1package xiangshan.mem 2 3import chisel3._ 4import chisel3.util._ 5import utils._ 6import xiangshan._ 7import xiangshan.cache._ 8import xiangshan.cache.{DCacheWordIO, DCacheLineIO, TlbRequestIO, MemoryOpConstants} 9import xiangshan.backend.LSUOpType 10import xiangshan.backend.roq.RoqPtr 11 12 13class SqPtr extends CircularQueuePtr(SqPtr.StoreQueueSize) { } 14 15object SqPtr extends HasXSParameter { 16 def apply(f: Bool, v: UInt): SqPtr = { 17 val ptr = Wire(new SqPtr) 18 ptr.flag := f 19 ptr.value := v 20 ptr 21 } 22} 23 24class SqEnqIO extends XSBundle { 25 val canAccept = Output(Bool()) 26 val lqCanAccept = Input(Bool()) 27 val needAlloc = Vec(RenameWidth, Input(Bool())) 28 val req = Vec(RenameWidth, Flipped(ValidIO(new MicroOp))) 29 val resp = Vec(RenameWidth, Output(new SqPtr)) 30} 31 32// Store Queue 33class StoreQueue extends XSModule with HasDCacheParameters with HasCircularQueuePtrHelper { 34 val io = IO(new Bundle() { 35 val enq = new SqEnqIO 36 val brqRedirect = Input(Valid(new Redirect)) 37 val storeIn = Vec(StorePipelineWidth, Flipped(Valid(new LsPipelineBundle))) 38 val sbuffer = Vec(StorePipelineWidth, Decoupled(new DCacheWordReq)) 39 val mmioStout = DecoupledIO(new ExuOutput) // writeback uncached store 40 val forward = Vec(LoadPipelineWidth, Flipped(new LoadForwardQueryIO)) 41 val commits = Flipped(new RoqCommitIO) 42 val uncache = new DCacheWordIO 43 val roqDeqPtr = Input(new RoqPtr) 44 // val refill = Flipped(Valid(new DCacheLineReq )) 45 val exceptionAddr = new ExceptionAddrIO 46 }) 47 48 val uop = Reg(Vec(StoreQueueSize, new MicroOp)) 49 // val data = Reg(Vec(StoreQueueSize, new LsqEntry)) 50 val dataModule = Module(new LSQueueData(StoreQueueSize, StorePipelineWidth)) 51 dataModule.io := DontCare 52 val allocated = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // sq entry has been allocated 53 val datavalid = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // non-mmio data is valid 54 val writebacked = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // inst has been writebacked to CDB 55 val commited = Reg(Vec(StoreQueueSize, Bool())) // inst has been commited by roq 56 val pending = Reg(Vec(StoreQueueSize, Bool())) // mmio pending: inst is an mmio inst, it will not be executed until it reachs the end of roq 57 58 require(StoreQueueSize > RenameWidth) 59 val enqPtrExt = RegInit(VecInit((0 until RenameWidth).map(_.U.asTypeOf(new SqPtr)))) 60 val deqPtrExt = RegInit(VecInit((0 until StorePipelineWidth).map(_.U.asTypeOf(new SqPtr)))) 61 val validCounter = RegInit(0.U(log2Ceil(LoadQueueSize + 1).W)) 62 val allowEnqueue = RegInit(true.B) 63 64 val enqPtr = enqPtrExt(0).value 65 val deqPtr = deqPtrExt(0).value 66 67 val tailMask = UIntToMask(deqPtr, StoreQueueSize) 68 val headMask = UIntToMask(enqPtr, StoreQueueSize) 69 70 /** 71 * Enqueue at dispatch 72 * 73 * Currently, StoreQueue only allows enqueue when #emptyEntries > RenameWidth(EnqWidth) 74 */ 75 io.enq.canAccept := allowEnqueue 76 for (i <- 0 until RenameWidth) { 77 val offset = if (i == 0) 0.U else PopCount(io.enq.needAlloc.take(i)) 78 val sqIdx = enqPtrExt(offset) 79 val index = sqIdx.value 80 when (io.enq.req(i).valid && io.enq.canAccept && io.enq.lqCanAccept && !io.brqRedirect.valid) { 81 uop(index) := io.enq.req(i).bits 82 allocated(index) := true.B 83 datavalid(index) := false.B 84 writebacked(index) := false.B 85 commited(index) := false.B 86 pending(index) := false.B 87 } 88 io.enq.resp(i) := sqIdx 89 } 90 XSDebug(p"(ready, valid): ${io.enq.canAccept}, ${Binary(Cat(io.enq.req.map(_.valid)))}\n") 91 92 /** 93 * Writeback store from store units 94 * 95 * Most store instructions writeback to regfile in the previous cycle. 96 * However, 97 * (1) For an mmio instruction with exceptions, we need to mark it as datavalid 98 * (in this way it will trigger an exception when it reaches ROB's head) 99 * instead of pending to avoid sending them to lower level. 100 * (2) For an mmio instruction without exceptions, we mark it as pending. 101 * When the instruction reaches ROB's head, StoreQueue sends it to uncache channel. 102 * Upon receiving the response, StoreQueue writes back the instruction 103 * through arbiter with store units. It will later commit as normal. 104 */ 105 for (i <- 0 until StorePipelineWidth) { 106 dataModule.io.wb(i).wen := false.B 107 when(io.storeIn(i).fire()) { 108 val stWbIndex = io.storeIn(i).bits.uop.sqIdx.value 109 val hasException = io.storeIn(i).bits.uop.cf.exceptionVec.asUInt.orR 110 val hasWritebacked = !io.storeIn(i).bits.mmio || hasException 111 datavalid(stWbIndex) := hasWritebacked 112 writebacked(stWbIndex) := hasWritebacked 113 pending(stWbIndex) := !hasWritebacked // valid mmio require 114 115 val storeWbData = Wire(new LsqEntry) 116 storeWbData := DontCare 117 storeWbData.paddr := io.storeIn(i).bits.paddr 118 storeWbData.vaddr := io.storeIn(i).bits.vaddr 119 storeWbData.mask := io.storeIn(i).bits.mask 120 storeWbData.data := io.storeIn(i).bits.data 121 storeWbData.mmio := io.storeIn(i).bits.mmio 122 storeWbData.exception := io.storeIn(i).bits.uop.cf.exceptionVec.asUInt 123 124 dataModule.io.wbWrite(i, stWbIndex, storeWbData) 125 dataModule.io.wb(i).wen := true.B 126 127 XSInfo("store write to sq idx %d pc 0x%x vaddr %x paddr %x data %x mmio %x roll %x exc %x\n", 128 io.storeIn(i).bits.uop.sqIdx.value, 129 io.storeIn(i).bits.uop.cf.pc, 130 io.storeIn(i).bits.vaddr, 131 io.storeIn(i).bits.paddr, 132 io.storeIn(i).bits.data, 133 io.storeIn(i).bits.mmio, 134 io.storeIn(i).bits.rollback, 135 io.storeIn(i).bits.uop.cf.exceptionVec.asUInt 136 ) 137 } 138 } 139 140 /** 141 * load forward query 142 * 143 * Check store queue for instructions that is older than the load. 144 * The response will be valid at the next cycle after req. 145 */ 146 // check over all lq entries and forward data from the first matched store 147 for (i <- 0 until LoadPipelineWidth) { 148 io.forward(i).forwardMask := 0.U(8.W).asBools 149 io.forward(i).forwardData := DontCare 150 151 // Compare deqPtr (deqPtr) and forward.sqIdx, we have two cases: 152 // (1) if they have the same flag, we need to check range(tail, sqIdx) 153 // (2) if they have different flags, we need to check range(tail, LoadQueueSize) and range(0, sqIdx) 154 // Forward1: Mux(same_flag, range(tail, sqIdx), range(tail, LoadQueueSize)) 155 // Forward2: Mux(same_flag, 0.U, range(0, sqIdx) ) 156 // i.e. forward1 is the target entries with the same flag bits and forward2 otherwise 157 val differentFlag = deqPtrExt(0).flag =/= io.forward(i).sqIdx.flag 158 val forwardMask = UIntToMask(io.forward(i).sqIdx.value, StoreQueueSize) 159 val storeWritebackedVec = WireInit(VecInit(Seq.fill(StoreQueueSize)(false.B))) 160 for (j <- 0 until StoreQueueSize) { 161 storeWritebackedVec(j) := datavalid(j) && allocated(j) // all datavalid terms need to be checked 162 } 163 val needForward1 = Mux(differentFlag, ~tailMask, tailMask ^ forwardMask) & storeWritebackedVec.asUInt 164 val needForward2 = Mux(differentFlag, forwardMask, 0.U(StoreQueueSize.W)) & storeWritebackedVec.asUInt 165 166 XSDebug(p"$i f1 ${Binary(needForward1)} f2 ${Binary(needForward2)} " + 167 p"sqIdx ${io.forward(i).sqIdx} pa ${Hexadecimal(io.forward(i).paddr)}\n" 168 ) 169 170 // do real fwd query 171 dataModule.io.forwardQuery( 172 channel = i, 173 paddr = io.forward(i).paddr, 174 needForward1 = needForward1, 175 needForward2 = needForward2 176 ) 177 178 io.forward(i).forwardMask := dataModule.io.forward(i).forwardMask 179 io.forward(i).forwardData := dataModule.io.forward(i).forwardData 180 } 181 182 /** 183 * Memory mapped IO / other uncached operations 184 * 185 * States: 186 * (1) writeback from store units: mark as pending 187 * (2) when they reach ROB's head, they can be sent to uncache channel 188 * (3) response from uncache channel: mark as datavalid 189 * (4) writeback to ROB (and other units): mark as writebacked 190 * (5) ROB commits the instruction: same as normal instructions 191 */ 192 //(2) when they reach ROB's head, they can be sent to uncache channel 193 io.uncache.req.valid := pending(deqPtr) && allocated(deqPtr) && 194 io.commits.info(0).commitType === CommitType.STORE && 195 io.roqDeqPtr === uop(deqPtr).roqIdx && 196 !io.commits.isWalk 197 198 io.uncache.req.bits.cmd := MemoryOpConstants.M_XWR 199 io.uncache.req.bits.addr := dataModule.io.rdata(deqPtr).paddr 200 io.uncache.req.bits.data := dataModule.io.rdata(deqPtr).data 201 io.uncache.req.bits.mask := dataModule.io.rdata(deqPtr).mask 202 203 io.uncache.req.bits.meta.id := DontCare // TODO: // FIXME 204 io.uncache.req.bits.meta.vaddr := DontCare 205 io.uncache.req.bits.meta.paddr := dataModule.io.rdata(deqPtr).paddr 206 io.uncache.req.bits.meta.uop := uop(deqPtr) 207 io.uncache.req.bits.meta.mmio := true.B 208 io.uncache.req.bits.meta.tlb_miss := false.B 209 io.uncache.req.bits.meta.mask := dataModule.io.rdata(deqPtr).mask 210 io.uncache.req.bits.meta.replay := false.B 211 212 when(io.uncache.req.fire()){ 213 pending(deqPtr) := false.B 214 215 XSDebug( 216 p"uncache req: pc ${Hexadecimal(uop(deqPtr).cf.pc)} " + 217 p"addr ${Hexadecimal(io.uncache.req.bits.addr)} " + 218 p"data ${Hexadecimal(io.uncache.req.bits.data)} " + 219 p"op ${Hexadecimal(io.uncache.req.bits.cmd)} " + 220 p"mask ${Hexadecimal(io.uncache.req.bits.mask)}\n" 221 ) 222 } 223 224 // (3) response from uncache channel: mark as datavalid 225 io.uncache.resp.ready := true.B 226 when (io.uncache.resp.fire()) { 227 datavalid(deqPtr) := true.B 228 } 229 230 // (4) writeback to ROB (and other units): mark as writebacked 231 io.mmioStout.valid := allocated(deqPtr) && datavalid(deqPtr) && !writebacked(deqPtr) 232 io.mmioStout.bits.uop := uop(deqPtr) 233 io.mmioStout.bits.uop.sqIdx := deqPtrExt(0) 234 io.mmioStout.bits.uop.cf.exceptionVec := dataModule.io.rdata(deqPtr).exception.asBools 235 io.mmioStout.bits.data := dataModule.io.rdata(deqPtr).data 236 io.mmioStout.bits.redirectValid := false.B 237 io.mmioStout.bits.redirect := DontCare 238 io.mmioStout.bits.brUpdate := DontCare 239 io.mmioStout.bits.debug.isMMIO := true.B 240 io.mmioStout.bits.fflags := DontCare 241 when (io.mmioStout.fire()) { 242 writebacked(deqPtr) := true.B 243 allocated(deqPtr) := false.B 244 245 } 246 247 /** 248 * ROB commits store instructions (mark them as commited) 249 * 250 * (1) When store commits, mark it as commited. 251 * (2) They will not be cancelled and can be sent to lower level. 252 */ 253 for (i <- 0 until CommitWidth) { 254 val storeCommit = !io.commits.isWalk && io.commits.valid(i) && io.commits.info(i).commitType === CommitType.STORE 255 when (storeCommit) { 256 commited(io.commits.info(i).sqIdx.value) := true.B 257 XSDebug("store commit %d: idx %d\n", i.U, io.commits.info(i).sqIdx.value) 258 } 259 } 260 261 // Commited stores will not be cancelled and can be sent to lower level. 262 // remove retired insts from sq, add retired store to sbuffer 263 for (i <- 0 until StorePipelineWidth) { 264 val ptr = deqPtrExt(i).value 265 val mmio = dataModule.io.rdata(ptr).mmio 266 io.sbuffer(i).valid := allocated(ptr) && commited(ptr) && !mmio 267 io.sbuffer(i).bits.cmd := MemoryOpConstants.M_XWR 268 io.sbuffer(i).bits.addr := dataModule.io.rdata(ptr).paddr 269 io.sbuffer(i).bits.data := dataModule.io.rdata(ptr).data 270 io.sbuffer(i).bits.mask := dataModule.io.rdata(ptr).mask 271 io.sbuffer(i).bits.meta := DontCare 272 io.sbuffer(i).bits.meta.tlb_miss := false.B 273 io.sbuffer(i).bits.meta.uop := DontCare 274 io.sbuffer(i).bits.meta.mmio := mmio 275 io.sbuffer(i).bits.meta.mask := dataModule.io.rdata(ptr).mask 276 277 when (io.sbuffer(i).fire()) { 278 allocated(ptr) := false.B 279 XSDebug("sbuffer "+i+" fire: ptr %d\n", ptr) 280 } 281 } 282 when (io.sbuffer(1).fire()) { 283 assert(io.sbuffer(0).fire()) 284 } 285 286 if (!env.FPGAPlatform) { 287 val storeCommit = PopCount(io.sbuffer.map(_.fire())) 288 val waddr = VecInit(io.sbuffer.map(req => SignExt(req.bits.addr, 64))) 289 val wdata = VecInit(io.sbuffer.map(req => req.bits.data & MaskExpand(req.bits.mask))) 290 val wmask = VecInit(io.sbuffer.map(_.bits.mask)) 291 292 ExcitingUtils.addSource(RegNext(storeCommit), "difftestStoreCommit", ExcitingUtils.Debug) 293 ExcitingUtils.addSource(RegNext(waddr), "difftestStoreAddr", ExcitingUtils.Debug) 294 ExcitingUtils.addSource(RegNext(wdata), "difftestStoreData", ExcitingUtils.Debug) 295 ExcitingUtils.addSource(RegNext(wmask), "difftestStoreMask", ExcitingUtils.Debug) 296 } 297 298 // Read vaddr for mem exception 299 io.exceptionAddr.vaddr := dataModule.io.rdata(io.exceptionAddr.lsIdx.sqIdx.value).vaddr 300 301 // misprediction recovery / exception redirect 302 // invalidate sq term using robIdx 303 val needCancel = Wire(Vec(StoreQueueSize, Bool())) 304 for (i <- 0 until StoreQueueSize) { 305 needCancel(i) := uop(i).roqIdx.needFlush(io.brqRedirect) && allocated(i) && !commited(i) 306 when (needCancel(i)) { 307 allocated(i) := false.B 308 } 309 } 310 311 /** 312 * update pointers 313 */ 314 val lastCycleRedirect = RegNext(io.brqRedirect.valid) 315 val lastCycleCancelCount = PopCount(RegNext(needCancel)) 316 // when io.brqRedirect.valid, we don't allow eneuque even though it may fire. 317 val enqNumber = Mux(io.enq.canAccept && io.enq.lqCanAccept && !io.brqRedirect.valid, PopCount(io.enq.req.map(_.valid)), 0.U) 318 when (lastCycleRedirect) { 319 // we recover the pointers in the next cycle after redirect 320 enqPtrExt := VecInit(enqPtrExt.map(_ - lastCycleCancelCount)) 321 }.otherwise { 322 enqPtrExt := VecInit(enqPtrExt.map(_ + enqNumber)) 323 } 324 325 deqPtrExt := Mux(io.sbuffer(1).fire(), 326 VecInit(deqPtrExt.map(_ + 2.U)), 327 Mux(io.sbuffer(0).fire() || io.mmioStout.fire(), 328 VecInit(deqPtrExt.map(_ + 1.U)), 329 deqPtrExt 330 ) 331 ) 332 333 val lastLastCycleRedirect = RegNext(lastCycleRedirect) 334 val dequeueCount = Mux(io.sbuffer(1).fire(), 2.U, Mux(io.sbuffer(0).fire() || io.mmioStout.fire(), 1.U, 0.U)) 335 val trueValidCounter = distanceBetween(enqPtrExt(0), deqPtrExt(0)) 336 validCounter := Mux(lastLastCycleRedirect, 337 trueValidCounter - dequeueCount, 338 validCounter + enqNumber - dequeueCount 339 ) 340 341 allowEnqueue := Mux(io.brqRedirect.valid, 342 false.B, 343 Mux(lastLastCycleRedirect, 344 trueValidCounter <= (StoreQueueSize - RenameWidth).U, 345 validCounter + enqNumber <= (StoreQueueSize - RenameWidth).U 346 ) 347 ) 348 349 // debug info 350 XSDebug("enqPtrExt %d:%d deqPtrExt %d:%d\n", enqPtrExt(0).flag, enqPtr, deqPtrExt(0).flag, deqPtr) 351 352 def PrintFlag(flag: Bool, name: String): Unit = { 353 when(flag) { 354 XSDebug(false, true.B, name) 355 }.otherwise { 356 XSDebug(false, true.B, " ") 357 } 358 } 359 360 for (i <- 0 until StoreQueueSize) { 361 if (i % 4 == 0) XSDebug("") 362 XSDebug(false, true.B, "%x [%x] ", uop(i).cf.pc, dataModule.io.rdata(i).paddr) 363 PrintFlag(allocated(i), "a") 364 PrintFlag(allocated(i) && datavalid(i), "v") 365 PrintFlag(allocated(i) && writebacked(i), "w") 366 PrintFlag(allocated(i) && commited(i), "c") 367 PrintFlag(allocated(i) && pending(i), "p") 368 XSDebug(false, true.B, " ") 369 if (i % 4 == 3 || i == StoreQueueSize - 1) XSDebug(false, true.B, "\n") 370 } 371 372} 373