1/*************************************************************************************** 2* Copyright (c) 2020-2021 Institute of Computing Technology, Chinese Academy of Sciences 3* Copyright (c) 2020-2021 Peng Cheng Laboratory 4* 5* XiangShan is licensed under Mulan PSL v2. 6* You can use this software according to the terms and conditions of the Mulan PSL v2. 7* You may obtain a copy of Mulan PSL v2 at: 8* http://license.coscl.org.cn/MulanPSL2 9* 10* THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND, 11* EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT, 12* MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE. 13* 14* See the Mulan PSL v2 for more details. 15***************************************************************************************/ 16 17package xiangshan.mem 18 19import chipsalliance.rocketchip.config.Parameters 20import chisel3._ 21import chisel3.util._ 22import utils._ 23import xiangshan._ 24import xiangshan.cache._ 25import xiangshan.cache.{DCacheWordIO, DCacheLineIO, MemoryOpConstants} 26import xiangshan.backend.roq.{RoqLsqIO, RoqPtr} 27import difftest._ 28import device.RAMHelper 29 30class SqPtr(implicit p: Parameters) extends CircularQueuePtr[SqPtr]( 31 p => p(XSCoreParamsKey).StoreQueueSize 32){ 33 override def cloneType = (new SqPtr).asInstanceOf[this.type] 34} 35 36object SqPtr { 37 def apply(f: Bool, v: UInt)(implicit p: Parameters): SqPtr = { 38 val ptr = Wire(new SqPtr) 39 ptr.flag := f 40 ptr.value := v 41 ptr 42 } 43} 44 45class SqEnqIO(implicit p: Parameters) extends XSBundle { 46 val canAccept = Output(Bool()) 47 val lqCanAccept = Input(Bool()) 48 val needAlloc = Vec(RenameWidth, Input(Bool())) 49 val req = Vec(RenameWidth, Flipped(ValidIO(new MicroOp))) 50 val resp = Vec(RenameWidth, Output(new SqPtr)) 51} 52 53// Store Queue 54class StoreQueue(implicit p: Parameters) extends XSModule with HasDCacheParameters with HasCircularQueuePtrHelper { 55 val io = IO(new Bundle() { 56 val enq = new SqEnqIO 57 val brqRedirect = Flipped(ValidIO(new Redirect)) 58 val flush = Input(Bool()) 59 val storeIn = Vec(StorePipelineWidth, Flipped(Valid(new LsPipelineBundle))) // store addr, data is not included 60 val storeDataIn = Vec(StorePipelineWidth, Flipped(Valid(new StoreDataBundle))) // store data, send to sq from rs 61 val sbuffer = Vec(StorePipelineWidth, Decoupled(new SBufferWordReq)) // write commited store to sbuffer 62 val mmioStout = DecoupledIO(new ExuOutput) // writeback uncached store 63 val forward = Vec(LoadPipelineWidth, Flipped(new PipeLoadForwardQueryIO)) 64 val roq = Flipped(new RoqLsqIO) 65 val uncache = new DCacheWordIO 66 // val refill = Flipped(Valid(new DCacheLineReq )) 67 val exceptionAddr = new ExceptionAddrIO 68 val sqempty = Output(Bool()) 69 val issuePtrExt = Output(new SqPtr) // used to wake up delayed load/store 70 val sqFull = Output(Bool()) 71 }) 72 73 println("StoreQueue: size:" + StoreQueueSize) 74 75 // data modules 76 val uop = Reg(Vec(StoreQueueSize, new MicroOp)) 77 // val data = Reg(Vec(StoreQueueSize, new LsqEntry)) 78 val dataModule = Module(new SQDataModule( 79 numEntries = StoreQueueSize, 80 numRead = StorePipelineWidth, 81 numWrite = StorePipelineWidth, 82 numForward = StorePipelineWidth 83 )) 84 dataModule.io := DontCare 85 val paddrModule = Module(new SQAddrModule( 86 dataWidth = PAddrBits, 87 numEntries = StoreQueueSize, 88 numRead = StorePipelineWidth, 89 numWrite = StorePipelineWidth, 90 numForward = StorePipelineWidth 91 )) 92 paddrModule.io := DontCare 93 val vaddrModule = Module(new SQAddrModule( 94 dataWidth = VAddrBits, 95 numEntries = StoreQueueSize, 96 numRead = StorePipelineWidth + 1, // sbuffer 2 + badvaddr 1 (TODO) 97 numWrite = StorePipelineWidth, 98 numForward = StorePipelineWidth 99 )) 100 vaddrModule.io := DontCare 101 102 // state & misc 103 val allocated = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // sq entry has been allocated 104 val addrvalid = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // non-mmio addr is valid 105 val datavalid = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // non-mmio data is valid 106 val allvalid = VecInit((0 until StoreQueueSize).map(i => addrvalid(i) && datavalid(i))) // non-mmio data & addr is valid 107 val commited = Reg(Vec(StoreQueueSize, Bool())) // inst has been commited by roq 108 val pending = Reg(Vec(StoreQueueSize, Bool())) // mmio pending: inst is an mmio inst, it will not be executed until it reachs the end of roq 109 val mmio = Reg(Vec(StoreQueueSize, Bool())) // mmio: inst is an mmio inst 110 111 // ptr 112 require(StoreQueueSize > RenameWidth) 113 val enqPtrExt = RegInit(VecInit((0 until RenameWidth).map(_.U.asTypeOf(new SqPtr)))) 114 val deqPtrExt = RegInit(VecInit((0 until StorePipelineWidth).map(_.U.asTypeOf(new SqPtr)))) 115 val cmtPtrExt = RegInit(VecInit((0 until CommitWidth).map(_.U.asTypeOf(new SqPtr)))) 116 val issuePtrExt = RegInit(0.U.asTypeOf(new SqPtr)) 117 val validCounter = RegInit(0.U(log2Ceil(LoadQueueSize + 1).W)) 118 val allowEnqueue = RegInit(true.B) 119 120 val enqPtr = enqPtrExt(0).value 121 val deqPtr = deqPtrExt(0).value 122 val cmtPtr = cmtPtrExt(0).value 123 124 val deqMask = UIntToMask(deqPtr, StoreQueueSize) 125 val enqMask = UIntToMask(enqPtr, StoreQueueSize) 126 127 val commitCount = RegNext(io.roq.scommit) 128 129 // Read dataModule 130 // deqPtrExtNext and deqPtrExtNext+1 entry will be read from dataModule 131 // if !sbuffer.fire(), read the same ptr 132 // if sbuffer.fire(), read next 133 val deqPtrExtNext = WireInit(Mux(io.sbuffer(1).fire(), 134 VecInit(deqPtrExt.map(_ + 2.U)), 135 Mux(io.sbuffer(0).fire() || io.mmioStout.fire(), 136 VecInit(deqPtrExt.map(_ + 1.U)), 137 deqPtrExt 138 ) 139 )) 140 for (i <- 0 until StorePipelineWidth) { 141 dataModule.io.raddr(i) := deqPtrExtNext(i).value 142 paddrModule.io.raddr(i) := deqPtrExtNext(i).value 143 vaddrModule.io.raddr(i) := deqPtrExtNext(i).value 144 } 145 146 // no inst will be commited 1 cycle before tval update 147 vaddrModule.io.raddr(StorePipelineWidth) := (cmtPtrExt(0) + commitCount).value 148 149 /** 150 * Enqueue at dispatch 151 * 152 * Currently, StoreQueue only allows enqueue when #emptyEntries > RenameWidth(EnqWidth) 153 */ 154 io.enq.canAccept := allowEnqueue 155 for (i <- 0 until RenameWidth) { 156 val offset = if (i == 0) 0.U else PopCount(io.enq.needAlloc.take(i)) 157 val sqIdx = enqPtrExt(offset) 158 val index = sqIdx.value 159 when (io.enq.req(i).valid && io.enq.canAccept && io.enq.lqCanAccept && !(io.brqRedirect.valid || io.flush)) { 160 uop(index) := io.enq.req(i).bits 161 allocated(index) := true.B 162 datavalid(index) := false.B 163 addrvalid(index) := false.B 164 commited(index) := false.B 165 pending(index) := false.B 166 } 167 io.enq.resp(i) := sqIdx 168 } 169 XSDebug(p"(ready, valid): ${io.enq.canAccept}, ${Binary(Cat(io.enq.req.map(_.valid)))}\n") 170 171 /** 172 * Update issuePtr when issue from rs 173 */ 174 // update issuePtr 175 val IssuePtrMoveStride = 4 176 require(IssuePtrMoveStride >= 2) 177 178 val issueLookupVec = (0 until IssuePtrMoveStride).map(issuePtrExt + _.U) 179 val issueLookup = issueLookupVec.map(ptr => allocated(ptr.value) && addrvalid(ptr.value) && datavalid(ptr.value) && ptr =/= enqPtrExt(0)) 180 val nextIssuePtr = issuePtrExt + PriorityEncoder(VecInit(issueLookup.map(!_) :+ true.B)) 181 issuePtrExt := nextIssuePtr 182 183 when (io.brqRedirect.valid || io.flush) { 184 issuePtrExt := Mux( 185 isAfter(cmtPtrExt(0), deqPtrExt(0)), 186 cmtPtrExt(0), 187 deqPtrExtNext(0) // for mmio insts, deqPtr may be ahead of cmtPtr 188 ) 189 } 190 // send issuePtrExt to rs 191 // io.issuePtrExt := cmtPtrExt(0) 192 io.issuePtrExt := issuePtrExt 193 194 /** 195 * Writeback store from store units 196 * 197 * Most store instructions writeback to regfile in the previous cycle. 198 * However, 199 * (1) For an mmio instruction with exceptions, we need to mark it as addrvalid 200 * (in this way it will trigger an exception when it reaches ROB's head) 201 * instead of pending to avoid sending them to lower level. 202 * (2) For an mmio instruction without exceptions, we mark it as pending. 203 * When the instruction reaches ROB's head, StoreQueue sends it to uncache channel. 204 * Upon receiving the response, StoreQueue writes back the instruction 205 * through arbiter with store units. It will later commit as normal. 206 */ 207 208 // Write addr to sq 209 for (i <- 0 until StorePipelineWidth) { 210 paddrModule.io.wen(i) := false.B 211 vaddrModule.io.wen(i) := false.B 212 dataModule.io.mask.wen(i) := false.B 213 val stWbIndex = io.storeIn(i).bits.uop.sqIdx.value 214 when (io.storeIn(i).fire()) { 215 addrvalid(stWbIndex) := true.B//!io.storeIn(i).bits.mmio 216 pending(stWbIndex) := io.storeIn(i).bits.mmio 217 218 dataModule.io.mask.waddr(i) := stWbIndex 219 dataModule.io.mask.wdata(i) := io.storeIn(i).bits.mask 220 dataModule.io.mask.wen(i) := true.B 221 222 paddrModule.io.waddr(i) := stWbIndex 223 paddrModule.io.wdata(i) := io.storeIn(i).bits.paddr 224 paddrModule.io.wen(i) := true.B 225 226 vaddrModule.io.waddr(i) := stWbIndex 227 vaddrModule.io.wdata(i) := io.storeIn(i).bits.vaddr 228 vaddrModule.io.wen(i) := true.B 229 230 mmio(stWbIndex) := io.storeIn(i).bits.mmio 231 232 uop(stWbIndex).debugInfo := io.storeIn(i).bits.uop.debugInfo 233 XSInfo("store addr write to sq idx %d pc 0x%x vaddr %x paddr %x mmio %x\n", 234 io.storeIn(i).bits.uop.sqIdx.value, 235 io.storeIn(i).bits.uop.cf.pc, 236 io.storeIn(i).bits.vaddr, 237 io.storeIn(i).bits.paddr, 238 io.storeIn(i).bits.mmio 239 ) 240 } 241 } 242 243 // Write data to sq 244 for (i <- 0 until StorePipelineWidth) { 245 dataModule.io.data.wen(i) := false.B 246 io.roq.storeDataRoqWb(i).valid := false.B 247 io.roq.storeDataRoqWb(i).bits := DontCare 248 val stWbIndex = io.storeDataIn(i).bits.uop.sqIdx.value 249 when (io.storeDataIn(i).fire()) { 250 datavalid(stWbIndex) := true.B 251 252 dataModule.io.data.waddr(i) := stWbIndex 253 dataModule.io.data.wdata(i) := genWdata(io.storeDataIn(i).bits.data, io.storeDataIn(i).bits.uop.ctrl.fuOpType(1,0)) 254 dataModule.io.data.wen(i) := true.B 255 256 io.roq.storeDataRoqWb(i).valid := true.B 257 io.roq.storeDataRoqWb(i).bits := io.storeDataIn(i).bits.uop.roqIdx 258 259 XSInfo("store data write to sq idx %d pc 0x%x data %x -> %x\n", 260 io.storeDataIn(i).bits.uop.sqIdx.value, 261 io.storeDataIn(i).bits.uop.cf.pc, 262 io.storeDataIn(i).bits.data, 263 dataModule.io.data.wdata(i) 264 ) 265 } 266 } 267 268 /** 269 * load forward query 270 * 271 * Check store queue for instructions that is older than the load. 272 * The response will be valid at the next cycle after req. 273 */ 274 // check over all lq entries and forward data from the first matched store 275 for (i <- 0 until LoadPipelineWidth) { 276 // Compare deqPtr (deqPtr) and forward.sqIdx, we have two cases: 277 // (1) if they have the same flag, we need to check range(tail, sqIdx) 278 // (2) if they have different flags, we need to check range(tail, LoadQueueSize) and range(0, sqIdx) 279 // Forward1: Mux(same_flag, range(tail, sqIdx), range(tail, LoadQueueSize)) 280 // Forward2: Mux(same_flag, 0.U, range(0, sqIdx) ) 281 // i.e. forward1 is the target entries with the same flag bits and forward2 otherwise 282 val differentFlag = deqPtrExt(0).flag =/= io.forward(i).sqIdx.flag 283 val forwardMask = io.forward(i).sqIdxMask 284 // all addrvalid terms need to be checked 285 val addrValidVec = WireInit(VecInit((0 until StoreQueueSize).map(i => addrvalid(i) && allocated(i)))) 286 val dataValidVec = WireInit(VecInit((0 until StoreQueueSize).map(i => datavalid(i)))) 287 val allValidVec = WireInit(VecInit((0 until StoreQueueSize).map(i => addrvalid(i) && datavalid(i) && allocated(i)))) 288 val canForward1 = Mux(differentFlag, ~deqMask, deqMask ^ forwardMask) & allValidVec.asUInt 289 val canForward2 = Mux(differentFlag, forwardMask, 0.U(StoreQueueSize.W)) & allValidVec.asUInt 290 val needForward = Mux(differentFlag, ~deqMask | forwardMask, deqMask ^ forwardMask) 291 292 XSDebug(p"$i f1 ${Binary(canForward1)} f2 ${Binary(canForward2)} " + 293 p"sqIdx ${io.forward(i).sqIdx} pa ${Hexadecimal(io.forward(i).paddr)}\n" 294 ) 295 296 // do real fwd query (cam lookup in load_s1) 297 dataModule.io.needForward(i)(0) := canForward1 & vaddrModule.io.forwardMmask(i).asUInt 298 dataModule.io.needForward(i)(1) := canForward2 & vaddrModule.io.forwardMmask(i).asUInt 299 300 vaddrModule.io.forwardMdata(i) := io.forward(i).vaddr 301 paddrModule.io.forwardMdata(i) := io.forward(i).paddr 302 303 // vaddr cam result does not equal to paddr cam result 304 // replay needed 305 // val vpmaskNotEqual = ((paddrModule.io.forwardMmask(i).asUInt ^ vaddrModule.io.forwardMmask(i).asUInt) & needForward) =/= 0.U 306 // val vaddrMatchFailed = vpmaskNotEqual && io.forward(i).valid 307 val vpmaskNotEqual = ((RegNext(paddrModule.io.forwardMmask(i).asUInt) ^ RegNext(vaddrModule.io.forwardMmask(i).asUInt)) & RegNext(needForward)) =/= 0.U 308 val vaddrMatchFailed = vpmaskNotEqual && RegNext(io.forward(i).valid) 309 when (vaddrMatchFailed) { 310 XSInfo("vaddrMatchFailed: pc %x pmask %x vmask %x\n", 311 RegNext(io.forward(i).uop.cf.pc), 312 RegNext(needForward & paddrModule.io.forwardMmask(i).asUInt), 313 RegNext(needForward & vaddrModule.io.forwardMmask(i).asUInt) 314 ); 315 } 316 XSPerfAccumulate("vaddr_match_failed", vpmaskNotEqual) 317 XSPerfAccumulate("vaddr_match_really_failed", vaddrMatchFailed) 318 319 // Fast forward mask will be generated immediately (load_s1) 320 io.forward(i).forwardMaskFast := dataModule.io.forwardMaskFast(i) 321 322 // Forward result will be generated 1 cycle later (load_s2) 323 io.forward(i).forwardMask := dataModule.io.forwardMask(i) 324 io.forward(i).forwardData := dataModule.io.forwardData(i) 325 326 // If addr match, data not ready, mark it as dataInvalid 327 // load_s1: generate dataInvalid in load_s1 to set fastUop to 328 io.forward(i).dataInvalidFast := (addrValidVec.asUInt & ~dataValidVec.asUInt & vaddrModule.io.forwardMmask(i).asUInt & needForward).orR 329 // load_s2 330 io.forward(i).dataInvalid := RegNext(io.forward(i).dataInvalidFast) 331 332 // load_s2 333 // check if vaddr forward mismatched 334 io.forward(i).matchInvalid := vaddrMatchFailed 335 } 336 337 /** 338 * Memory mapped IO / other uncached operations 339 * 340 * States: 341 * (1) writeback from store units: mark as pending 342 * (2) when they reach ROB's head, they can be sent to uncache channel 343 * (3) response from uncache channel: mark as datavalidmask.wen 344 * (4) writeback to ROB (and other units): mark as writebacked 345 * (5) ROB commits the instruction: same as normal instructions 346 */ 347 //(2) when they reach ROB's head, they can be sent to uncache channel 348 val s_idle :: s_req :: s_resp :: s_wb :: s_wait :: Nil = Enum(5) 349 val uncacheState = RegInit(s_idle) 350 switch(uncacheState) { 351 is(s_idle) { 352 when(io.roq.pendingst && pending(deqPtr) && allocated(deqPtr) && datavalid(deqPtr) && addrvalid(deqPtr)) { 353 uncacheState := s_req 354 } 355 } 356 is(s_req) { 357 when(io.uncache.req.fire()) { 358 uncacheState := s_resp 359 } 360 } 361 is(s_resp) { 362 when(io.uncache.resp.fire()) { 363 uncacheState := s_wb 364 } 365 } 366 is(s_wb) { 367 when (io.mmioStout.fire()) { 368 uncacheState := s_wait 369 } 370 } 371 is(s_wait) { 372 when(io.roq.commit) { 373 uncacheState := s_idle // ready for next mmio 374 } 375 } 376 } 377 io.uncache.req.valid := uncacheState === s_req 378 379 io.uncache.req.bits.cmd := MemoryOpConstants.M_XWR 380 io.uncache.req.bits.addr := paddrModule.io.rdata(0) // data(deqPtr) -> rdata(0) 381 io.uncache.req.bits.data := dataModule.io.rdata(0).data 382 io.uncache.req.bits.mask := dataModule.io.rdata(0).mask 383 384 io.uncache.req.bits.id := DontCare 385 386 when(io.uncache.req.fire()){ 387 // mmio store should not be committed until uncache req is sent 388 pending(deqPtr) := false.B 389 390 XSDebug( 391 p"uncache req: pc ${Hexadecimal(uop(deqPtr).cf.pc)} " + 392 p"addr ${Hexadecimal(io.uncache.req.bits.addr)} " + 393 p"data ${Hexadecimal(io.uncache.req.bits.data)} " + 394 p"op ${Hexadecimal(io.uncache.req.bits.cmd)} " + 395 p"mask ${Hexadecimal(io.uncache.req.bits.mask)}\n" 396 ) 397 } 398 399 // (3) response from uncache channel: mark as datavalid 400 io.uncache.resp.ready := true.B 401 402 // (4) writeback to ROB (and other units): mark as writebacked 403 io.mmioStout.valid := uncacheState === s_wb 404 io.mmioStout.bits.uop := uop(deqPtr) 405 io.mmioStout.bits.uop.sqIdx := deqPtrExt(0) 406 io.mmioStout.bits.data := dataModule.io.rdata(0).data // dataModule.io.rdata.read(deqPtr) 407 io.mmioStout.bits.redirectValid := false.B 408 io.mmioStout.bits.redirect := DontCare 409 io.mmioStout.bits.debug.isMMIO := true.B 410 io.mmioStout.bits.debug.paddr := DontCare 411 io.mmioStout.bits.debug.isPerfCnt := false.B 412 io.mmioStout.bits.fflags := DontCare 413 // Remove MMIO inst from store queue after MMIO request is being sent 414 // That inst will be traced by uncache state machine 415 when (io.mmioStout.fire()) { 416 allocated(deqPtr) := false.B 417 } 418 419 /** 420 * ROB commits store instructions (mark them as commited) 421 * 422 * (1) When store commits, mark it as commited. 423 * (2) They will not be cancelled and can be sent to lower level. 424 */ 425 XSError(uncacheState === s_wait && commitCount > 1.U, "should only commit one instruction when there's an MMIO\n") 426 XSError(uncacheState =/= s_idle && uncacheState =/= s_wait && commitCount > 0.U, 427 "should not commit instruction when MMIO has not been finished\n") 428 for (i <- 0 until CommitWidth) { 429 when (commitCount > i.U && uncacheState === s_idle) { // MMIO inst is not in progress 430 commited(cmtPtrExt(i).value) := true.B 431 } 432 } 433 cmtPtrExt := cmtPtrExt.map(_ + commitCount) 434 435 // Commited stores will not be cancelled and can be sent to lower level. 436 // remove retired insts from sq, add retired store to sbuffer 437 for (i <- 0 until StorePipelineWidth) { 438 // We use RegNext to prepare data for sbuffer 439 val ptr = deqPtrExt(i).value 440 // if !sbuffer.fire(), read the same ptr 441 // if sbuffer.fire(), read next 442 io.sbuffer(i).valid := allocated(ptr) && commited(ptr) && !mmio(ptr) 443 // Note that store data/addr should both be valid after store's commit 444 assert(!io.sbuffer(i).valid || allvalid(ptr)) 445 io.sbuffer(i).bits.cmd := MemoryOpConstants.M_XWR 446 io.sbuffer(i).bits.addr := paddrModule.io.rdata(i) 447 io.sbuffer(i).bits.vaddr := vaddrModule.io.rdata(i) 448 io.sbuffer(i).bits.data := dataModule.io.rdata(i).data 449 io.sbuffer(i).bits.mask := dataModule.io.rdata(i).mask 450 io.sbuffer(i).bits.id := DontCare 451 452 when (io.sbuffer(i).fire()) { 453 allocated(ptr) := false.B 454 XSDebug("sbuffer "+i+" fire: ptr %d\n", ptr) 455 } 456 } 457 when (io.sbuffer(1).fire()) { 458 assert(io.sbuffer(0).fire()) 459 } 460 if (useFakeDCache) { 461 for (i <- 0 until StorePipelineWidth) { 462 val ptr = deqPtrExt(i).value 463 val fakeRAM = Module(new RAMHelper(64L * 1024 * 1024 * 1024)) 464 fakeRAM.clk := clock 465 fakeRAM.en := allocated(ptr) && commited(ptr) && !mmio(ptr) 466 fakeRAM.rIdx := 0.U 467 fakeRAM.wIdx := (paddrModule.io.rdata(i) - "h80000000".U) >> 3 468 fakeRAM.wdata := dataModule.io.rdata(i).data 469 fakeRAM.wmask := MaskExpand(dataModule.io.rdata(i).mask) 470 fakeRAM.wen := allocated(ptr) && commited(ptr) && !mmio(ptr) 471 } 472 } 473 474 if (!env.FPGAPlatform) { 475 for (i <- 0 until StorePipelineWidth) { 476 val storeCommit = io.sbuffer(i).fire() 477 val waddr = SignExt(io.sbuffer(i).bits.addr, 64) 478 val wdata = io.sbuffer(i).bits.data & MaskExpand(io.sbuffer(i).bits.mask) 479 val wmask = io.sbuffer(i).bits.mask 480 481 val difftest = Module(new DifftestStoreEvent) 482 difftest.io.clock := clock 483 difftest.io.coreid := hardId.U 484 difftest.io.index := i.U 485 difftest.io.valid := storeCommit 486 difftest.io.storeAddr := waddr 487 difftest.io.storeData := wdata 488 difftest.io.storeMask := wmask 489 } 490 } 491 492 // Read vaddr for mem exception 493 io.exceptionAddr.vaddr := vaddrModule.io.rdata(StorePipelineWidth) 494 495 // misprediction recovery / exception redirect 496 // invalidate sq term using robIdx 497 val needCancel = Wire(Vec(StoreQueueSize, Bool())) 498 for (i <- 0 until StoreQueueSize) { 499 needCancel(i) := uop(i).roqIdx.needFlush(io.brqRedirect, io.flush) && allocated(i) && !commited(i) 500 when (needCancel(i)) { 501 allocated(i) := false.B 502 } 503 } 504 505 /** 506 * update pointers 507 */ 508 val lastCycleRedirect = RegNext(io.brqRedirect.valid) 509 val lastCycleFlush = RegNext(io.flush) 510 val lastCycleCancelCount = PopCount(RegNext(needCancel)) 511 // when io.brqRedirect.valid, we don't allow eneuque even though it may fire. 512 val enqNumber = Mux(io.enq.canAccept && io.enq.lqCanAccept && !(io.brqRedirect.valid || io.flush), PopCount(io.enq.req.map(_.valid)), 0.U) 513 when (lastCycleRedirect || lastCycleFlush) { 514 // we recover the pointers in the next cycle after redirect 515 enqPtrExt := VecInit(enqPtrExt.map(_ - lastCycleCancelCount)) 516 }.otherwise { 517 enqPtrExt := VecInit(enqPtrExt.map(_ + enqNumber)) 518 } 519 520 deqPtrExt := deqPtrExtNext 521 522 val dequeueCount = Mux(io.sbuffer(1).fire(), 2.U, Mux(io.sbuffer(0).fire() || io.mmioStout.fire(), 1.U, 0.U)) 523 val validCount = distanceBetween(enqPtrExt(0), deqPtrExt(0)) 524 525 allowEnqueue := validCount + enqNumber <= (StoreQueueSize - RenameWidth).U 526 527 // io.sqempty will be used by sbuffer 528 // We delay it for 1 cycle for better timing 529 // When sbuffer need to check if it is empty, the pipeline is blocked, which means delay io.sqempty 530 // for 1 cycle will also promise that sq is empty in that cycle 531 io.sqempty := RegNext(enqPtrExt(0).value === deqPtrExt(0).value && enqPtrExt(0).flag === deqPtrExt(0).flag) 532 533 // perf counter 534 QueuePerf(StoreQueueSize, validCount, !allowEnqueue) 535 io.sqFull := !allowEnqueue 536 XSPerfAccumulate("mmioCycle", uncacheState =/= s_idle) // lq is busy dealing with uncache req 537 XSPerfAccumulate("mmioCnt", io.uncache.req.fire()) 538 XSPerfAccumulate("mmio_wb_success", io.mmioStout.fire()) 539 XSPerfAccumulate("mmio_wb_blocked", io.mmioStout.valid && !io.mmioStout.ready) 540 XSPerfAccumulate("validEntryCnt", distanceBetween(enqPtrExt(0), deqPtrExt(0))) 541 XSPerfAccumulate("cmtEntryCnt", distanceBetween(cmtPtrExt(0), deqPtrExt(0))) 542 XSPerfAccumulate("nCmtEntryCnt", distanceBetween(enqPtrExt(0), cmtPtrExt(0))) 543 544 // debug info 545 XSDebug("enqPtrExt %d:%d deqPtrExt %d:%d\n", enqPtrExt(0).flag, enqPtr, deqPtrExt(0).flag, deqPtr) 546 547 def PrintFlag(flag: Bool, name: String): Unit = { 548 when(flag) { 549 XSDebug(false, true.B, name) 550 }.otherwise { 551 XSDebug(false, true.B, " ") 552 } 553 } 554 555 for (i <- 0 until StoreQueueSize) { 556 if (i % 4 == 0) XSDebug("") 557 XSDebug(false, true.B, "%x v[%x] p[%x]", 558 uop(i).cf.pc, 559 vaddrModule.io.debug_data(i), 560 paddrModule.io.debug_data(i), 561 ) 562 PrintFlag(allocated(i), "a") 563 PrintFlag(allocated(i) && addrvalid(i), "a") 564 PrintFlag(allocated(i) && datavalid(i), "d") 565 PrintFlag(allocated(i) && commited(i), "c") 566 PrintFlag(allocated(i) && pending(i), "p") 567 PrintFlag(allocated(i) && mmio(i), "m") 568 XSDebug(false, true.B, " ") 569 if (i % 4 == 3 || i == StoreQueueSize - 1) XSDebug(false, true.B, "\n") 570 } 571 572} 573