1/*************************************************************************************** 2* Copyright (c) 2024 Beijing Institute of Open Source Chip (BOSC) 3* Copyright (c) 2020-2024 Institute of Computing Technology, Chinese Academy of Sciences 4* Copyright (c) 2020-2021 Peng Cheng Laboratory 5* 6* XiangShan is licensed under Mulan PSL v2. 7* You can use this software according to the terms and conditions of the Mulan PSL v2. 8* You may obtain a copy of Mulan PSL v2 at: 9* http://license.coscl.org.cn/MulanPSL2 10* 11* THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND, 12* EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT, 13* MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE. 14* 15* See the Mulan PSL v2 for more details. 16***************************************************************************************/ 17 18package xiangshan.mem 19 20import chisel3._ 21import chisel3.util._ 22import difftest._ 23import difftest.common.DifftestMem 24import org.chipsalliance.cde.config.Parameters 25import utility._ 26import utils._ 27import xiangshan._ 28import xiangshan.cache._ 29import xiangshan.cache.{DCacheLineIO, DCacheWordIO, MemoryOpConstants} 30import xiangshan.backend._ 31import xiangshan.backend.rob.{RobLsqIO, RobPtr} 32import xiangshan.backend.Bundles.{DynInst, MemExuOutput} 33import xiangshan.backend.decode.isa.bitfield.{Riscv32BitInst, XSInstBitFields} 34import xiangshan.backend.fu.FuConfig._ 35import xiangshan.backend.fu.FuType 36import xiangshan.ExceptionNO._ 37 38class SqPtr(implicit p: Parameters) extends CircularQueuePtr[SqPtr]( 39 p => p(XSCoreParamsKey).StoreQueueSize 40){ 41} 42 43object SqPtr { 44 def apply(f: Bool, v: UInt)(implicit p: Parameters): SqPtr = { 45 val ptr = Wire(new SqPtr) 46 ptr.flag := f 47 ptr.value := v 48 ptr 49 } 50} 51 52class SqEnqIO(implicit p: Parameters) extends MemBlockBundle { 53 val canAccept = Output(Bool()) 54 val lqCanAccept = Input(Bool()) 55 val needAlloc = Vec(LSQEnqWidth, Input(Bool())) 56 val req = Vec(LSQEnqWidth, Flipped(ValidIO(new DynInst))) 57 val resp = Vec(LSQEnqWidth, Output(new SqPtr)) 58} 59 60class DataBufferEntry (implicit p: Parameters) extends DCacheBundle { 61 val addr = UInt(PAddrBits.W) 62 val vaddr = UInt(VAddrBits.W) 63 val data = UInt(VLEN.W) 64 val mask = UInt((VLEN/8).W) 65 val wline = Bool() 66 val sqPtr = new SqPtr 67 val prefetch = Bool() 68 val vecValid = Bool() 69} 70 71class StoreExceptionBuffer(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper { 72 val io = IO(new Bundle() { 73 val redirect = Flipped(ValidIO(new Redirect)) 74 val storeAddrIn = Vec(StorePipelineWidth * 2 + VecStorePipelineWidth, Flipped(ValidIO(new LsPipelineBundle()))) 75 val exceptionAddr = new ExceptionAddrIO 76 }) 77 78 val req_valid = RegInit(false.B) 79 val req = Reg(new LsPipelineBundle()) 80 81 // enqueue 82 // S1: 83 val s1_req = VecInit(io.storeAddrIn.map(_.bits)) 84 val s1_valid = VecInit(io.storeAddrIn.map(_.valid)) 85 86 // S2: delay 1 cycle 87 val s2_req = RegNext(s1_req) 88 val s2_valid = (0 until StorePipelineWidth * 2 + VecStorePipelineWidth).map(i => 89 RegNext(s1_valid(i)) && 90 !s2_req(i).uop.robIdx.needFlush(RegNext(io.redirect)) && 91 !s2_req(i).uop.robIdx.needFlush(io.redirect) 92 ) 93 val s2_has_exception = s2_req.map(x => ExceptionNO.selectByFu(x.uop.exceptionVec, StaCfg).asUInt.orR) 94 95 val s2_enqueue = Wire(Vec(StorePipelineWidth * 2 + VecStorePipelineWidth, Bool())) 96 for (w <- 0 until StorePipelineWidth * 2 + VecStorePipelineWidth) { 97 s2_enqueue(w) := s2_valid(w) && s2_has_exception(w) 98 } 99 100 when (req_valid && req.uop.robIdx.needFlush(io.redirect)) { 101 req_valid := s2_enqueue.asUInt.orR 102 }.elsewhen (s2_enqueue.asUInt.orR) { 103 req_valid := req_valid || true.B 104 } 105 106 def selectOldest[T <: LsPipelineBundle](valid: Seq[Bool], bits: Seq[T]): (Seq[Bool], Seq[T]) = { 107 assert(valid.length == bits.length) 108 if (valid.length == 0 || valid.length == 1) { 109 (valid, bits) 110 } else if (valid.length == 2) { 111 val res = Seq.fill(2)(Wire(Valid(chiselTypeOf(bits(0))))) 112 for (i <- res.indices) { 113 res(i).valid := valid(i) 114 res(i).bits := bits(i) 115 } 116 val oldest = Mux(valid(0) && valid(1), 117 Mux(isAfter(bits(0).uop.robIdx, bits(1).uop.robIdx) || 118 (isNotBefore(bits(0).uop.robIdx, bits(1).uop.robIdx) && bits(0).uop.uopIdx > bits(1).uop.uopIdx), res(1), res(0)), 119 Mux(valid(0) && !valid(1), res(0), res(1))) 120 (Seq(oldest.valid), Seq(oldest.bits)) 121 } else { 122 val left = selectOldest(valid.take(valid.length / 2), bits.take(bits.length / 2)) 123 val right = selectOldest(valid.takeRight(valid.length - (valid.length / 2)), bits.takeRight(bits.length - (bits.length / 2))) 124 selectOldest(left._1 ++ right._1, left._2 ++ right._2) 125 } 126 } 127 128 val reqSel = selectOldest(s2_enqueue, s2_req) 129 130 when (req_valid) { 131 req := Mux( 132 reqSel._1(0) && (isAfter(req.uop.robIdx, reqSel._2(0).uop.robIdx) || (isNotBefore(req.uop.robIdx, reqSel._2(0).uop.robIdx) && req.uop.uopIdx > reqSel._2(0).uop.uopIdx)), 133 reqSel._2(0), 134 req) 135 } .elsewhen (s2_enqueue.asUInt.orR) { 136 req := reqSel._2(0) 137 } 138 139 io.exceptionAddr.vaddr := req.vaddr 140 io.exceptionAddr.gpaddr := req.gpaddr 141 io.exceptionAddr.vstart := req.uop.vpu.vstart 142 io.exceptionAddr.vl := req.uop.vpu.vl 143} 144 145// Store Queue 146class StoreQueue(implicit p: Parameters) extends XSModule 147 with HasDCacheParameters 148 with HasCircularQueuePtrHelper 149 with HasPerfEvents 150 with HasVLSUParameters { 151 val io = IO(new Bundle() { 152 val hartId = Input(UInt(hartIdLen.W)) 153 val enq = new SqEnqIO 154 val brqRedirect = Flipped(ValidIO(new Redirect)) 155 val vecFeedback = Vec(VecLoadPipelineWidth, Flipped(ValidIO(new FeedbackToLsqIO))) 156 val storeAddrIn = Vec(StorePipelineWidth, Flipped(Valid(new LsPipelineBundle))) // store addr, data is not included 157 val storeAddrInRe = Vec(StorePipelineWidth, Input(new LsPipelineBundle())) // store more mmio and exception 158 val storeDataIn = Vec(StorePipelineWidth, Flipped(Valid(new MemExuOutput(isVector = true)))) // store data, send to sq from rs 159 val storeMaskIn = Vec(StorePipelineWidth, Flipped(Valid(new StoreMaskBundle))) // store mask, send to sq from rs 160 val sbuffer = Vec(EnsbufferWidth, Decoupled(new DCacheWordReqWithVaddrAndPfFlag)) // write committed store to sbuffer 161 val sbufferVecDifftestInfo = Vec(EnsbufferWidth, Decoupled(new DynInst)) // The vector store difftest needs is, write committed store to sbuffer 162 val uncacheOutstanding = Input(Bool()) 163 val mmioStout = DecoupledIO(new MemExuOutput) // writeback uncached store 164 val vecmmioStout = DecoupledIO(new MemExuOutput(isVector = true)) 165 val forward = Vec(LoadPipelineWidth, Flipped(new PipeLoadForwardQueryIO)) 166 // TODO: scommit is only for scalar store 167 val rob = Flipped(new RobLsqIO) 168 val uncache = new UncacheWordIO 169 // val refill = Flipped(Valid(new DCacheLineReq )) 170 val exceptionAddr = new ExceptionAddrIO 171 val sqEmpty = Output(Bool()) 172 val stAddrReadySqPtr = Output(new SqPtr) 173 val stAddrReadyVec = Output(Vec(StoreQueueSize, Bool())) 174 val stDataReadySqPtr = Output(new SqPtr) 175 val stDataReadyVec = Output(Vec(StoreQueueSize, Bool())) 176 val stIssuePtr = Output(new SqPtr) 177 val sqDeqPtr = Output(new SqPtr) 178 val sqFull = Output(Bool()) 179 val sqCancelCnt = Output(UInt(log2Up(StoreQueueSize + 1).W)) 180 val sqDeq = Output(UInt(log2Ceil(EnsbufferWidth + 1).W)) 181 val force_write = Output(Bool()) 182 }) 183 184 println("StoreQueue: size:" + StoreQueueSize) 185 186 // data modules 187 val uop = Reg(Vec(StoreQueueSize, new DynInst)) 188 // val data = Reg(Vec(StoreQueueSize, new LsqEntry)) 189 val dataModule = Module(new SQDataModule( 190 numEntries = StoreQueueSize, 191 numRead = EnsbufferWidth, 192 numWrite = StorePipelineWidth, 193 numForward = LoadPipelineWidth 194 )) 195 dataModule.io := DontCare 196 val paddrModule = Module(new SQAddrModule( 197 dataWidth = PAddrBits, 198 numEntries = StoreQueueSize, 199 numRead = EnsbufferWidth, 200 numWrite = StorePipelineWidth, 201 numForward = LoadPipelineWidth 202 )) 203 paddrModule.io := DontCare 204 val vaddrModule = Module(new SQAddrModule( 205 dataWidth = VAddrBits, 206 numEntries = StoreQueueSize, 207 numRead = EnsbufferWidth, // sbuffer; badvaddr will be sent from exceptionBuffer 208 numWrite = StorePipelineWidth, 209 numForward = LoadPipelineWidth 210 )) 211 vaddrModule.io := DontCare 212 val dataBuffer = Module(new DatamoduleResultBuffer(new DataBufferEntry)) 213 val difftestBuffer = if (env.EnableDifftest) Some(Module(new DatamoduleResultBuffer(new DynInst))) else None 214 val exceptionBuffer = Module(new StoreExceptionBuffer) 215 exceptionBuffer.io.redirect := io.brqRedirect 216 exceptionBuffer.io.exceptionAddr.isStore := DontCare 217 // vlsu exception! 218 for (i <- 0 until VecStorePipelineWidth) { 219 exceptionBuffer.io.storeAddrIn(StorePipelineWidth * 2 + i).valid := io.vecFeedback(i).valid && io.vecFeedback(i).bits.feedback(VecFeedbacks.FLUSH) // have exception 220 exceptionBuffer.io.storeAddrIn(StorePipelineWidth * 2 + i).bits := DontCare 221 exceptionBuffer.io.storeAddrIn(StorePipelineWidth * 2 + i).bits.vaddr := io.vecFeedback(i).bits.vaddr 222 exceptionBuffer.io.storeAddrIn(StorePipelineWidth * 2 + i).bits.uop.uopIdx := io.vecFeedback(i).bits.uopidx 223 exceptionBuffer.io.storeAddrIn(StorePipelineWidth * 2 + i).bits.uop.robIdx := io.vecFeedback(i).bits.robidx 224 exceptionBuffer.io.storeAddrIn(StorePipelineWidth * 2 + i).bits.uop.vpu.vstart := io.vecFeedback(i).bits.vstart 225 exceptionBuffer.io.storeAddrIn(StorePipelineWidth * 2 + i).bits.uop.vpu.vl := io.vecFeedback(i).bits.vl 226 exceptionBuffer.io.storeAddrIn(StorePipelineWidth * 2 + i).bits.uop.exceptionVec := io.vecFeedback(i).bits.exceptionVec 227 } 228 229 230 val debug_paddr = Reg(Vec(StoreQueueSize, UInt((PAddrBits).W))) 231 val debug_vaddr = Reg(Vec(StoreQueueSize, UInt((VAddrBits).W))) 232 val debug_data = Reg(Vec(StoreQueueSize, UInt((XLEN).W))) 233 234 // state & misc 235 val allocated = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // sq entry has been allocated 236 val addrvalid = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // non-mmio addr is valid 237 val datavalid = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // non-mmio data is valid 238 val allvalid = VecInit((0 until StoreQueueSize).map(i => addrvalid(i) && datavalid(i))) // non-mmio data & addr is valid 239 val committed = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // inst has been committed by rob 240 val pending = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // mmio pending: inst is an mmio inst, it will not be executed until it reachs the end of rob 241 val mmio = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // mmio: inst is an mmio inst 242 val atomic = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) 243 val prefetch = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // need prefetch when committing this store to sbuffer? 244 val isVec = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // vector store instruction 245 //val vec_lastuop = Reg(Vec(StoreQueueSize, Bool())) // last uop of vector store instruction 246 val vecMbCommit = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // vector store committed from merge buffer to rob 247 val vecDataValid = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // vector store need write to sbuffer 248 val hasException = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // store has exception, should deq but not write sbuffer 249 val waitStoreS2 = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // wait for mmio and exception result until store_s2 250 // val vec_robCommit = Reg(Vec(StoreQueueSize, Bool())) // vector store committed by rob 251 // val vec_secondInv = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // Vector unit-stride, second entry is invalid 252 val vecExceptionFlag = RegInit(0.U.asTypeOf(Valid(new DynInst))) 253 254 // ptr 255 val enqPtrExt = RegInit(VecInit((0 until io.enq.req.length).map(_.U.asTypeOf(new SqPtr)))) 256 val rdataPtrExt = RegInit(VecInit((0 until EnsbufferWidth).map(_.U.asTypeOf(new SqPtr)))) 257 val deqPtrExt = RegInit(VecInit((0 until EnsbufferWidth).map(_.U.asTypeOf(new SqPtr)))) 258 val cmtPtrExt = RegInit(VecInit((0 until CommitWidth).map(_.U.asTypeOf(new SqPtr)))) 259 val addrReadyPtrExt = RegInit(0.U.asTypeOf(new SqPtr)) 260 val dataReadyPtrExt = RegInit(0.U.asTypeOf(new SqPtr)) 261 262 val enqPtr = enqPtrExt(0).value 263 val deqPtr = deqPtrExt(0).value 264 val cmtPtr = cmtPtrExt(0).value 265 266 val validCount = distanceBetween(enqPtrExt(0), deqPtrExt(0)) 267 val allowEnqueue = validCount <= (StoreQueueSize - LSQStEnqWidth).U 268 269 val deqMask = UIntToMask(deqPtr, StoreQueueSize) 270 val enqMask = UIntToMask(enqPtr, StoreQueueSize) 271 272 val commitCount = WireInit(0.U(log2Ceil(CommitWidth + 1).W)) 273 val scommit = RegNext(io.rob.scommit) 274 275 // store can be committed by ROB 276 io.rob.mmio := DontCare 277 io.rob.uop := DontCare 278 279 // Read dataModule 280 assert(EnsbufferWidth <= 2) 281 // rdataPtrExtNext and rdataPtrExtNext+1 entry will be read from dataModule 282 val rdataPtrExtNext = WireInit(Mux(dataBuffer.io.enq(1).fire, 283 VecInit(rdataPtrExt.map(_ + 2.U)), 284 Mux(dataBuffer.io.enq(0).fire || io.mmioStout.fire || io.vecmmioStout.fire, 285 VecInit(rdataPtrExt.map(_ + 1.U)), 286 rdataPtrExt 287 ) 288 )) 289 290 // deqPtrExtNext traces which inst is about to leave store queue 291 // 292 // io.sbuffer(i).fire is RegNexted, as sbuffer data write takes 2 cycles. 293 // Before data write finish, sbuffer is unable to provide store to load 294 // forward data. As an workaround, deqPtrExt and allocated flag update 295 // is delayed so that load can get the right data from store queue. 296 // 297 // Modify deqPtrExtNext and io.sqDeq with care! 298 val deqPtrExtNext = Mux(RegNext(io.sbuffer(1).fire), 299 VecInit(deqPtrExt.map(_ + 2.U)), 300 Mux((RegNext(io.sbuffer(0).fire)) || io.mmioStout.fire || io.vecmmioStout.fire, 301 VecInit(deqPtrExt.map(_ + 1.U)), 302 deqPtrExt 303 ) 304 ) 305 io.sqDeq := RegNext(Mux(RegNext(io.sbuffer(1).fire), 2.U, 306 Mux((RegNext(io.sbuffer(0).fire)) || io.mmioStout.fire || io.vecmmioStout.fire, 1.U, 0.U) 307 )) 308 assert(!RegNext(RegNext(io.sbuffer(0).fire) && (io.mmioStout.fire || io.vecmmioStout.fire))) 309 310 for (i <- 0 until EnsbufferWidth) { 311 dataModule.io.raddr(i) := rdataPtrExtNext(i).value 312 paddrModule.io.raddr(i) := rdataPtrExtNext(i).value 313 vaddrModule.io.raddr(i) := rdataPtrExtNext(i).value 314 } 315 316 /** 317 * Enqueue at dispatch 318 * 319 * Currently, StoreQueue only allows enqueue when #emptyEntries > EnqWidth 320 */ 321 io.enq.canAccept := allowEnqueue 322 val canEnqueue = io.enq.req.map(_.valid) 323 val enqCancel = io.enq.req.map(_.bits.robIdx.needFlush(io.brqRedirect)) 324 val vStoreFlow = io.enq.req.map(_.bits.numLsElem) 325 val validVStoreFlow = vStoreFlow.zipWithIndex.map{case (vLoadFlowNumItem, index) => Mux(!RegNext(io.brqRedirect.valid) && io.enq.canAccept && io.enq.lqCanAccept && canEnqueue(index), vLoadFlowNumItem, 0.U)} 326 val validVStoreOffset = vStoreFlow.zip(io.enq.needAlloc).map{case (flow, needAllocItem) => Mux(needAllocItem, flow, 0.U)} 327 val validVStoreOffsetRShift = 0.U +: validVStoreOffset.take(vStoreFlow.length - 1) 328 329 for (i <- 0 until io.enq.req.length) { 330 val sqIdx = enqPtrExt(0) + validVStoreOffsetRShift.take(i + 1).reduce(_ + _) 331 val index = io.enq.req(i).bits.sqIdx 332 val enqInstr = io.enq.req(i).bits.instr.asTypeOf(new XSInstBitFields) 333 when (canEnqueue(i) && !enqCancel(i)) { 334 // The maximum 'numLsElem' number that can be emitted per dispatch port is: 335 // 16 2 2 2 2 2. 336 // Therefore, VecMemLSQEnqIteratorNumberSeq = Seq(16, 2, 2, 2, 2, 2) 337 for (j <- 0 until VecMemLSQEnqIteratorNumberSeq(i)) { 338 when (j.U < validVStoreOffset(i)) { 339 uop((index + j.U).value) := io.enq.req(i).bits 340 // NOTE: the index will be used when replay 341 uop((index + j.U).value).sqIdx := sqIdx + j.U 342 allocated((index + j.U).value) := true.B 343 datavalid((index + j.U).value) := false.B 344 addrvalid((index + j.U).value) := false.B 345 committed((index + j.U).value) := false.B 346 pending((index + j.U).value) := false.B 347 prefetch((index + j.U).value) := false.B 348 mmio((index + j.U).value) := false.B 349 isVec((index + j.U).value) := enqInstr.isVecStore // check vector store by the encoding of inst 350 vecMbCommit((index + j.U).value) := false.B 351 vecDataValid((index + j.U).value) := false.B 352 hasException((index + j.U).value) := false.B 353 waitStoreS2((index + j.U).value) := true.B 354 XSError(!io.enq.canAccept || !io.enq.lqCanAccept, s"must accept $i\n") 355 XSError(index.value =/= sqIdx.value, s"must be the same entry $i\n") 356 } 357 } 358 } 359 io.enq.resp(i) := sqIdx 360 } 361 XSDebug(p"(ready, valid): ${io.enq.canAccept}, ${Binary(Cat(io.enq.req.map(_.valid)))}\n") 362 363 /** 364 * Update addr/dataReadyPtr when issue from rs 365 */ 366 // update issuePtr 367 val IssuePtrMoveStride = 4 368 require(IssuePtrMoveStride >= 2) 369 370 val addrReadyLookupVec = (0 until IssuePtrMoveStride).map(addrReadyPtrExt + _.U) 371 val addrReadyLookup = addrReadyLookupVec.map(ptr => allocated(ptr.value) && 372 (mmio(ptr.value) || addrvalid(ptr.value) || vecMbCommit(ptr.value)) 373 && ptr =/= enqPtrExt(0)) 374 val nextAddrReadyPtr = addrReadyPtrExt + PriorityEncoder(VecInit(addrReadyLookup.map(!_) :+ true.B)) 375 addrReadyPtrExt := nextAddrReadyPtr 376 377 (0 until StoreQueueSize).map(i => { 378 io.stAddrReadyVec(i) := RegNext(allocated(i) && (mmio(i) || addrvalid(i) || (isVec(i) && vecMbCommit(i)))) 379 }) 380 381 when (io.brqRedirect.valid) { 382 addrReadyPtrExt := Mux( 383 isAfter(cmtPtrExt(0), deqPtrExt(0)), 384 cmtPtrExt(0), 385 deqPtrExtNext(0) // for mmio insts, deqPtr may be ahead of cmtPtr 386 ) 387 } 388 389 io.stAddrReadySqPtr := addrReadyPtrExt 390 391 // update 392 val dataReadyLookupVec = (0 until IssuePtrMoveStride).map(dataReadyPtrExt + _.U) 393 val dataReadyLookup = dataReadyLookupVec.map(ptr => allocated(ptr.value) && 394 (mmio(ptr.value) || datavalid(ptr.value) || vecMbCommit(ptr.value)) 395 && ptr =/= enqPtrExt(0)) 396 val nextDataReadyPtr = dataReadyPtrExt + PriorityEncoder(VecInit(dataReadyLookup.map(!_) :+ true.B)) 397 dataReadyPtrExt := nextDataReadyPtr 398 399 (0 until StoreQueueSize).map(i => { 400 io.stDataReadyVec(i) := RegNext(allocated(i) && (mmio(i) || datavalid(i) || (isVec(i) && vecMbCommit(i)))) 401 }) 402 403 when (io.brqRedirect.valid) { 404 dataReadyPtrExt := Mux( 405 isAfter(cmtPtrExt(0), deqPtrExt(0)), 406 cmtPtrExt(0), 407 deqPtrExtNext(0) // for mmio insts, deqPtr may be ahead of cmtPtr 408 ) 409 } 410 411 io.stDataReadySqPtr := dataReadyPtrExt 412 io.stIssuePtr := enqPtrExt(0) 413 io.sqDeqPtr := deqPtrExt(0) 414 415 /** 416 * Writeback store from store units 417 * 418 * Most store instructions writeback to regfile in the previous cycle. 419 * However, 420 * (1) For an mmio instruction with exceptions, we need to mark it as addrvalid 421 * (in this way it will trigger an exception when it reaches ROB's head) 422 * instead of pending to avoid sending them to lower level. 423 * (2) For an mmio instruction without exceptions, we mark it as pending. 424 * When the instruction reaches ROB's head, StoreQueue sends it to uncache channel. 425 * Upon receiving the response, StoreQueue writes back the instruction 426 * through arbiter with store units. It will later commit as normal. 427 */ 428 429 // Write addr to sq 430 for (i <- 0 until StorePipelineWidth) { 431 paddrModule.io.wen(i) := false.B 432 vaddrModule.io.wen(i) := false.B 433 dataModule.io.mask.wen(i) := false.B 434 val stWbIndex = io.storeAddrIn(i).bits.uop.sqIdx.value 435 exceptionBuffer.io.storeAddrIn(i).valid := io.storeAddrIn(i).fire && !io.storeAddrIn(i).bits.miss && !io.storeAddrIn(i).bits.isvec 436 exceptionBuffer.io.storeAddrIn(i).bits := io.storeAddrIn(i).bits 437 // will re-enter exceptionbuffer at store_s2 438 exceptionBuffer.io.storeAddrIn(StorePipelineWidth + i).valid := false.B 439 exceptionBuffer.io.storeAddrIn(StorePipelineWidth + i).bits := 0.U.asTypeOf(new LsPipelineBundle) 440 441 when (io.storeAddrIn(i).fire) { 442 val addr_valid = !io.storeAddrIn(i).bits.miss 443 addrvalid(stWbIndex) := addr_valid //!io.storeAddrIn(i).bits.mmio 444 // pending(stWbIndex) := io.storeAddrIn(i).bits.mmio 445 446 paddrModule.io.waddr(i) := stWbIndex 447 paddrModule.io.wdata(i) := io.storeAddrIn(i).bits.paddr 448 paddrModule.io.wmask(i) := io.storeAddrIn(i).bits.mask 449 paddrModule.io.wlineflag(i) := io.storeAddrIn(i).bits.wlineflag 450 paddrModule.io.wen(i) := true.B 451 452 vaddrModule.io.waddr(i) := stWbIndex 453 vaddrModule.io.wdata(i) := io.storeAddrIn(i).bits.vaddr 454 vaddrModule.io.wmask(i) := io.storeAddrIn(i).bits.mask 455 vaddrModule.io.wlineflag(i) := io.storeAddrIn(i).bits.wlineflag 456 vaddrModule.io.wen(i) := true.B 457 458 debug_paddr(paddrModule.io.waddr(i)) := paddrModule.io.wdata(i) 459 460 // mmio(stWbIndex) := io.storeAddrIn(i).bits.mmio 461 462 uop(stWbIndex) := io.storeAddrIn(i).bits.uop 463 uop(stWbIndex).debugInfo := io.storeAddrIn(i).bits.uop.debugInfo 464 465 vecDataValid(stWbIndex) := io.storeAddrIn(i).bits.isvec 466 467 XSInfo("store addr write to sq idx %d pc 0x%x miss:%d vaddr %x paddr %x mmio %x isvec %x\n", 468 io.storeAddrIn(i).bits.uop.sqIdx.value, 469 io.storeAddrIn(i).bits.uop.pc, 470 io.storeAddrIn(i).bits.miss, 471 io.storeAddrIn(i).bits.vaddr, 472 io.storeAddrIn(i).bits.paddr, 473 io.storeAddrIn(i).bits.mmio, 474 io.storeAddrIn(i).bits.isvec 475 ) 476 } 477 478 // re-replinish mmio, for pma/pmp will get mmio one cycle later 479 val storeAddrInFireReg = RegNext(io.storeAddrIn(i).fire && !io.storeAddrIn(i).bits.miss) 480 val stWbIndexReg = RegNext(stWbIndex) 481 when (storeAddrInFireReg) { 482 pending(stWbIndexReg) := io.storeAddrInRe(i).mmio 483 mmio(stWbIndexReg) := io.storeAddrInRe(i).mmio 484 atomic(stWbIndexReg) := io.storeAddrInRe(i).atomic 485 hasException(stWbIndexReg) := ExceptionNO.selectByFu(uop(stWbIndexReg).exceptionVec, StaCfg).asUInt.orR || io.storeAddrInRe(i).af 486 waitStoreS2(stWbIndexReg) := false.B 487 } 488 // dcache miss info (one cycle later than storeIn) 489 // if dcache report a miss in sta pipeline, this store will trigger a prefetch when committing to sbuffer (if EnableAtCommitMissTrigger) 490 when (storeAddrInFireReg) { 491 prefetch(stWbIndexReg) := io.storeAddrInRe(i).miss 492 } 493 // enter exceptionbuffer again 494 when (storeAddrInFireReg) { 495 exceptionBuffer.io.storeAddrIn(StorePipelineWidth + i).valid := io.storeAddrInRe(i).af 496 exceptionBuffer.io.storeAddrIn(StorePipelineWidth + i).bits := RegEnable(io.storeAddrIn(i).bits, io.storeAddrIn(i).fire && !io.storeAddrIn(i).bits.miss) 497 exceptionBuffer.io.storeAddrIn(StorePipelineWidth + i).bits.uop.exceptionVec(storeAccessFault) := io.storeAddrInRe(i).af 498 } 499 500 when(vaddrModule.io.wen(i)){ 501 debug_vaddr(vaddrModule.io.waddr(i)) := vaddrModule.io.wdata(i) 502 } 503 } 504 505 // Write data to sq 506 // Now store data pipeline is actually 2 stages 507 for (i <- 0 until StorePipelineWidth) { 508 dataModule.io.data.wen(i) := false.B 509 val stWbIndex = io.storeDataIn(i).bits.uop.sqIdx.value 510 val isVec = FuType.isVStore(io.storeDataIn(i).bits.uop.fuType) 511 // sq data write takes 2 cycles: 512 // sq data write s0 513 when (io.storeDataIn(i).fire) { 514 // send data write req to data module 515 dataModule.io.data.waddr(i) := stWbIndex 516 dataModule.io.data.wdata(i) := Mux(io.storeDataIn(i).bits.uop.fuOpType === LSUOpType.cbo_zero, 517 0.U, 518 Mux(isVec, 519 io.storeDataIn(i).bits.data, 520 genVWdata(io.storeDataIn(i).bits.data, io.storeDataIn(i).bits.uop.fuOpType(2,0))) 521 ) 522 dataModule.io.data.wen(i) := true.B 523 524 debug_data(dataModule.io.data.waddr(i)) := dataModule.io.data.wdata(i) 525 526 XSInfo("store data write to sq idx %d pc 0x%x data %x -> %x\n", 527 io.storeDataIn(i).bits.uop.sqIdx.value, 528 io.storeDataIn(i).bits.uop.pc, 529 io.storeDataIn(i).bits.data, 530 dataModule.io.data.wdata(i) 531 ) 532 } 533 // sq data write s1 534 when ( 535 RegNext(io.storeDataIn(i).fire) 536 // && !RegNext(io.storeDataIn(i).bits.uop).robIdx.needFlush(io.brqRedirect) 537 ) { 538 datavalid(RegNext(stWbIndex)) := true.B 539 } 540 } 541 542 // Write mask to sq 543 for (i <- 0 until StorePipelineWidth) { 544 // sq mask write s0 545 when (io.storeMaskIn(i).fire) { 546 // send data write req to data module 547 dataModule.io.mask.waddr(i) := io.storeMaskIn(i).bits.sqIdx.value 548 dataModule.io.mask.wdata(i) := io.storeMaskIn(i).bits.mask 549 dataModule.io.mask.wen(i) := true.B 550 } 551 } 552 553 /** 554 * load forward query 555 * 556 * Check store queue for instructions that is older than the load. 557 * The response will be valid at the next cycle after req. 558 */ 559 // check over all lq entries and forward data from the first matched store 560 for (i <- 0 until LoadPipelineWidth) { 561 // Compare deqPtr (deqPtr) and forward.sqIdx, we have two cases: 562 // (1) if they have the same flag, we need to check range(tail, sqIdx) 563 // (2) if they have different flags, we need to check range(tail, VirtualLoadQueueSize) and range(0, sqIdx) 564 // Forward1: Mux(same_flag, range(tail, sqIdx), range(tail, VirtualLoadQueueSize)) 565 // Forward2: Mux(same_flag, 0.U, range(0, sqIdx) ) 566 // i.e. forward1 is the target entries with the same flag bits and forward2 otherwise 567 val differentFlag = deqPtrExt(0).flag =/= io.forward(i).sqIdx.flag 568 val forwardMask = io.forward(i).sqIdxMask 569 // all addrvalid terms need to be checked 570 // Real Vaild: all scalar stores, and vector store with (!inactive && !secondInvalid) 571 val addrRealValidVec = WireInit(VecInit((0 until StoreQueueSize).map(j => addrvalid(j) && allocated(j)))) 572 // vector store will consider all inactive || secondInvalid flows as valid 573 val addrValidVec = WireInit(VecInit((0 until StoreQueueSize).map(j => addrvalid(j) && allocated(j)))) 574 val dataValidVec = WireInit(VecInit((0 until StoreQueueSize).map(j => datavalid(j)))) 575 val allValidVec = WireInit(VecInit((0 until StoreQueueSize).map(j => addrvalid(j) && datavalid(j) && allocated(j)))) 576 577 val lfstEnable = Constantin.createRecord("LFSTEnable", LFSTEnable) 578 val storeSetHitVec = Mux(lfstEnable, 579 WireInit(VecInit((0 until StoreQueueSize).map(j => io.forward(i).uop.loadWaitBit && uop(j).robIdx === io.forward(i).uop.waitForRobIdx))), 580 WireInit(VecInit((0 until StoreQueueSize).map(j => uop(j).storeSetHit && uop(j).ssid === io.forward(i).uop.ssid))) 581 ) 582 583 val forwardMask1 = Mux(differentFlag, ~deqMask, deqMask ^ forwardMask) 584 val forwardMask2 = Mux(differentFlag, forwardMask, 0.U(StoreQueueSize.W)) 585 val canForward1 = forwardMask1 & allValidVec.asUInt 586 val canForward2 = forwardMask2 & allValidVec.asUInt 587 val needForward = Mux(differentFlag, ~deqMask | forwardMask, deqMask ^ forwardMask) 588 589 XSDebug(p"$i f1 ${Binary(canForward1)} f2 ${Binary(canForward2)} " + 590 p"sqIdx ${io.forward(i).sqIdx} pa ${Hexadecimal(io.forward(i).paddr)}\n" 591 ) 592 593 // do real fwd query (cam lookup in load_s1) 594 dataModule.io.needForward(i)(0) := canForward1 & vaddrModule.io.forwardMmask(i).asUInt 595 dataModule.io.needForward(i)(1) := canForward2 & vaddrModule.io.forwardMmask(i).asUInt 596 597 vaddrModule.io.forwardMdata(i) := io.forward(i).vaddr 598 vaddrModule.io.forwardDataMask(i) := io.forward(i).mask 599 paddrModule.io.forwardMdata(i) := io.forward(i).paddr 600 paddrModule.io.forwardDataMask(i) := io.forward(i).mask 601 602 // vaddr cam result does not equal to paddr cam result 603 // replay needed 604 // val vpmaskNotEqual = ((paddrModule.io.forwardMmask(i).asUInt ^ vaddrModule.io.forwardMmask(i).asUInt) & needForward) =/= 0.U 605 // val vaddrMatchFailed = vpmaskNotEqual && io.forward(i).valid 606 val vpmaskNotEqual = ( 607 (RegNext(paddrModule.io.forwardMmask(i).asUInt) ^ RegNext(vaddrModule.io.forwardMmask(i).asUInt)) & 608 RegNext(needForward) & 609 RegNext(addrRealValidVec.asUInt) 610 ) =/= 0.U 611 val vaddrMatchFailed = vpmaskNotEqual && RegNext(io.forward(i).valid) 612 when (vaddrMatchFailed) { 613 XSInfo("vaddrMatchFailed: pc %x pmask %x vmask %x\n", 614 RegNext(io.forward(i).uop.pc), 615 RegNext(needForward & paddrModule.io.forwardMmask(i).asUInt), 616 RegNext(needForward & vaddrModule.io.forwardMmask(i).asUInt) 617 ); 618 } 619 XSPerfAccumulate("vaddr_match_failed", vpmaskNotEqual) 620 XSPerfAccumulate("vaddr_match_really_failed", vaddrMatchFailed) 621 622 // Fast forward mask will be generated immediately (load_s1) 623 io.forward(i).forwardMaskFast := dataModule.io.forwardMaskFast(i) 624 625 // Forward result will be generated 1 cycle later (load_s2) 626 io.forward(i).forwardMask := dataModule.io.forwardMask(i) 627 io.forward(i).forwardData := dataModule.io.forwardData(i) 628 // If addr match, data not ready, mark it as dataInvalid 629 // load_s1: generate dataInvalid in load_s1 to set fastUop 630 val dataInvalidMask1 = (addrValidVec.asUInt & ~dataValidVec.asUInt & vaddrModule.io.forwardMmask(i).asUInt & forwardMask1.asUInt) 631 val dataInvalidMask2 = (addrValidVec.asUInt & ~dataValidVec.asUInt & vaddrModule.io.forwardMmask(i).asUInt & forwardMask2.asUInt) 632 val dataInvalidMask = dataInvalidMask1 | dataInvalidMask2 633 io.forward(i).dataInvalidFast := dataInvalidMask.orR 634 635 // make chisel happy 636 val dataInvalidMask1Reg = Wire(UInt(StoreQueueSize.W)) 637 dataInvalidMask1Reg := RegNext(dataInvalidMask1) 638 // make chisel happy 639 val dataInvalidMask2Reg = Wire(UInt(StoreQueueSize.W)) 640 dataInvalidMask2Reg := RegNext(dataInvalidMask2) 641 val dataInvalidMaskReg = dataInvalidMask1Reg | dataInvalidMask2Reg 642 643 // If SSID match, address not ready, mark it as addrInvalid 644 // load_s2: generate addrInvalid 645 val addrInvalidMask1 = (~addrValidVec.asUInt & storeSetHitVec.asUInt & forwardMask1.asUInt) 646 val addrInvalidMask2 = (~addrValidVec.asUInt & storeSetHitVec.asUInt & forwardMask2.asUInt) 647 // make chisel happy 648 val addrInvalidMask1Reg = Wire(UInt(StoreQueueSize.W)) 649 addrInvalidMask1Reg := RegNext(addrInvalidMask1) 650 // make chisel happy 651 val addrInvalidMask2Reg = Wire(UInt(StoreQueueSize.W)) 652 addrInvalidMask2Reg := RegNext(addrInvalidMask2) 653 val addrInvalidMaskReg = addrInvalidMask1Reg | addrInvalidMask2Reg 654 655 // load_s2 656 io.forward(i).dataInvalid := RegNext(io.forward(i).dataInvalidFast) 657 // check if vaddr forward mismatched 658 io.forward(i).matchInvalid := vaddrMatchFailed 659 660 // data invalid sq index 661 // check whether false fail 662 // check flag 663 val s2_differentFlag = RegNext(differentFlag) 664 val s2_enqPtrExt = RegNext(enqPtrExt(0)) 665 val s2_deqPtrExt = RegNext(deqPtrExt(0)) 666 667 // addr invalid sq index 668 // make chisel happy 669 val addrInvalidMaskRegWire = Wire(UInt(StoreQueueSize.W)) 670 addrInvalidMaskRegWire := addrInvalidMaskReg 671 val addrInvalidFlag = addrInvalidMaskRegWire.orR 672 val hasInvalidAddr = (~addrValidVec.asUInt & needForward).orR 673 674 val addrInvalidSqIdx1 = OHToUInt(Reverse(PriorityEncoderOH(Reverse(addrInvalidMask1Reg)))) 675 val addrInvalidSqIdx2 = OHToUInt(Reverse(PriorityEncoderOH(Reverse(addrInvalidMask2Reg)))) 676 val addrInvalidSqIdx = Mux(addrInvalidMask2Reg.orR, addrInvalidSqIdx2, addrInvalidSqIdx1) 677 678 // store-set content management 679 // +-----------------------+ 680 // | Search a SSID for the | 681 // | load operation | 682 // +-----------------------+ 683 // | 684 // V 685 // +-------------------+ 686 // | load wait strict? | 687 // +-------------------+ 688 // | 689 // V 690 // +----------------------+ 691 // Set| |Clean 692 // V V 693 // +------------------------+ +------------------------------+ 694 // | Waiting for all older | | Wait until the corresponding | 695 // | stores operations | | older store operations | 696 // +------------------------+ +------------------------------+ 697 698 699 700 when (RegNext(io.forward(i).uop.loadWaitStrict)) { 701 io.forward(i).addrInvalidSqIdx := RegNext(io.forward(i).uop.sqIdx - 1.U) 702 } .elsewhen (addrInvalidFlag) { 703 io.forward(i).addrInvalidSqIdx.flag := Mux(!s2_differentFlag || addrInvalidSqIdx >= s2_deqPtrExt.value, s2_deqPtrExt.flag, s2_enqPtrExt.flag) 704 io.forward(i).addrInvalidSqIdx.value := addrInvalidSqIdx 705 } .otherwise { 706 // may be store inst has been written to sbuffer already. 707 io.forward(i).addrInvalidSqIdx := RegNext(io.forward(i).uop.sqIdx) 708 } 709 io.forward(i).addrInvalid := Mux(RegNext(io.forward(i).uop.loadWaitStrict), RegNext(hasInvalidAddr), addrInvalidFlag) 710 711 // data invalid sq index 712 // make chisel happy 713 val dataInvalidMaskRegWire = Wire(UInt(StoreQueueSize.W)) 714 dataInvalidMaskRegWire := dataInvalidMaskReg 715 val dataInvalidFlag = dataInvalidMaskRegWire.orR 716 717 val dataInvalidSqIdx1 = OHToUInt(Reverse(PriorityEncoderOH(Reverse(dataInvalidMask1Reg)))) 718 val dataInvalidSqIdx2 = OHToUInt(Reverse(PriorityEncoderOH(Reverse(dataInvalidMask2Reg)))) 719 val dataInvalidSqIdx = Mux(dataInvalidMask2Reg.orR, dataInvalidSqIdx2, dataInvalidSqIdx1) 720 721 when (dataInvalidFlag) { 722 io.forward(i).dataInvalidSqIdx.flag := Mux(!s2_differentFlag || dataInvalidSqIdx >= s2_deqPtrExt.value, s2_deqPtrExt.flag, s2_enqPtrExt.flag) 723 io.forward(i).dataInvalidSqIdx.value := dataInvalidSqIdx 724 } .otherwise { 725 // may be store inst has been written to sbuffer already. 726 io.forward(i).dataInvalidSqIdx := RegNext(io.forward(i).uop.sqIdx) 727 } 728 } 729 730 /** 731 * Memory mapped IO / other uncached operations 732 * 733 * States: 734 * (1) writeback from store units: mark as pending 735 * (2) when they reach ROB's head, they can be sent to uncache channel 736 * (3) response from uncache channel: mark as datavalidmask.wen 737 * (4) writeback to ROB (and other units): mark as writebacked 738 * (5) ROB commits the instruction: same as normal instructions 739 */ 740 //(2) when they reach ROB's head, they can be sent to uncache channel 741 // TODO: CAN NOT deal with vector mmio now! 742 val s_idle :: s_req :: s_resp :: s_wb :: s_wait :: Nil = Enum(5) 743 val uncacheState = RegInit(s_idle) 744 val uncacheUop = Reg(new DynInst) 745 switch(uncacheState) { 746 is(s_idle) { 747 when(RegNext(io.rob.pendingst && uop(deqPtr).robIdx === io.rob.pendingPtr && pending(deqPtr) && allocated(deqPtr) && datavalid(deqPtr) && addrvalid(deqPtr))) { 748 uncacheState := s_req 749 uncacheUop := uop(deqPtr) 750 } 751 } 752 is(s_req) { 753 when (io.uncache.req.fire) { 754 when (io.uncacheOutstanding) { 755 uncacheState := s_wb 756 } .otherwise { 757 uncacheState := s_resp 758 } 759 } 760 } 761 is(s_resp) { 762 when(io.uncache.resp.fire) { 763 uncacheState := s_wb 764 765 when (io.uncache.resp.bits.nderr) { 766 uop(deqPtr).exceptionVec(storeAccessFault) := true.B 767 } 768 } 769 } 770 is(s_wb) { 771 when (io.mmioStout.fire || io.vecmmioStout.fire) { 772 uncacheState := s_wait 773 } 774 } 775 is(s_wait) { 776 // A MMIO store can always move cmtPtrExt as it must be ROB head 777 when(scommit > 0.U) { 778 uncacheState := s_idle // ready for next mmio 779 } 780 } 781 } 782 io.uncache.req.valid := uncacheState === s_req 783 784 io.uncache.req.bits := DontCare 785 io.uncache.req.bits.cmd := MemoryOpConstants.M_XWR 786 io.uncache.req.bits.addr := paddrModule.io.rdata(0) // data(deqPtr) -> rdata(0) 787 io.uncache.req.bits.data := shiftDataToLow(paddrModule.io.rdata(0), dataModule.io.rdata(0).data) 788 io.uncache.req.bits.mask := shiftMaskToLow(paddrModule.io.rdata(0), dataModule.io.rdata(0).mask) 789 790 // CBO op type check can be delayed for 1 cycle, 791 // as uncache op will not start in s_idle 792 val cbo_mmio_addr = paddrModule.io.rdata(0) >> 2 << 2 // clear lowest 2 bits for op 793 val cbo_mmio_op = 0.U //TODO 794 val cbo_mmio_data = cbo_mmio_addr | cbo_mmio_op 795 when(RegNext(LSUOpType.isCbo(uop(deqPtr).fuOpType))){ 796 io.uncache.req.bits.addr := DontCare // TODO 797 io.uncache.req.bits.data := paddrModule.io.rdata(0) 798 io.uncache.req.bits.mask := DontCare // TODO 799 } 800 801 io.uncache.req.bits.atomic := atomic(RegNext(rdataPtrExtNext(0)).value) 802 803 when(io.uncache.req.fire){ 804 // mmio store should not be committed until uncache req is sent 805 pending(deqPtr) := false.B 806 807 XSDebug( 808 p"uncache req: pc ${Hexadecimal(uop(deqPtr).pc)} " + 809 p"addr ${Hexadecimal(io.uncache.req.bits.addr)} " + 810 p"data ${Hexadecimal(io.uncache.req.bits.data)} " + 811 p"op ${Hexadecimal(io.uncache.req.bits.cmd)} " + 812 p"mask ${Hexadecimal(io.uncache.req.bits.mask)}\n" 813 ) 814 } 815 816 // (3) response from uncache channel: mark as datavalid 817 io.uncache.resp.ready := true.B 818 819 // (4) scalar store: writeback to ROB (and other units): mark as writebacked 820 io.mmioStout.valid := uncacheState === s_wb && !isVec(deqPtr) 821 io.mmioStout.bits.uop := uncacheUop 822 io.mmioStout.bits.uop.sqIdx := deqPtrExt(0) 823 io.mmioStout.bits.data := shiftDataToLow(paddrModule.io.rdata(0), dataModule.io.rdata(0).data) // dataModule.io.rdata.read(deqPtr) 824 io.mmioStout.bits.debug.isMMIO := true.B 825 io.mmioStout.bits.debug.paddr := DontCare 826 io.mmioStout.bits.debug.isPerfCnt := false.B 827 io.mmioStout.bits.debug.vaddr := DontCare 828 // Remove MMIO inst from store queue after MMIO request is being sent 829 // That inst will be traced by uncache state machine 830 when (io.mmioStout.fire) { 831 allocated(deqPtr) := false.B 832 } 833 834 // (4) or vector store: 835 // TODO: implement it! 836 io.vecmmioStout := DontCare 837 io.vecmmioStout.valid := uncacheState === s_wb && isVec(deqPtr) 838 io.vecmmioStout.bits.uop := uop(deqPtr) 839 io.vecmmioStout.bits.uop.sqIdx := deqPtrExt(0) 840 io.vecmmioStout.bits.data := shiftDataToLow(paddrModule.io.rdata(0), dataModule.io.rdata(0).data) // dataModule.io.rdata.read(deqPtr) 841 io.vecmmioStout.bits.debug.isMMIO := true.B 842 io.vecmmioStout.bits.debug.paddr := DontCare 843 io.vecmmioStout.bits.debug.isPerfCnt := false.B 844 io.vecmmioStout.bits.debug.vaddr := DontCare 845 // Remove MMIO inst from store queue after MMIO request is being sent 846 // That inst will be traced by uncache state machine 847 when (io.vecmmioStout.fire) { 848 allocated(deqPtr) := false.B 849 } 850 851 /** 852 * ROB commits store instructions (mark them as committed) 853 * 854 * (1) When store commits, mark it as committed. 855 * (2) They will not be cancelled and can be sent to lower level. 856 */ 857 XSError(uncacheState =/= s_idle && uncacheState =/= s_wait && commitCount > 0.U, 858 "should not commit instruction when MMIO has not been finished\n") 859 860 val commitVec = WireInit(VecInit(Seq.fill(CommitWidth)(false.B))) 861 val needCancel = Wire(Vec(StoreQueueSize, Bool())) // Will be assigned later 862 dontTouch(commitVec) 863 // TODO: Deal with vector store mmio 864 for (i <- 0 until CommitWidth) { 865 when (allocated(cmtPtrExt(i).value) && isNotAfter(uop(cmtPtrExt(i).value).robIdx, RegNext(io.rob.pendingPtr)) && !needCancel(cmtPtrExt(i).value) && (!waitStoreS2(cmtPtrExt(i).value) || isVec(cmtPtrExt(i).value))) { 866 if (i == 0){ 867 // TODO: fixme for vector mmio 868 when ((uncacheState === s_idle) || (uncacheState === s_wait && scommit > 0.U)){ 869 when ((isVec(cmtPtrExt(i).value) && vecMbCommit(cmtPtrExt(i).value)) || !isVec(cmtPtrExt(i).value)) { 870 committed(cmtPtrExt(0).value) := true.B 871 commitVec(0) := true.B 872 } 873 } 874 } else { 875 when ((isVec(cmtPtrExt(i).value) && vecMbCommit(cmtPtrExt(i).value)) || !isVec(cmtPtrExt(i).value)) { 876 committed(cmtPtrExt(i).value) := commitVec(i - 1) || committed(cmtPtrExt(i).value) 877 commitVec(i) := commitVec(i - 1) 878 } 879 } 880 } 881 } 882 883 commitCount := PopCount(commitVec) 884 cmtPtrExt := cmtPtrExt.map(_ + commitCount) 885 886 // committed stores will not be cancelled and can be sent to lower level. 887 // remove retired insts from sq, add retired store to sbuffer 888 889 // Read data from data module 890 // As store queue grows larger and larger, time needed to read data from data 891 // module keeps growing higher. Now we give data read a whole cycle. 892 for (i <- 0 until EnsbufferWidth) { 893 val ptr = rdataPtrExt(i).value 894 val mmioStall = if(i == 0) mmio(rdataPtrExt(0).value) else (mmio(rdataPtrExt(i).value) || mmio(rdataPtrExt(i-1).value)) 895 val exceptionValid = if(i == 0) hasException(rdataPtrExt(0).value) else { 896 hasException(rdataPtrExt(i).value) || (hasException(rdataPtrExt(i-1).value) && uop(rdataPtrExt(i).value).robIdx === uop(rdataPtrExt(i-1).value).robIdx) 897 } 898 // Vector instructions that prevent triggered exceptions from being written to the 'databuffer'. 899 val vecHasExceptionFlagValid = vecExceptionFlag.valid && isVec(ptr) && vecExceptionFlag.bits.robIdx === uop(ptr).robIdx 900 dataBuffer.io.enq(i).valid := allocated(ptr) && committed(ptr) && ((!isVec(ptr) && (allvalid(ptr) || hasException(ptr))) || vecMbCommit(ptr)) && !mmioStall 901 // Note that store data/addr should both be valid after store's commit 902 assert(!dataBuffer.io.enq(i).valid || allvalid(ptr) || (allocated(ptr) && vecMbCommit(ptr))) 903 dataBuffer.io.enq(i).bits.addr := paddrModule.io.rdata(i) 904 dataBuffer.io.enq(i).bits.vaddr := vaddrModule.io.rdata(i) 905 dataBuffer.io.enq(i).bits.data := dataModule.io.rdata(i).data 906 dataBuffer.io.enq(i).bits.mask := dataModule.io.rdata(i).mask 907 dataBuffer.io.enq(i).bits.wline := paddrModule.io.rlineflag(i) 908 dataBuffer.io.enq(i).bits.sqPtr := rdataPtrExt(i) 909 dataBuffer.io.enq(i).bits.prefetch := prefetch(ptr) 910 // when scalar has exception, will also not write into sbuffer 911 dataBuffer.io.enq(i).bits.vecValid := (!isVec(ptr) || vecDataValid(ptr)) && !exceptionValid && !vecHasExceptionFlagValid 912// dataBuffer.io.enq(i).bits.vecValid := (!isVec(ptr) || vecDataValid(ptr)) && !hasException(ptr) 913 } 914 915 // Send data stored in sbufferReqBitsReg to sbuffer 916 for (i <- 0 until EnsbufferWidth) { 917 io.sbuffer(i).valid := dataBuffer.io.deq(i).valid 918 dataBuffer.io.deq(i).ready := io.sbuffer(i).ready 919 // Write line request should have all 1 mask 920 assert(!(io.sbuffer(i).valid && io.sbuffer(i).bits.wline && io.sbuffer(i).bits.vecValid && !io.sbuffer(i).bits.mask.andR)) 921 io.sbuffer(i).bits := DontCare 922 io.sbuffer(i).bits.cmd := MemoryOpConstants.M_XWR 923 io.sbuffer(i).bits.addr := dataBuffer.io.deq(i).bits.addr 924 io.sbuffer(i).bits.vaddr := dataBuffer.io.deq(i).bits.vaddr 925 io.sbuffer(i).bits.data := dataBuffer.io.deq(i).bits.data 926 io.sbuffer(i).bits.mask := dataBuffer.io.deq(i).bits.mask 927 io.sbuffer(i).bits.wline := dataBuffer.io.deq(i).bits.wline && dataBuffer.io.deq(i).bits.vecValid 928 io.sbuffer(i).bits.prefetch := dataBuffer.io.deq(i).bits.prefetch 929 io.sbuffer(i).bits.vecValid := dataBuffer.io.deq(i).bits.vecValid 930 // io.sbuffer(i).fire is RegNexted, as sbuffer data write takes 2 cycles. 931 // Before data write finish, sbuffer is unable to provide store to load 932 // forward data. As an workaround, deqPtrExt and allocated flag update 933 // is delayed so that load can get the right data from store queue. 934 val ptr = dataBuffer.io.deq(i).bits.sqPtr.value 935 when (RegNext(io.sbuffer(i).fire)) { 936 allocated(RegEnable(ptr, io.sbuffer(i).fire)) := false.B 937 XSDebug("sbuffer "+i+" fire: ptr %d\n", ptr) 938 } 939 } 940 941 // All vector instruction uop normally dequeue, but the Uop after the exception is raised does not write to the 'sbuffer'. 942 // Flags are used to record whether there are any exceptions when the queue is displayed. 943 // This is determined each time a write is made to the 'databuffer', prevent subsequent uop of the same instruction from writing to the 'dataBuffer'. 944 val vecCommitHasException = (0 until EnsbufferWidth).map{ i => 945 val ptr = rdataPtrExt(i).value 946 val mmioStall = if(i == 0) mmio(rdataPtrExt(0).value) else (mmio(rdataPtrExt(i).value) || mmio(rdataPtrExt(i-1).value)) 947 val exceptionVliad = allocated(ptr) && committed(ptr) && vecMbCommit(ptr) && !mmioStall && isVec(ptr) && vecDataValid(ptr) && hasException(ptr) 948 (exceptionVliad, uop(ptr)) 949 } 950 951 val vecCommitHasExceptionValid = vecCommitHasException.map(_._1) 952 val vecCommitHasExceptionUop = vecCommitHasException.map(_._2) 953 val vecCommitHasExceptionValidOR = vecCommitHasExceptionValid.reduce(_ || _) 954 // Just select the last Uop tah has an exception. 955 val vecCommitHasExceptionSelectUop = ParallelPosteriorityMux(vecCommitHasExceptionValid, vecCommitHasExceptionUop) 956 // If the last Uop with an exception is the LastUop of this instruction, the flag is not set. 957 val vecCommitLastUop = vecCommitHasExceptionSelectUop.lastUop 958 959 val vecExceptionFlagCancel = (0 until EnsbufferWidth).map{ i => 960 val ptr = rdataPtrExt(i).value 961 val mmioStall = if(i == 0) mmio(rdataPtrExt(0).value) else (mmio(rdataPtrExt(i).value) || mmio(rdataPtrExt(i-1).value)) 962 val vecLastUopCommit = uop(ptr).lastUop && (uop(ptr).robIdx === vecExceptionFlag.bits.robIdx) && 963 allocated(ptr) && committed(ptr) && vecMbCommit(ptr) && !mmioStall && isVec(ptr) && vecDataValid(ptr) 964 vecLastUopCommit 965 }.reduce(_ || _) 966 967 // When a LastUop with an exception instruction is commited, clear the flag. 968 when(!vecExceptionFlag.valid && vecCommitHasExceptionValidOR && !vecCommitLastUop) { 969 vecExceptionFlag.valid := true.B 970 vecExceptionFlag.bits := vecCommitHasExceptionSelectUop 971 }.elsewhen(vecExceptionFlag.valid && vecExceptionFlagCancel) { 972 vecExceptionFlag.valid := false.B 973 vecExceptionFlag.bits := 0.U.asTypeOf(new DynInst) 974 } 975 976 // A dumb defensive code. The flag should not be placed for a long period of time. 977 // A relatively large timeout period, not have any special meaning. 978 // If an assert appears and you confirm that it is not a Bug: Increase the timeout or remove the assert. 979 TimeOutAssert(vecExceptionFlag.valid, 3000, "vecExceptionFlag timeout, Plase check for bugs or add timeouts.") 980 981 // Initialize when unenabled difftest. 982 for (i <- 0 until EnsbufferWidth) { 983 io.sbufferVecDifftestInfo(i) := DontCare 984 } 985 // Consistent with the logic above. 986 // Only the vector store difftest required signal is separated from the rtl code. 987 if (env.EnableDifftest) { 988 for (i <- 0 until EnsbufferWidth) { 989 val ptr = rdataPtrExt(i).value 990 val mmioStall = if(i == 0) mmio(rdataPtrExt(0).value) else (mmio(rdataPtrExt(i).value) || mmio(rdataPtrExt(i-1).value)) 991 difftestBuffer.get.io.enq(i).valid := allocated(ptr) && committed(ptr) && (!isVec(ptr) || vecMbCommit(ptr)) && !mmioStall 992 difftestBuffer.get.io.enq(i).bits := uop(ptr) 993 } 994 for (i <- 0 until EnsbufferWidth) { 995 io.sbufferVecDifftestInfo(i).valid := difftestBuffer.get.io.deq(i).valid 996 difftestBuffer.get.io.deq(i).ready := io.sbufferVecDifftestInfo(i).ready 997 998 io.sbufferVecDifftestInfo(i).bits := difftestBuffer.get.io.deq(i).bits 999 } 1000 } 1001 1002 (1 until EnsbufferWidth).foreach(i => when(io.sbuffer(i).fire) { assert(io.sbuffer(i - 1).fire) }) 1003 if (coreParams.dcacheParametersOpt.isEmpty) { 1004 for (i <- 0 until EnsbufferWidth) { 1005 val ptr = deqPtrExt(i).value 1006 val ram = DifftestMem(64L * 1024 * 1024 * 1024, 8) 1007 val wen = allocated(ptr) && committed(ptr) && !mmio(ptr) 1008 val waddr = ((paddrModule.io.rdata(i) - "h80000000".U) >> 3).asUInt 1009 val wdata = Mux(paddrModule.io.rdata(i)(3), dataModule.io.rdata(i).data(127, 64), dataModule.io.rdata(i).data(63, 0)) 1010 val wmask = Mux(paddrModule.io.rdata(i)(3), dataModule.io.rdata(i).mask(15, 8), dataModule.io.rdata(i).mask(7, 0)) 1011 when (wen) { 1012 ram.write(waddr, wdata.asTypeOf(Vec(8, UInt(8.W))), wmask.asBools) 1013 } 1014 } 1015 } 1016 1017 // Read vaddr for mem exception 1018 io.exceptionAddr.vaddr := exceptionBuffer.io.exceptionAddr.vaddr 1019 io.exceptionAddr.gpaddr := exceptionBuffer.io.exceptionAddr.gpaddr 1020 io.exceptionAddr.vstart := exceptionBuffer.io.exceptionAddr.vstart 1021 io.exceptionAddr.vl := exceptionBuffer.io.exceptionAddr.vl 1022 1023 // vector commit or replay from 1024 val vecCommittmp = Wire(Vec(StoreQueueSize, Vec(VecStorePipelineWidth, Bool()))) 1025 val vecCommit = Wire(Vec(StoreQueueSize, Bool())) 1026 for (i <- 0 until StoreQueueSize) { 1027 val fbk = io.vecFeedback 1028 for (j <- 0 until VecStorePipelineWidth) { 1029 vecCommittmp(i)(j) := fbk(j).valid && (fbk(j).bits.isCommit || fbk(j).bits.isFlush) && 1030 uop(i).robIdx === fbk(j).bits.robidx && uop(i).uopIdx === fbk(j).bits.uopidx && allocated(i) 1031 } 1032 vecCommit(i) := vecCommittmp(i).reduce(_ || _) 1033 1034 when (vecCommit(i)) { 1035 vecMbCommit(i) := true.B 1036 } 1037 } 1038 1039 // misprediction recovery / exception redirect 1040 // invalidate sq term using robIdx 1041 for (i <- 0 until StoreQueueSize) { 1042 needCancel(i) := uop(i).robIdx.needFlush(io.brqRedirect) && allocated(i) && !committed(i) && 1043 (!isVec(i) || !(uop(i).robIdx === io.brqRedirect.bits.robIdx)) 1044 when (needCancel(i)) { 1045 allocated(i) := false.B 1046 } 1047 } 1048 1049 /** 1050* update pointers 1051**/ 1052 val enqCancelValid = canEnqueue.zip(io.enq.req).map{case (v , x) => 1053 v && x.bits.robIdx.needFlush(io.brqRedirect) 1054 } 1055 val enqCancelNum = enqCancelValid.zip(io.enq.req).map{case (v, req) => 1056 Mux(v, req.bits.numLsElem, 0.U) 1057 } 1058 val lastEnqCancel = RegNext(enqCancelNum.reduce(_ + _)) // 1 cycle after redirect 1059 1060 val lastCycleCancelCount = PopCount(RegNext(needCancel)) // 1 cycle after redirect 1061 val lastCycleRedirect = RegNext(io.brqRedirect.valid) // 1 cycle after redirect 1062 val enqNumber = validVStoreFlow.reduce(_ + _) 1063 1064 val lastlastCycleRedirect=RegNext(lastCycleRedirect)// 2 cycle after redirect 1065 val redirectCancelCount = RegEnable(lastCycleCancelCount + lastEnqCancel, lastCycleRedirect) // 2 cycle after redirect 1066 1067 when (lastlastCycleRedirect) { 1068 // we recover the pointers in 2 cycle after redirect for better timing 1069 enqPtrExt := VecInit(enqPtrExt.map(_ - redirectCancelCount)) 1070 }.otherwise { 1071 // lastCycleRedirect.valid or nornal case 1072 // when lastCycleRedirect.valid, enqNumber === 0.U, enqPtrExt will not change 1073 enqPtrExt := VecInit(enqPtrExt.map(_ + enqNumber)) 1074 } 1075 assert(!(lastCycleRedirect && enqNumber =/= 0.U)) 1076 1077 deqPtrExt := deqPtrExtNext 1078 rdataPtrExt := rdataPtrExtNext 1079 1080 // val dequeueCount = Mux(io.sbuffer(1).fire, 2.U, Mux(io.sbuffer(0).fire || io.mmioStout.fire, 1.U, 0.U)) 1081 1082 // If redirect at T0, sqCancelCnt is at T2 1083 io.sqCancelCnt := redirectCancelCount 1084 val ForceWriteUpper = Wire(UInt(log2Up(StoreQueueSize + 1).W)) 1085 ForceWriteUpper := Constantin.createRecord(s"ForceWriteUpper_${p(XSCoreParamsKey).HartId}", initValue = 60) 1086 val ForceWriteLower = Wire(UInt(log2Up(StoreQueueSize + 1).W)) 1087 ForceWriteLower := Constantin.createRecord(s"ForceWriteLower_${p(XSCoreParamsKey).HartId}", initValue = 55) 1088 1089 val valid_cnt = PopCount(allocated) 1090 io.force_write := RegNext(Mux(valid_cnt >= ForceWriteUpper, true.B, valid_cnt >= ForceWriteLower && io.force_write), init = false.B) 1091 1092 // io.sqempty will be used by sbuffer 1093 // We delay it for 1 cycle for better timing 1094 // When sbuffer need to check if it is empty, the pipeline is blocked, which means delay io.sqempty 1095 // for 1 cycle will also promise that sq is empty in that cycle 1096 io.sqEmpty := RegNext( 1097 enqPtrExt(0).value === deqPtrExt(0).value && 1098 enqPtrExt(0).flag === deqPtrExt(0).flag 1099 ) 1100 // perf counter 1101 QueuePerf(StoreQueueSize, validCount, !allowEnqueue) 1102 val vecValidVec = WireInit(VecInit((0 until StoreQueueSize).map(i => allocated(i) && isVec(i)))) 1103 QueuePerf(StoreQueueSize, PopCount(vecValidVec), !allowEnqueue) 1104 io.sqFull := !allowEnqueue 1105 XSPerfAccumulate("mmioCycle", uncacheState =/= s_idle) // lq is busy dealing with uncache req 1106 XSPerfAccumulate("mmioCnt", io.uncache.req.fire) 1107 XSPerfAccumulate("mmio_wb_success", io.mmioStout.fire || io.vecmmioStout.fire) 1108 XSPerfAccumulate("mmio_wb_blocked", (io.mmioStout.valid && !io.mmioStout.ready) || (io.vecmmioStout.valid && !io.vecmmioStout.ready)) 1109 XSPerfAccumulate("validEntryCnt", distanceBetween(enqPtrExt(0), deqPtrExt(0))) 1110 XSPerfAccumulate("cmtEntryCnt", distanceBetween(cmtPtrExt(0), deqPtrExt(0))) 1111 XSPerfAccumulate("nCmtEntryCnt", distanceBetween(enqPtrExt(0), cmtPtrExt(0))) 1112 1113 val perfValidCount = distanceBetween(enqPtrExt(0), deqPtrExt(0)) 1114 val perfEvents = Seq( 1115 ("mmioCycle ", uncacheState =/= s_idle), 1116 ("mmioCnt ", io.uncache.req.fire), 1117 ("mmio_wb_success", io.mmioStout.fire || io.vecmmioStout.fire), 1118 ("mmio_wb_blocked", (io.mmioStout.valid && !io.mmioStout.ready) || (io.vecmmioStout.valid && !io.vecmmioStout.ready)), 1119 ("stq_1_4_valid ", (perfValidCount < (StoreQueueSize.U/4.U))), 1120 ("stq_2_4_valid ", (perfValidCount > (StoreQueueSize.U/4.U)) & (perfValidCount <= (StoreQueueSize.U/2.U))), 1121 ("stq_3_4_valid ", (perfValidCount > (StoreQueueSize.U/2.U)) & (perfValidCount <= (StoreQueueSize.U*3.U/4.U))), 1122 ("stq_4_4_valid ", (perfValidCount > (StoreQueueSize.U*3.U/4.U))), 1123 ) 1124 generatePerfEvent() 1125 1126 // debug info 1127 XSDebug("enqPtrExt %d:%d deqPtrExt %d:%d\n", enqPtrExt(0).flag, enqPtr, deqPtrExt(0).flag, deqPtr) 1128 1129 def PrintFlag(flag: Bool, name: String): Unit = { 1130 when(flag) { 1131 XSDebug(false, true.B, name) 1132 }.otherwise { 1133 XSDebug(false, true.B, " ") 1134 } 1135 } 1136 1137 for (i <- 0 until StoreQueueSize) { 1138 XSDebug(s"$i: pc %x va %x pa %x data %x ", 1139 uop(i).pc, 1140 debug_vaddr(i), 1141 debug_paddr(i), 1142 debug_data(i) 1143 ) 1144 PrintFlag(allocated(i), "a") 1145 PrintFlag(allocated(i) && addrvalid(i), "a") 1146 PrintFlag(allocated(i) && datavalid(i), "d") 1147 PrintFlag(allocated(i) && committed(i), "c") 1148 PrintFlag(allocated(i) && pending(i), "p") 1149 PrintFlag(allocated(i) && mmio(i), "m") 1150 XSDebug(false, true.B, "\n") 1151 } 1152 1153} 1154