xref: /XiangShan/src/main/scala/xiangshan/mem/lsqueue/StoreQueue.scala (revision a760aeb0b1b64540d1f49146f82ddd6e87aa1e5e)
1/***************************************************************************************
2* Copyright (c) 2020-2021 Institute of Computing Technology, Chinese Academy of Sciences
3* Copyright (c) 2020-2021 Peng Cheng Laboratory
4*
5* XiangShan is licensed under Mulan PSL v2.
6* You can use this software according to the terms and conditions of the Mulan PSL v2.
7* You may obtain a copy of Mulan PSL v2 at:
8*          http://license.coscl.org.cn/MulanPSL2
9*
10* THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND,
11* EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT,
12* MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE.
13*
14* See the Mulan PSL v2 for more details.
15***************************************************************************************/
16
17package xiangshan.mem
18
19import chipsalliance.rocketchip.config.Parameters
20import chisel3._
21import chisel3.util._
22import utils._
23import xiangshan._
24import xiangshan.cache._
25import xiangshan.cache.{DCacheWordIO, DCacheLineIO, MemoryOpConstants}
26import xiangshan.backend.rob.{RobLsqIO, RobPtr}
27import difftest._
28import device.RAMHelper
29
30class SqPtr(implicit p: Parameters) extends CircularQueuePtr[SqPtr](
31  p => p(XSCoreParamsKey).StoreQueueSize
32){
33}
34
35object SqPtr {
36  def apply(f: Bool, v: UInt)(implicit p: Parameters): SqPtr = {
37    val ptr = Wire(new SqPtr)
38    ptr.flag := f
39    ptr.value := v
40    ptr
41  }
42}
43
44class SqEnqIO(implicit p: Parameters) extends XSBundle {
45  val canAccept = Output(Bool())
46  val lqCanAccept = Input(Bool())
47  val needAlloc = Vec(exuParameters.LsExuCnt, Input(Bool()))
48  val req = Vec(exuParameters.LsExuCnt, Flipped(ValidIO(new MicroOp)))
49  val resp = Vec(exuParameters.LsExuCnt, Output(new SqPtr))
50}
51
52class DataBufferEntry (implicit p: Parameters)  extends DCacheBundle {
53  val addr   = UInt(PAddrBits.W)
54  val vaddr  = UInt(VAddrBits.W)
55  val data   = UInt(DataBits.W)
56  val mask   = UInt((DataBits/8).W)
57  val wline = Bool()
58  val sqPtr  = new SqPtr
59}
60
61// Store Queue
62class StoreQueue(implicit p: Parameters) extends XSModule
63  with HasDCacheParameters with HasCircularQueuePtrHelper with HasPerfEvents {
64  val io = IO(new Bundle() {
65    val hartId = Input(UInt(8.W))
66    val enq = new SqEnqIO
67    val brqRedirect = Flipped(ValidIO(new Redirect))
68    val storeIn = Vec(StorePipelineWidth, Flipped(Valid(new LsPipelineBundle))) // store addr, data is not included
69    val storeInRe = Vec(StorePipelineWidth, Input(new LsPipelineBundle())) // store more mmio and exception
70    val storeDataIn = Vec(StorePipelineWidth, Flipped(Valid(new ExuOutput))) // store data, send to sq from rs
71    val storeMaskIn = Vec(StorePipelineWidth, Flipped(Valid(new StoreMaskBundle))) // store mask, send to sq from rs
72    val sbuffer = Vec(EnsbufferWidth, Decoupled(new DCacheWordReqWithVaddr)) // write committed store to sbuffer
73    val mmioStout = DecoupledIO(new ExuOutput) // writeback uncached store
74    val forward = Vec(LoadPipelineWidth, Flipped(new PipeLoadForwardQueryIO))
75    val rob = Flipped(new RobLsqIO)
76    val uncache = new UncacheWordIO
77    // val refill = Flipped(Valid(new DCacheLineReq ))
78    val exceptionAddr = new ExceptionAddrIO
79    val sqempty = Output(Bool())
80    val issuePtrExt = Output(new SqPtr) // used to wake up delayed load/store
81    val sqFull = Output(Bool())
82    val sqCancelCnt = Output(UInt(log2Up(StoreQueueSize + 1).W))
83    val sqDeq = Output(UInt(log2Ceil(EnsbufferWidth + 1).W))
84    val storeDataValidVec = Vec(StoreQueueSize, Output(Bool()))
85  })
86
87  println("StoreQueue: size:" + StoreQueueSize)
88
89  // data modules
90  val uop = Reg(Vec(StoreQueueSize, new MicroOp))
91  // val data = Reg(Vec(StoreQueueSize, new LsqEntry))
92  val dataModule = Module(new SQDataModule(
93    numEntries = StoreQueueSize,
94    numRead = EnsbufferWidth,
95    numWrite = StorePipelineWidth,
96    numForward = StorePipelineWidth
97  ))
98  dataModule.io := DontCare
99  val paddrModule = Module(new SQAddrModule(
100    dataWidth = PAddrBits,
101    numEntries = StoreQueueSize,
102    numRead = EnsbufferWidth,
103    numWrite = StorePipelineWidth,
104    numForward = StorePipelineWidth
105  ))
106  paddrModule.io := DontCare
107  val vaddrModule = Module(new SQAddrModule(
108    dataWidth = VAddrBits,
109    numEntries = StoreQueueSize,
110    numRead = EnsbufferWidth + 1, // sbuffer + badvaddr 1 (TODO)
111    numWrite = StorePipelineWidth,
112    numForward = StorePipelineWidth
113  ))
114  vaddrModule.io := DontCare
115  val dataBuffer = Module(new DatamoduleResultBuffer(new DataBufferEntry))
116  val debug_paddr = Reg(Vec(StoreQueueSize, UInt((PAddrBits).W)))
117  val debug_vaddr = Reg(Vec(StoreQueueSize, UInt((VAddrBits).W)))
118  val debug_data = Reg(Vec(StoreQueueSize, UInt((XLEN).W)))
119
120  // state & misc
121  val allocated = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // sq entry has been allocated
122  val addrvalid = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // non-mmio addr is valid
123  val datavalid = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // non-mmio data is valid
124  val allvalid  = VecInit((0 until StoreQueueSize).map(i => addrvalid(i) && datavalid(i))) // non-mmio data & addr is valid
125  val committed = Reg(Vec(StoreQueueSize, Bool())) // inst has been committed by rob
126  val pending = Reg(Vec(StoreQueueSize, Bool())) // mmio pending: inst is an mmio inst, it will not be executed until it reachs the end of rob
127  val mmio = Reg(Vec(StoreQueueSize, Bool())) // mmio: inst is an mmio inst
128
129  // ptr
130  val enqPtrExt = RegInit(VecInit((0 until io.enq.req.length).map(_.U.asTypeOf(new SqPtr))))
131  val rdataPtrExt = RegInit(VecInit((0 until EnsbufferWidth).map(_.U.asTypeOf(new SqPtr))))
132  val deqPtrExt = RegInit(VecInit((0 until EnsbufferWidth).map(_.U.asTypeOf(new SqPtr))))
133  val cmtPtrExt = RegInit(VecInit((0 until CommitWidth).map(_.U.asTypeOf(new SqPtr))))
134  val issuePtrExt = RegInit(0.U.asTypeOf(new SqPtr))
135  val validCounter = RegInit(0.U(log2Ceil(LoadQueueSize + 1).W))
136
137  val enqPtr = enqPtrExt(0).value
138  val deqPtr = deqPtrExt(0).value
139  val cmtPtr = cmtPtrExt(0).value
140
141  val validCount = distanceBetween(enqPtrExt(0), deqPtrExt(0))
142  val allowEnqueue = validCount <= (StoreQueueSize - StorePipelineWidth).U
143
144  val deqMask = UIntToMask(deqPtr, StoreQueueSize)
145  val enqMask = UIntToMask(enqPtr, StoreQueueSize)
146
147  val commitCount = RegNext(io.rob.scommit)
148
149  (0 until StoreQueueSize).map{i => {
150    io.storeDataValidVec(i) := datavalid(i)
151  }}
152
153  // Read dataModule
154  assert(EnsbufferWidth <= 2)
155  // rdataPtrExtNext and rdataPtrExtNext+1 entry will be read from dataModule
156  val rdataPtrExtNext = WireInit(Mux(dataBuffer.io.enq(1).fire(),
157    VecInit(rdataPtrExt.map(_ + 2.U)),
158    Mux(dataBuffer.io.enq(0).fire() || io.mmioStout.fire(),
159      VecInit(rdataPtrExt.map(_ + 1.U)),
160      rdataPtrExt
161    )
162  ))
163
164  // deqPtrExtNext traces which inst is about to leave store queue
165  //
166  // io.sbuffer(i).fire() is RegNexted, as sbuffer data write takes 2 cycles.
167  // Before data write finish, sbuffer is unable to provide store to load
168  // forward data. As an workaround, deqPtrExt and allocated flag update
169  // is delayed so that load can get the right data from store queue.
170  //
171  // Modify deqPtrExtNext and io.sqDeq with care!
172  val deqPtrExtNext = Mux(RegNext(io.sbuffer(1).fire()),
173    VecInit(deqPtrExt.map(_ + 2.U)),
174    Mux(RegNext(io.sbuffer(0).fire()) || io.mmioStout.fire(),
175      VecInit(deqPtrExt.map(_ + 1.U)),
176      deqPtrExt
177    )
178  )
179  io.sqDeq := RegNext(Mux(RegNext(io.sbuffer(1).fire()), 2.U,
180    Mux(RegNext(io.sbuffer(0).fire()) || io.mmioStout.fire(), 1.U, 0.U)
181  ))
182  assert(!RegNext(RegNext(io.sbuffer(0).fire()) && io.mmioStout.fire()))
183
184  for (i <- 0 until EnsbufferWidth) {
185    dataModule.io.raddr(i) := rdataPtrExtNext(i).value
186    paddrModule.io.raddr(i) := rdataPtrExtNext(i).value
187    vaddrModule.io.raddr(i) := rdataPtrExtNext(i).value
188  }
189
190  // no inst will be committed 1 cycle before tval update
191  vaddrModule.io.raddr(EnsbufferWidth) := (cmtPtrExt(0) + commitCount).value
192
193  /**
194    * Enqueue at dispatch
195    *
196    * Currently, StoreQueue only allows enqueue when #emptyEntries > EnqWidth
197    */
198  io.enq.canAccept := allowEnqueue
199  val canEnqueue = io.enq.req.map(_.valid)
200  val enqCancel = io.enq.req.map(_.bits.robIdx.needFlush(io.brqRedirect))
201  for (i <- 0 until io.enq.req.length) {
202    val offset = if (i == 0) 0.U else PopCount(io.enq.needAlloc.take(i))
203    val sqIdx = enqPtrExt(offset)
204    val index = io.enq.req(i).bits.sqIdx.value
205    when (canEnqueue(i) && !enqCancel(i)) {
206      uop(index) := io.enq.req(i).bits
207      // NOTE: the index will be used when replay
208      uop(index).sqIdx := sqIdx
209      allocated(index) := true.B
210      datavalid(index) := false.B
211      addrvalid(index) := false.B
212      committed(index) := false.B
213      pending(index) := false.B
214
215      XSError(!io.enq.canAccept || !io.enq.lqCanAccept, s"must accept $i\n")
216      XSError(index =/= sqIdx.value, s"must be the same entry $i\n")
217    }
218    io.enq.resp(i) := sqIdx
219  }
220  XSDebug(p"(ready, valid): ${io.enq.canAccept}, ${Binary(Cat(io.enq.req.map(_.valid)))}\n")
221
222  /**
223    * Update issuePtr when issue from rs
224    */
225  // update issuePtr
226  val IssuePtrMoveStride = 4
227  require(IssuePtrMoveStride >= 2)
228
229  val issueLookupVec = (0 until IssuePtrMoveStride).map(issuePtrExt + _.U)
230  val issueLookup = issueLookupVec.map(ptr => allocated(ptr.value) && addrvalid(ptr.value) && datavalid(ptr.value) && ptr =/= enqPtrExt(0))
231  val nextIssuePtr = issuePtrExt + PriorityEncoder(VecInit(issueLookup.map(!_) :+ true.B))
232  issuePtrExt := nextIssuePtr
233
234  when (io.brqRedirect.valid) {
235    issuePtrExt := Mux(
236      isAfter(cmtPtrExt(0), deqPtrExt(0)),
237      cmtPtrExt(0),
238      deqPtrExtNext(0) // for mmio insts, deqPtr may be ahead of cmtPtr
239    )
240  }
241  // send issuePtrExt to rs
242  // io.issuePtrExt := cmtPtrExt(0)
243  io.issuePtrExt := issuePtrExt
244
245  /**
246    * Writeback store from store units
247    *
248    * Most store instructions writeback to regfile in the previous cycle.
249    * However,
250    *   (1) For an mmio instruction with exceptions, we need to mark it as addrvalid
251    * (in this way it will trigger an exception when it reaches ROB's head)
252    * instead of pending to avoid sending them to lower level.
253    *   (2) For an mmio instruction without exceptions, we mark it as pending.
254    * When the instruction reaches ROB's head, StoreQueue sends it to uncache channel.
255    * Upon receiving the response, StoreQueue writes back the instruction
256    * through arbiter with store units. It will later commit as normal.
257    */
258
259  // Write addr to sq
260  for (i <- 0 until StorePipelineWidth) {
261    paddrModule.io.wen(i) := false.B
262    vaddrModule.io.wen(i) := false.B
263    dataModule.io.mask.wen(i) := false.B
264    val stWbIndex = io.storeIn(i).bits.uop.sqIdx.value
265    when (io.storeIn(i).fire()) {
266      val addr_valid = !io.storeIn(i).bits.miss
267      addrvalid(stWbIndex) := addr_valid //!io.storeIn(i).bits.mmio
268      // pending(stWbIndex) := io.storeIn(i).bits.mmio
269
270      paddrModule.io.waddr(i) := stWbIndex
271      paddrModule.io.wdata(i) := io.storeIn(i).bits.paddr
272      paddrModule.io.wlineflag(i) := io.storeIn(i).bits.wlineflag
273      paddrModule.io.wen(i) := true.B
274
275      vaddrModule.io.waddr(i) := stWbIndex
276      vaddrModule.io.wdata(i) := io.storeIn(i).bits.vaddr
277      vaddrModule.io.wlineflag(i) := io.storeIn(i).bits.wlineflag
278      vaddrModule.io.wen(i) := true.B
279
280      debug_paddr(paddrModule.io.waddr(i)) := paddrModule.io.wdata(i)
281
282      // mmio(stWbIndex) := io.storeIn(i).bits.mmio
283
284      uop(stWbIndex).ctrl := io.storeIn(i).bits.uop.ctrl
285      uop(stWbIndex).debugInfo := io.storeIn(i).bits.uop.debugInfo
286      XSInfo("store addr write to sq idx %d pc 0x%x miss:%d vaddr %x paddr %x mmio %x\n",
287        io.storeIn(i).bits.uop.sqIdx.value,
288        io.storeIn(i).bits.uop.cf.pc,
289        io.storeIn(i).bits.miss,
290        io.storeIn(i).bits.vaddr,
291        io.storeIn(i).bits.paddr,
292        io.storeIn(i).bits.mmio
293      )
294    }
295
296    // re-replinish mmio, for pma/pmp will get mmio one cycle later
297    val storeInFireReg = RegNext(io.storeIn(i).fire() && !io.storeIn(i).bits.miss)
298    val stWbIndexReg = RegNext(stWbIndex)
299    when (storeInFireReg) {
300      pending(stWbIndexReg) := io.storeInRe(i).mmio
301      mmio(stWbIndexReg) := io.storeInRe(i).mmio
302    }
303
304    when(vaddrModule.io.wen(i)){
305      debug_vaddr(vaddrModule.io.waddr(i)) := vaddrModule.io.wdata(i)
306    }
307  }
308
309  // Write data to sq
310  // Now store data pipeline is actually 2 stages
311  for (i <- 0 until StorePipelineWidth) {
312    dataModule.io.data.wen(i) := false.B
313    val stWbIndex = io.storeDataIn(i).bits.uop.sqIdx.value
314    // sq data write takes 2 cycles:
315    // sq data write s0
316    when (io.storeDataIn(i).fire()) {
317      // send data write req to data module
318      dataModule.io.data.waddr(i) := stWbIndex
319      dataModule.io.data.wdata(i) := Mux(io.storeDataIn(i).bits.uop.ctrl.fuOpType === LSUOpType.cbo_zero,
320        0.U,
321        genWdata(io.storeDataIn(i).bits.data, io.storeDataIn(i).bits.uop.ctrl.fuOpType(1,0))
322      )
323      dataModule.io.data.wen(i) := true.B
324
325      debug_data(dataModule.io.data.waddr(i)) := dataModule.io.data.wdata(i)
326
327      XSInfo("store data write to sq idx %d pc 0x%x data %x -> %x\n",
328        io.storeDataIn(i).bits.uop.sqIdx.value,
329        io.storeDataIn(i).bits.uop.cf.pc,
330        io.storeDataIn(i).bits.data,
331        dataModule.io.data.wdata(i)
332      )
333    }
334    // sq data write s1
335    when (
336      RegNext(io.storeDataIn(i).fire())
337      // && !RegNext(io.storeDataIn(i).bits.uop).robIdx.needFlush(io.brqRedirect)
338    ) {
339      datavalid(RegNext(stWbIndex)) := true.B
340    }
341  }
342
343  // Write mask to sq
344  for (i <- 0 until StorePipelineWidth) {
345    // sq mask write s0
346    when (io.storeMaskIn(i).fire()) {
347      // send data write req to data module
348      dataModule.io.mask.waddr(i) := io.storeMaskIn(i).bits.sqIdx.value
349      dataModule.io.mask.wdata(i) := io.storeMaskIn(i).bits.mask
350      dataModule.io.mask.wen(i) := true.B
351    }
352  }
353
354  /**
355    * load forward query
356    *
357    * Check store queue for instructions that is older than the load.
358    * The response will be valid at the next cycle after req.
359    */
360  // check over all lq entries and forward data from the first matched store
361  for (i <- 0 until LoadPipelineWidth) {
362    // Compare deqPtr (deqPtr) and forward.sqIdx, we have two cases:
363    // (1) if they have the same flag, we need to check range(tail, sqIdx)
364    // (2) if they have different flags, we need to check range(tail, LoadQueueSize) and range(0, sqIdx)
365    // Forward1: Mux(same_flag, range(tail, sqIdx), range(tail, LoadQueueSize))
366    // Forward2: Mux(same_flag, 0.U,                   range(0, sqIdx)    )
367    // i.e. forward1 is the target entries with the same flag bits and forward2 otherwise
368    val differentFlag = deqPtrExt(0).flag =/= io.forward(i).sqIdx.flag
369    val forwardMask = io.forward(i).sqIdxMask
370    // all addrvalid terms need to be checked
371    val addrValidVec = WireInit(VecInit((0 until StoreQueueSize).map(i => addrvalid(i) && allocated(i))))
372    val dataValidVec = WireInit(VecInit((0 until StoreQueueSize).map(i => datavalid(i))))
373    val allValidVec = WireInit(VecInit((0 until StoreQueueSize).map(i => addrvalid(i) && datavalid(i) && allocated(i))))
374    val canForward1 = Mux(differentFlag, ~deqMask, deqMask ^ forwardMask) & allValidVec.asUInt
375    val canForward2 = Mux(differentFlag, forwardMask, 0.U(StoreQueueSize.W)) & allValidVec.asUInt
376    val needForward = Mux(differentFlag, ~deqMask | forwardMask, deqMask ^ forwardMask)
377
378    XSDebug(p"$i f1 ${Binary(canForward1)} f2 ${Binary(canForward2)} " +
379      p"sqIdx ${io.forward(i).sqIdx} pa ${Hexadecimal(io.forward(i).paddr)}\n"
380    )
381
382    // do real fwd query (cam lookup in load_s1)
383    dataModule.io.needForward(i)(0) := canForward1 & vaddrModule.io.forwardMmask(i).asUInt
384    dataModule.io.needForward(i)(1) := canForward2 & vaddrModule.io.forwardMmask(i).asUInt
385
386    vaddrModule.io.forwardMdata(i) := io.forward(i).vaddr
387    paddrModule.io.forwardMdata(i) := io.forward(i).paddr
388
389    // vaddr cam result does not equal to paddr cam result
390    // replay needed
391    // val vpmaskNotEqual = ((paddrModule.io.forwardMmask(i).asUInt ^ vaddrModule.io.forwardMmask(i).asUInt) & needForward) =/= 0.U
392    // val vaddrMatchFailed = vpmaskNotEqual && io.forward(i).valid
393    val vpmaskNotEqual = (
394      (RegNext(paddrModule.io.forwardMmask(i).asUInt) ^ RegNext(vaddrModule.io.forwardMmask(i).asUInt)) &
395      RegNext(needForward) &
396      RegNext(addrValidVec.asUInt)
397    ) =/= 0.U
398    val vaddrMatchFailed = vpmaskNotEqual && RegNext(io.forward(i).valid)
399    when (vaddrMatchFailed) {
400      XSInfo("vaddrMatchFailed: pc %x pmask %x vmask %x\n",
401        RegNext(io.forward(i).uop.cf.pc),
402        RegNext(needForward & paddrModule.io.forwardMmask(i).asUInt),
403        RegNext(needForward & vaddrModule.io.forwardMmask(i).asUInt)
404      );
405    }
406    XSPerfAccumulate("vaddr_match_failed", vpmaskNotEqual)
407    XSPerfAccumulate("vaddr_match_really_failed", vaddrMatchFailed)
408
409    // Fast forward mask will be generated immediately (load_s1)
410    io.forward(i).forwardMaskFast := dataModule.io.forwardMaskFast(i)
411
412    // Forward result will be generated 1 cycle later (load_s2)
413    io.forward(i).forwardMask := dataModule.io.forwardMask(i)
414    io.forward(i).forwardData := dataModule.io.forwardData(i)
415
416    // If addr match, data not ready, mark it as dataInvalid
417    // load_s1: generate dataInvalid in load_s1 to set fastUop
418    val dataInvalidMask = (addrValidVec.asUInt & ~dataValidVec.asUInt & vaddrModule.io.forwardMmask(i).asUInt & needForward.asUInt)
419    io.forward(i).dataInvalidFast := dataInvalidMask.orR
420    val dataInvalidMaskReg = RegNext(dataInvalidMask)
421    // load_s2
422    io.forward(i).dataInvalid := RegNext(io.forward(i).dataInvalidFast)
423    // check if vaddr forward mismatched
424    io.forward(i).matchInvalid := vaddrMatchFailed
425    val dataInvalidMaskRegWire = Wire(UInt(StoreQueueSize.W))
426    dataInvalidMaskRegWire := dataInvalidMaskReg // make chisel happy
427    io.forward(i).dataInvalidSqIdx := PriorityEncoder(dataInvalidMaskRegWire)
428  }
429
430  /**
431    * Memory mapped IO / other uncached operations
432    *
433    * States:
434    * (1) writeback from store units: mark as pending
435    * (2) when they reach ROB's head, they can be sent to uncache channel
436    * (3) response from uncache channel: mark as datavalidmask.wen
437    * (4) writeback to ROB (and other units): mark as writebacked
438    * (5) ROB commits the instruction: same as normal instructions
439    */
440  //(2) when they reach ROB's head, they can be sent to uncache channel
441  val s_idle :: s_req :: s_resp :: s_wb :: s_wait :: Nil = Enum(5)
442  val uncacheState = RegInit(s_idle)
443  switch(uncacheState) {
444    is(s_idle) {
445      when(RegNext(io.rob.pendingst && pending(deqPtr) && allocated(deqPtr) && datavalid(deqPtr) && addrvalid(deqPtr))) {
446        uncacheState := s_req
447      }
448    }
449    is(s_req) {
450      when(io.uncache.req.fire()) {
451        uncacheState := s_resp
452      }
453    }
454    is(s_resp) {
455      when(io.uncache.resp.fire()) {
456        uncacheState := s_wb
457      }
458    }
459    is(s_wb) {
460      when (io.mmioStout.fire()) {
461        uncacheState := s_wait
462      }
463    }
464    is(s_wait) {
465      when(commitCount > 0.U) {
466        uncacheState := s_idle // ready for next mmio
467      }
468    }
469  }
470  io.uncache.req.valid := uncacheState === s_req
471
472  io.uncache.req.bits.cmd  := MemoryOpConstants.M_XWR
473  io.uncache.req.bits.addr := paddrModule.io.rdata(0) // data(deqPtr) -> rdata(0)
474  io.uncache.req.bits.data := dataModule.io.rdata(0).data
475  io.uncache.req.bits.mask := dataModule.io.rdata(0).mask
476
477  // CBO op type check can be delayed for 1 cycle,
478  // as uncache op will not start in s_idle
479  val cbo_mmio_addr = paddrModule.io.rdata(0) >> 2 << 2 // clear lowest 2 bits for op
480  val cbo_mmio_op = 0.U //TODO
481  val cbo_mmio_data = cbo_mmio_addr | cbo_mmio_op
482  when(RegNext(LSUOpType.isCbo(uop(deqPtr).ctrl.fuOpType))){
483    io.uncache.req.bits.addr := DontCare // TODO
484    io.uncache.req.bits.data := paddrModule.io.rdata(0)
485    io.uncache.req.bits.mask := DontCare // TODO
486  }
487
488  io.uncache.req.bits.id   := DontCare
489  io.uncache.req.bits.instrtype   := DontCare
490
491  when(io.uncache.req.fire()){
492    // mmio store should not be committed until uncache req is sent
493    pending(deqPtr) := false.B
494
495    XSDebug(
496      p"uncache req: pc ${Hexadecimal(uop(deqPtr).cf.pc)} " +
497      p"addr ${Hexadecimal(io.uncache.req.bits.addr)} " +
498      p"data ${Hexadecimal(io.uncache.req.bits.data)} " +
499      p"op ${Hexadecimal(io.uncache.req.bits.cmd)} " +
500      p"mask ${Hexadecimal(io.uncache.req.bits.mask)}\n"
501    )
502  }
503
504  // (3) response from uncache channel: mark as datavalid
505  io.uncache.resp.ready := true.B
506
507  // (4) writeback to ROB (and other units): mark as writebacked
508  io.mmioStout.valid := uncacheState === s_wb
509  io.mmioStout.bits.uop := uop(deqPtr)
510  io.mmioStout.bits.uop.sqIdx := deqPtrExt(0)
511  io.mmioStout.bits.data := dataModule.io.rdata(0).data // dataModule.io.rdata.read(deqPtr)
512  io.mmioStout.bits.redirectValid := false.B
513  io.mmioStout.bits.redirect := DontCare
514  io.mmioStout.bits.debug.isMMIO := true.B
515  io.mmioStout.bits.debug.paddr := DontCare
516  io.mmioStout.bits.debug.isPerfCnt := false.B
517  io.mmioStout.bits.fflags := DontCare
518  io.mmioStout.bits.debug.vaddr := DontCare
519  // Remove MMIO inst from store queue after MMIO request is being sent
520  // That inst will be traced by uncache state machine
521  when (io.mmioStout.fire()) {
522    allocated(deqPtr) := false.B
523  }
524
525  /**
526    * ROB commits store instructions (mark them as committed)
527    *
528    * (1) When store commits, mark it as committed.
529    * (2) They will not be cancelled and can be sent to lower level.
530    */
531  XSError(uncacheState =/= s_idle && uncacheState =/= s_wait && commitCount > 0.U,
532   "should not commit instruction when MMIO has not been finished\n")
533  for (i <- 0 until CommitWidth) {
534    when (commitCount > i.U) { // MMIO inst is not in progress
535      if(i == 0){
536        // MMIO inst should not update committed flag
537        // Note that commit count has been delayed for 1 cycle
538        when(uncacheState === s_idle){
539          committed(cmtPtrExt(0).value) := true.B
540        }
541      } else {
542        committed(cmtPtrExt(i).value) := true.B
543      }
544    }
545  }
546  cmtPtrExt := cmtPtrExt.map(_ + commitCount)
547
548  // committed stores will not be cancelled and can be sent to lower level.
549  // remove retired insts from sq, add retired store to sbuffer
550
551  // Read data from data module
552  // As store queue grows larger and larger, time needed to read data from data
553  // module keeps growing higher. Now we give data read a whole cycle.
554
555  val mmioStall = mmio(rdataPtrExt(0).value)
556  for (i <- 0 until EnsbufferWidth) {
557    val ptr = rdataPtrExt(i).value
558    dataBuffer.io.enq(i).valid := allocated(ptr) && committed(ptr) && !mmioStall
559    // Note that store data/addr should both be valid after store's commit
560    assert(!dataBuffer.io.enq(i).valid || allvalid(ptr))
561    dataBuffer.io.enq(i).bits.addr  := paddrModule.io.rdata(i)
562    dataBuffer.io.enq(i).bits.vaddr := vaddrModule.io.rdata(i)
563    dataBuffer.io.enq(i).bits.data  := dataModule.io.rdata(i).data
564    dataBuffer.io.enq(i).bits.mask  := dataModule.io.rdata(i).mask
565    dataBuffer.io.enq(i).bits.wline := paddrModule.io.rlineflag(i)
566    dataBuffer.io.enq(i).bits.sqPtr := rdataPtrExt(i)
567  }
568
569  // Send data stored in sbufferReqBitsReg to sbuffer
570  for (i <- 0 until EnsbufferWidth) {
571    io.sbuffer(i).valid := dataBuffer.io.deq(i).valid
572    dataBuffer.io.deq(i).ready := io.sbuffer(i).ready
573    // Write line request should have all 1 mask
574    assert(!(io.sbuffer(i).valid && io.sbuffer(i).bits.wline && !io.sbuffer(i).bits.mask.andR))
575    io.sbuffer(i).bits.cmd   := MemoryOpConstants.M_XWR
576    io.sbuffer(i).bits.addr  := dataBuffer.io.deq(i).bits.addr
577    io.sbuffer(i).bits.vaddr := dataBuffer.io.deq(i).bits.vaddr
578    io.sbuffer(i).bits.data  := dataBuffer.io.deq(i).bits.data
579    io.sbuffer(i).bits.mask  := dataBuffer.io.deq(i).bits.mask
580    io.sbuffer(i).bits.wline := dataBuffer.io.deq(i).bits.wline
581    io.sbuffer(i).bits.id    := DontCare
582    io.sbuffer(i).bits.instrtype    := DontCare
583
584    // io.sbuffer(i).fire() is RegNexted, as sbuffer data write takes 2 cycles.
585    // Before data write finish, sbuffer is unable to provide store to load
586    // forward data. As an workaround, deqPtrExt and allocated flag update
587    // is delayed so that load can get the right data from store queue.
588    val ptr = dataBuffer.io.deq(i).bits.sqPtr.value
589    when (RegNext(io.sbuffer(i).fire())) {
590      allocated(RegEnable(ptr, io.sbuffer(i).fire())) := false.B
591      XSDebug("sbuffer "+i+" fire: ptr %d\n", ptr)
592    }
593  }
594  (1 until EnsbufferWidth).foreach(i => when(io.sbuffer(i).fire) { assert(io.sbuffer(i - 1).fire) })
595  if (coreParams.dcacheParametersOpt.isEmpty) {
596    for (i <- 0 until EnsbufferWidth) {
597      val ptr = deqPtrExt(i).value
598      val fakeRAM = Module(new RAMHelper(64L * 1024 * 1024 * 1024))
599      fakeRAM.clk   := clock
600      fakeRAM.en    := allocated(ptr) && committed(ptr) && !mmio(ptr)
601      fakeRAM.rIdx  := 0.U
602      fakeRAM.wIdx  := (paddrModule.io.rdata(i) - "h80000000".U) >> 3
603      fakeRAM.wdata := dataModule.io.rdata(i).data
604      fakeRAM.wmask := MaskExpand(dataModule.io.rdata(i).mask)
605      fakeRAM.wen   := allocated(ptr) && committed(ptr) && !mmio(ptr)
606    }
607  }
608
609  if (env.EnableDifftest) {
610    for (i <- 0 until EnsbufferWidth) {
611      val storeCommit = io.sbuffer(i).fire()
612      val waddr = SignExt(io.sbuffer(i).bits.addr, 64)
613      val wdata = io.sbuffer(i).bits.data & MaskExpand(io.sbuffer(i).bits.mask)
614      val wmask = io.sbuffer(i).bits.mask
615
616      val difftest = Module(new DifftestStoreEvent)
617      difftest.io.clock       := clock
618      difftest.io.coreid      := io.hartId
619      difftest.io.index       := i.U
620      difftest.io.valid       := RegNext(RegNext(storeCommit))
621      difftest.io.storeAddr   := RegNext(RegNext(waddr))
622      difftest.io.storeData   := RegNext(RegNext(wdata))
623      difftest.io.storeMask   := RegNext(RegNext(wmask))
624    }
625  }
626
627  // Read vaddr for mem exception
628  io.exceptionAddr.vaddr := vaddrModule.io.rdata(EnsbufferWidth)
629
630  // misprediction recovery / exception redirect
631  // invalidate sq term using robIdx
632  val needCancel = Wire(Vec(StoreQueueSize, Bool()))
633  for (i <- 0 until StoreQueueSize) {
634    needCancel(i) := uop(i).robIdx.needFlush(io.brqRedirect) && allocated(i) && !committed(i)
635    when (needCancel(i)) {
636      allocated(i) := false.B
637    }
638  }
639
640  /**
641    * update pointers
642    */
643  val lastEnqCancel = PopCount(RegNext(VecInit(canEnqueue.zip(enqCancel).map(x => x._1 && x._2))))
644  val lastCycleRedirect = RegNext(io.brqRedirect.valid)
645  val lastCycleCancelCount = PopCount(RegNext(needCancel))
646  val enqNumber = Mux(io.enq.canAccept && io.enq.lqCanAccept, PopCount(io.enq.req.map(_.valid)), 0.U)
647  when (lastCycleRedirect) {
648    // we recover the pointers in the next cycle after redirect
649    enqPtrExt := VecInit(enqPtrExt.map(_ - (lastCycleCancelCount + lastEnqCancel)))
650  }.otherwise {
651    enqPtrExt := VecInit(enqPtrExt.map(_ + enqNumber))
652  }
653
654  deqPtrExt := deqPtrExtNext
655  rdataPtrExt := rdataPtrExtNext
656
657  // val dequeueCount = Mux(io.sbuffer(1).fire(), 2.U, Mux(io.sbuffer(0).fire() || io.mmioStout.fire(), 1.U, 0.U))
658
659  // If redirect at T0, sqCancelCnt is at T2
660  io.sqCancelCnt := RegNext(lastCycleCancelCount + lastEnqCancel)
661
662  // io.sqempty will be used by sbuffer
663  // We delay it for 1 cycle for better timing
664  // When sbuffer need to check if it is empty, the pipeline is blocked, which means delay io.sqempty
665  // for 1 cycle will also promise that sq is empty in that cycle
666  io.sqempty := RegNext(
667    enqPtrExt(0).value === deqPtrExt(0).value &&
668    enqPtrExt(0).flag === deqPtrExt(0).flag
669  )
670
671  // perf counter
672  QueuePerf(StoreQueueSize, validCount, !allowEnqueue)
673  io.sqFull := !allowEnqueue
674  XSPerfAccumulate("mmioCycle", uncacheState =/= s_idle) // lq is busy dealing with uncache req
675  XSPerfAccumulate("mmioCnt", io.uncache.req.fire())
676  XSPerfAccumulate("mmio_wb_success", io.mmioStout.fire())
677  XSPerfAccumulate("mmio_wb_blocked", io.mmioStout.valid && !io.mmioStout.ready)
678  XSPerfAccumulate("validEntryCnt", distanceBetween(enqPtrExt(0), deqPtrExt(0)))
679  XSPerfAccumulate("cmtEntryCnt", distanceBetween(cmtPtrExt(0), deqPtrExt(0)))
680  XSPerfAccumulate("nCmtEntryCnt", distanceBetween(enqPtrExt(0), cmtPtrExt(0)))
681
682  val perfValidCount = distanceBetween(enqPtrExt(0), deqPtrExt(0))
683  val perfEvents = Seq(
684    ("mmioCycle      ", uncacheState =/= s_idle),
685    ("mmioCnt        ", io.uncache.req.fire()),
686    ("mmio_wb_success", io.mmioStout.fire()),
687    ("mmio_wb_blocked", io.mmioStout.valid && !io.mmioStout.ready),
688    ("stq_1_4_valid  ", (perfValidCount < (StoreQueueSize.U/4.U))),
689    ("stq_2_4_valid  ", (perfValidCount > (StoreQueueSize.U/4.U)) & (perfValidCount <= (StoreQueueSize.U/2.U))),
690    ("stq_3_4_valid  ", (perfValidCount > (StoreQueueSize.U/2.U)) & (perfValidCount <= (StoreQueueSize.U*3.U/4.U))),
691    ("stq_4_4_valid  ", (perfValidCount > (StoreQueueSize.U*3.U/4.U))),
692  )
693  generatePerfEvent()
694
695  // debug info
696  XSDebug("enqPtrExt %d:%d deqPtrExt %d:%d\n", enqPtrExt(0).flag, enqPtr, deqPtrExt(0).flag, deqPtr)
697
698  def PrintFlag(flag: Bool, name: String): Unit = {
699    when(flag) {
700      XSDebug(false, true.B, name)
701    }.otherwise {
702      XSDebug(false, true.B, " ")
703    }
704  }
705
706  for (i <- 0 until StoreQueueSize) {
707    XSDebug(i + ": pc %x va %x pa %x data %x ",
708      uop(i).cf.pc,
709      debug_vaddr(i),
710      debug_paddr(i),
711      debug_data(i)
712    )
713    PrintFlag(allocated(i), "a")
714    PrintFlag(allocated(i) && addrvalid(i), "a")
715    PrintFlag(allocated(i) && datavalid(i), "d")
716    PrintFlag(allocated(i) && committed(i), "c")
717    PrintFlag(allocated(i) && pending(i), "p")
718    PrintFlag(allocated(i) && mmio(i), "m")
719    XSDebug(false, true.B, "\n")
720  }
721
722}
723