(i)(3), dataModule.io.rdata(i).data(127,64), dataModule.io.rdata(i).data(63,0))
767      fakeRAM.wmask := Mux(paddrModule.io.rdata(i)(3), MaskExpand(dataModule.io.rdata(i).mask(15,8)), MaskExpand(dataModule.io.rdata(i).mask(7,0)))
768      fakeRAM.wen   := allocated(ptr) && committed(ptr) && !mmio(ptr)
769    }
770  }
771
772  // Read vaddr for mem exception
773  io.exceptionAddr.vaddr := vaddrModule.io.rdata(EnsbufferWidth)
774
775  // misprediction recovery / exception redirect
776  // invalidate sq term using robIdx
777  val needCancel = Wire(Vec(StoreQueueSize, Bool()))
778  for (i <- 0 until StoreQueueSize) {
779    needCancel(i) := uop(i).robIdx.needFlush(io.brqRedirect) && allocated(i) && !committed(i)
780    when (needCancel(i)) {
781      allocated(i) := false.B
782    }
783  }
784
785 /**
786* update pointers
787**/
788  val lastEnqCancel = PopCount(RegNext(VecInit(canEnqueue.zip(enqCancel).map(x => x._1 && x._2)))) // 1 cycle after redirect
789  val lastCycleCancelCount = PopCount(RegNext(needCancel)) // 1 cycle after redirect
790  val lastCycleRedirect = RegNext(io.brqRedirect.valid) // 1 cycle after redirect
791  val enqNumber = Mux(!lastCycleRedirect&&io.enq.canAccept && io.enq.lqCanAccept, PopCount(io.enq.req.map(_.valid)), 0.U) // 1 cycle after redirect
792
793  val lastlastCycleRedirect=RegNext(lastCycleRedirect)// 2 cycle after redirect
794  val redirectCancelCount = RegEnable(lastCycleCancelCount + lastEnqCancel, lastCycleRedirect) // 2 cycle after redirect
795
796  when (lastlastCycleRedirect) {
797    // we recover the pointers in 2 cycle after redirect for better timing
798    enqPtrExt := VecInit(enqPtrExt.map(_ - redirectCancelCount))
799  }.otherwise {
800    // lastCycleRedirect.valid or nornal case
801    // when lastCycleRedirect.valid, enqNumber === 0.U, enqPtrExt will not change
802    enqPtrExt := VecInit(enqPtrExt.map(_ + enqNumber))
803  }
804  assert(!(lastCycleRedirect && enqNumber =/= 0.U))
805
806  deqPtrExt := deqPtrExtNext
807  rdataPtrExt := rdataPtrExtNext
808
809  // val dequeueCount = Mux(io.sbuffer(1).fire, 2.U, Mux(io.sbuffer(0).fire || io.mmioStout.fire, 1.U, 0.U))
810
811  // If redirect at T0, sqCancelCnt is at T2
812  io.sqCancelCnt := redirectCancelCount
813  val ForceWriteUpper = Wire(UInt(log2Up(StoreQueueSize + 1).W))
814  ForceWriteUpper := Constantin.createRecord("ForceWriteUpper_"+p(XSCoreParamsKey).HartId.toString(), initValue = 60.U)
815  val ForceWriteLower = Wire(UInt(log2Up(StoreQueueSize + 1).W))
816  ForceWriteLower := Constantin.createRecord("ForceWriteLower_"+p(XSCoreParamsKey).HartId.toString(), initValue = 55.U)
817
818  val valid_cnt = PopCount(allocated)
819  io.force_write := RegNext(Mux(valid_cnt >= ForceWriteUpper, true.B, valid_cnt >= ForceWriteLower && io.force_write), init = false.B)
820
821  // io.sqempty will be used by sbuffer
822  // We delay it for 1 cycle for better timing
823  // When sbuffer need to check if it is empty, the pipeline is blocked, which means delay io.sqempty
824  // for 1 cycle will also promise that sq is empty in that cycle
825  io.sqEmpty := RegNext(
826    enqPtrExt(0).value === deqPtrExt(0).value &&
827    enqPtrExt(0).flag === deqPtrExt(0).flag
828  )
829  // perf counter
830  QueuePerf(StoreQueueSize, validCount, !allowEnqueue)
831  io.sqFull := !allowEnqueue
832  XSPerfAccumulate("mmioCycle", uncacheState =/= s_idle) // lq is busy dealing with uncache req
833  XSPerfAccumulate("mmioCnt", io.uncache.req.fire)
834  XSPerfAccumulate("mmio_wb_success", io.mmioStout.fire)
835  XSPerfAccumulate("mmio_wb_blocked", io.mmioStout.valid && !io.mmioStout.ready)
836  XSPerfAccumulate("validEntryCnt", distanceBetween(enqPtrExt(0), deqPtrExt(0)))
837  XSPerfAccumulate("cmtEntryCnt", distanceBetween(cmtPtrExt(0), deqPtrExt(0)))
838  XSPerfAccumulate("nCmtEntryCnt", distanceBetween(enqPtrExt(0), cmtPtrExt(0)))
839
840  val perfValidCount = distanceBetween(enqPtrExt(0), deqPtrExt(0))
841  val perfEvents = Seq(
842    ("mmioCycle      ", uncacheState =/= s_idle),
843    ("mmioCnt        ", io.uncache.req.fire),
844    ("mmio_wb_success", io.mmioStout.fire),
845    ("mmio_wb_blocked", io.mmioStout.valid && !io.mmioStout.ready),
846    ("stq_1_4_valid  ", (perfValidCount < (StoreQueueSize.U/4.U))),
847    ("stq_2_4_valid  ", (perfValidCount > (StoreQueueSize.U/4.U)) & (perfValidCount <= (StoreQueueSize.U/2.U))),
848    ("stq_3_4_valid  ", (perfValidCount > (StoreQueueSize.U/2.U)) & (perfValidCount <= (StoreQueueSize.U*3.U/4.U))),
849    ("stq_4_4_valid  ", (perfValidCount > (StoreQueueSize.U*3.U/4.U))),
850  )
851  generatePerfEvent()
852
853  // debug info
854  XSDebug("enqPtrExt %d:%d deqPtrExt %d:%d\n", enqPtrExt(0).flag, enqPtr, deqPtrExt(0).flag, deqPtr)
855
856  def PrintFlag(flag: Bool, name: String): Unit = {
857    when(flag) {
858      XSDebug(false, true.B, name)
859    }.otherwise {
860      XSDebug(false, true.B, " ")
861    }
862  }
863
864  for (i <- 0 until StoreQueueSize) {
865    XSDebug(i + ": pc %x va %x pa %x data %x ",
866      uop(i).pc,
867      debug_vaddr(i),
868      debug_paddr(i),
869      debug_data(i)
870    )
871    PrintFlag(allocated(i), "a")
872    PrintFlag(allocated(i) && addrvalid(i), "a")
873    PrintFlag(allocated(i) && datavalid(i), "d")
874    PrintFlag(allocated(i) && committed(i), "c")
875    PrintFlag(allocated(i) && pending(i), "p")
876    PrintFlag(allocated(i) && mmio(i), "m")
877    XSDebug(false, true.B, "\n")
878  }
879
880}
881