1/*************************************************************************************** 2* Copyright (c) 2020-2021 Institute of Computing Technology, Chinese Academy of Sciences 3* Copyright (c) 2020-2021 Peng Cheng Laboratory 4* 5* XiangShan is licensed under Mulan PSL v2. 6* You can use this software according to the terms and conditions of the Mulan PSL v2. 7* You may obtain a copy of Mulan PSL v2 at: 8* http://license.coscl.org.cn/MulanPSL2 9* 10* THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND, 11* EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT, 12* MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE. 13* 14* See the Mulan PSL v2 for more details. 15***************************************************************************************/ 16 17package xiangshan.mem 18 19import chipsalliance.rocketchip.config.Parameters 20import chisel3._ 21import chisel3.util._ 22import utils._ 23import xiangshan._ 24import xiangshan.cache._ 25import xiangshan.cache.{DCacheWordIO, DCacheLineIO, MemoryOpConstants} 26import xiangshan.backend.rob.{RobLsqIO, RobPtr} 27import difftest._ 28import device.RAMHelper 29 30class SqPtr(implicit p: Parameters) extends CircularQueuePtr[SqPtr]( 31 p => p(XSCoreParamsKey).StoreQueueSize 32){ 33} 34 35object SqPtr { 36 def apply(f: Bool, v: UInt)(implicit p: Parameters): SqPtr = { 37 val ptr = Wire(new SqPtr) 38 ptr.flag := f 39 ptr.value := v 40 ptr 41 } 42} 43 44class SqEnqIO(implicit p: Parameters) extends XSBundle { 45 val canAccept = Output(Bool()) 46 val lqCanAccept = Input(Bool()) 47 val needAlloc = Vec(exuParameters.LsExuCnt, Input(Bool())) 48 val req = Vec(exuParameters.LsExuCnt, Flipped(ValidIO(new MicroOp))) 49 val resp = Vec(exuParameters.LsExuCnt, Output(new SqPtr)) 50} 51 52class DataBufferEntry (implicit p: Parameters) extends DCacheBundle { 53 val addr = UInt(PAddrBits.W) 54 val vaddr = UInt(VAddrBits.W) 55 val data = UInt(DataBits.W) 56 val mask = UInt((DataBits/8).W) 57 val wline = Bool() 58 val sqPtr = new SqPtr 59} 60 61// Store Queue 62class StoreQueue(implicit p: Parameters) extends XSModule 63 with HasDCacheParameters with HasCircularQueuePtrHelper with HasPerfEvents { 64 val io = IO(new Bundle() { 65 val hartId = Input(UInt(8.W)) 66 val enq = new SqEnqIO 67 val brqRedirect = Flipped(ValidIO(new Redirect)) 68 val storeIn = Vec(StorePipelineWidth, Flipped(Valid(new LsPipelineBundle))) // store addr, data is not included 69 val storeInRe = Vec(StorePipelineWidth, Input(new LsPipelineBundle())) // store more mmio and exception 70 val storeDataIn = Vec(StorePipelineWidth, Flipped(Valid(new ExuOutput))) // store data, send to sq from rs 71 val storeMaskIn = Vec(StorePipelineWidth, Flipped(Valid(new StoreMaskBundle))) // store mask, send to sq from rs 72 val sbuffer = Vec(EnsbufferWidth, Decoupled(new DCacheWordReqWithVaddr)) // write committed store to sbuffer 73 val mmioStout = DecoupledIO(new ExuOutput) // writeback uncached store 74 val forward = Vec(LoadPipelineWidth, Flipped(new PipeLoadForwardQueryIO)) 75 val rob = Flipped(new RobLsqIO) 76 val uncache = new UncacheWordIO 77 // val refill = Flipped(Valid(new DCacheLineReq )) 78 val exceptionAddr = new ExceptionAddrIO 79 val sqempty = Output(Bool()) 80 val issuePtrExt = Output(new SqPtr) // used to wake up delayed load/store 81 val sqFull = Output(Bool()) 82 val sqCancelCnt = Output(UInt(log2Up(StoreQueueSize + 1).W)) 83 val sqDeq = Output(UInt(log2Ceil(EnsbufferWidth + 1).W)) 84 val storeDataValidVec = Vec(StoreQueueSize, Output(Bool())) 85 }) 86 87 println("StoreQueue: size:" + StoreQueueSize) 88 89 // data modules 90 val uop = Reg(Vec(StoreQueueSize, new MicroOp)) 91 // val data = Reg(Vec(StoreQueueSize, new LsqEntry)) 92 val dataModule = Module(new SQDataModule( 93 numEntries = StoreQueueSize, 94 numRead = EnsbufferWidth, 95 numWrite = StorePipelineWidth, 96 numForward = StorePipelineWidth 97 )) 98 dataModule.io := DontCare 99 val paddrModule = Module(new SQAddrModule( 100 dataWidth = PAddrBits, 101 numEntries = StoreQueueSize, 102 numRead = EnsbufferWidth, 103 numWrite = StorePipelineWidth, 104 numForward = StorePipelineWidth 105 )) 106 paddrModule.io := DontCare 107 val vaddrModule = Module(new SQAddrModule( 108 dataWidth = VAddrBits, 109 numEntries = StoreQueueSize, 110 numRead = EnsbufferWidth + 1, // sbuffer + badvaddr 1 (TODO) 111 numWrite = StorePipelineWidth, 112 numForward = StorePipelineWidth 113 )) 114 vaddrModule.io := DontCare 115 val dataBuffer = Module(new DatamoduleResultBuffer(new DataBufferEntry)) 116 val debug_paddr = Reg(Vec(StoreQueueSize, UInt((PAddrBits).W))) 117 val debug_vaddr = Reg(Vec(StoreQueueSize, UInt((VAddrBits).W))) 118 val debug_data = Reg(Vec(StoreQueueSize, UInt((XLEN).W))) 119 120 // state & misc 121 val allocated = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // sq entry has been allocated 122 val addrvalid = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // non-mmio addr is valid 123 val datavalid = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // non-mmio data is valid 124 val allvalid = VecInit((0 until StoreQueueSize).map(i => addrvalid(i) && datavalid(i))) // non-mmio data & addr is valid 125 val committed = Reg(Vec(StoreQueueSize, Bool())) // inst has been committed by rob 126 val pending = Reg(Vec(StoreQueueSize, Bool())) // mmio pending: inst is an mmio inst, it will not be executed until it reachs the end of rob 127 val mmio = Reg(Vec(StoreQueueSize, Bool())) // mmio: inst is an mmio inst 128 129 // ptr 130 val enqPtrExt = RegInit(VecInit((0 until io.enq.req.length).map(_.U.asTypeOf(new SqPtr)))) 131 val rdataPtrExt = RegInit(VecInit((0 until EnsbufferWidth).map(_.U.asTypeOf(new SqPtr)))) 132 val deqPtrExt = RegInit(VecInit((0 until EnsbufferWidth).map(_.U.asTypeOf(new SqPtr)))) 133 val cmtPtrExt = RegInit(VecInit((0 until CommitWidth).map(_.U.asTypeOf(new SqPtr)))) 134 val issuePtrExt = RegInit(0.U.asTypeOf(new SqPtr)) 135 val validCounter = RegInit(0.U(log2Ceil(LoadQueueSize + 1).W)) 136 137 val enqPtr = enqPtrExt(0).value 138 val deqPtr = deqPtrExt(0).value 139 val cmtPtr = cmtPtrExt(0).value 140 141 val validCount = distanceBetween(enqPtrExt(0), deqPtrExt(0)) 142 val allowEnqueue = validCount <= (StoreQueueSize - StorePipelineWidth).U 143 144 val deqMask = UIntToMask(deqPtr, StoreQueueSize) 145 val enqMask = UIntToMask(enqPtr, StoreQueueSize) 146 147 val commitCount = RegNext(io.rob.scommit) 148 149 (0 until StoreQueueSize).map{i => { 150 io.storeDataValidVec(i) := datavalid(i) 151 }} 152 153 // Read dataModule 154 assert(EnsbufferWidth <= 2) 155 // rdataPtrExtNext and rdataPtrExtNext+1 entry will be read from dataModule 156 val rdataPtrExtNext = WireInit(Mux(dataBuffer.io.enq(1).fire(), 157 VecInit(rdataPtrExt.map(_ + 2.U)), 158 Mux(dataBuffer.io.enq(0).fire() || io.mmioStout.fire(), 159 VecInit(rdataPtrExt.map(_ + 1.U)), 160 rdataPtrExt 161 ) 162 )) 163 164 // deqPtrExtNext traces which inst is about to leave store queue 165 // 166 // io.sbuffer(i).fire() is RegNexted, as sbuffer data write takes 2 cycles. 167 // Before data write finish, sbuffer is unable to provide store to load 168 // forward data. As an workaround, deqPtrExt and allocated flag update 169 // is delayed so that load can get the right data from store queue. 170 // 171 // Modify deqPtrExtNext and io.sqDeq with care! 172 val deqPtrExtNext = Mux(RegNext(io.sbuffer(1).fire()), 173 VecInit(deqPtrExt.map(_ + 2.U)), 174 Mux(RegNext(io.sbuffer(0).fire()) || io.mmioStout.fire(), 175 VecInit(deqPtrExt.map(_ + 1.U)), 176 deqPtrExt 177 ) 178 ) 179 io.sqDeq := RegNext(Mux(RegNext(io.sbuffer(1).fire()), 2.U, 180 Mux(RegNext(io.sbuffer(0).fire()) || io.mmioStout.fire(), 1.U, 0.U) 181 )) 182 assert(!RegNext(RegNext(io.sbuffer(0).fire()) && io.mmioStout.fire())) 183 184 for (i <- 0 until EnsbufferWidth) { 185 dataModule.io.raddr(i) := rdataPtrExtNext(i).value 186 paddrModule.io.raddr(i) := rdataPtrExtNext(i).value 187 vaddrModule.io.raddr(i) := rdataPtrExtNext(i).value 188 } 189 190 // no inst will be committed 1 cycle before tval update 191 vaddrModule.io.raddr(EnsbufferWidth) := (cmtPtrExt(0) + commitCount).value 192 193 /** 194 * Enqueue at dispatch 195 * 196 * Currently, StoreQueue only allows enqueue when #emptyEntries > EnqWidth 197 */ 198 io.enq.canAccept := allowEnqueue 199 val canEnqueue = io.enq.req.map(_.valid) 200 val enqCancel = io.enq.req.map(_.bits.robIdx.needFlush(io.brqRedirect)) 201 for (i <- 0 until io.enq.req.length) { 202 val offset = if (i == 0) 0.U else PopCount(io.enq.needAlloc.take(i)) 203 val sqIdx = enqPtrExt(offset) 204 val index = io.enq.req(i).bits.sqIdx.value 205 when (canEnqueue(i) && !enqCancel(i)) { 206 uop(index) := io.enq.req(i).bits 207 // NOTE: the index will be used when replay 208 uop(index).sqIdx := sqIdx 209 allocated(index) := true.B 210 datavalid(index) := false.B 211 addrvalid(index) := false.B 212 committed(index) := false.B 213 pending(index) := false.B 214 215 XSError(!io.enq.canAccept || !io.enq.lqCanAccept, s"must accept $i\n") 216 XSError(index =/= sqIdx.value, s"must be the same entry $i\n") 217 } 218 io.enq.resp(i) := sqIdx 219 } 220 XSDebug(p"(ready, valid): ${io.enq.canAccept}, ${Binary(Cat(io.enq.req.map(_.valid)))}\n") 221 222 /** 223 * Update issuePtr when issue from rs 224 */ 225 // update issuePtr 226 val IssuePtrMoveStride = 4 227 require(IssuePtrMoveStride >= 2) 228 229 val issueLookupVec = (0 until IssuePtrMoveStride).map(issuePtrExt + _.U) 230 val issueLookup = issueLookupVec.map(ptr => allocated(ptr.value) && addrvalid(ptr.value) && datavalid(ptr.value) && ptr =/= enqPtrExt(0)) 231 val nextIssuePtr = issuePtrExt + PriorityEncoder(VecInit(issueLookup.map(!_) :+ true.B)) 232 issuePtrExt := nextIssuePtr 233 234 when (io.brqRedirect.valid) { 235 issuePtrExt := Mux( 236 isAfter(cmtPtrExt(0), deqPtrExt(0)), 237 cmtPtrExt(0), 238 deqPtrExtNext(0) // for mmio insts, deqPtr may be ahead of cmtPtr 239 ) 240 } 241 // send issuePtrExt to rs 242 // io.issuePtrExt := cmtPtrExt(0) 243 io.issuePtrExt := issuePtrExt 244 245 /** 246 * Writeback store from store units 247 * 248 * Most store instructions writeback to regfile in the previous cycle. 249 * However, 250 * (1) For an mmio instruction with exceptions, we need to mark it as addrvalid 251 * (in this way it will trigger an exception when it reaches ROB's head) 252 * instead of pending to avoid sending them to lower level. 253 * (2) For an mmio instruction without exceptions, we mark it as pending. 254 * When the instruction reaches ROB's head, StoreQueue sends it to uncache channel. 255 * Upon receiving the response, StoreQueue writes back the instruction 256 * through arbiter with store units. It will later commit as normal. 257 */ 258 259 // Write addr to sq 260 for (i <- 0 until StorePipelineWidth) { 261 paddrModule.io.wen(i) := false.B 262 vaddrModule.io.wen(i) := false.B 263 dataModule.io.mask.wen(i) := false.B 264 val stWbIndex = io.storeIn(i).bits.uop.sqIdx.value 265 when (io.storeIn(i).fire()) { 266 val addr_valid = !io.storeIn(i).bits.miss 267 addrvalid(stWbIndex) := addr_valid //!io.storeIn(i).bits.mmio 268 // pending(stWbIndex) := io.storeIn(i).bits.mmio 269 270 paddrModule.io.waddr(i) := stWbIndex 271 paddrModule.io.wdata(i) := io.storeIn(i).bits.paddr 272 paddrModule.io.wlineflag(i) := io.storeIn(i).bits.wlineflag 273 paddrModule.io.wen(i) := true.B 274 275 vaddrModule.io.waddr(i) := stWbIndex 276 vaddrModule.io.wdata(i) := io.storeIn(i).bits.vaddr 277 vaddrModule.io.wlineflag(i) := io.storeIn(i).bits.wlineflag 278 vaddrModule.io.wen(i) := true.B 279 280 debug_paddr(paddrModule.io.waddr(i)) := paddrModule.io.wdata(i) 281 282 // mmio(stWbIndex) := io.storeIn(i).bits.mmio 283 284 uop(stWbIndex).ctrl := io.storeIn(i).bits.uop.ctrl 285 uop(stWbIndex).debugInfo := io.storeIn(i).bits.uop.debugInfo 286 XSInfo("store addr write to sq idx %d pc 0x%x miss:%d vaddr %x paddr %x mmio %x\n", 287 io.storeIn(i).bits.uop.sqIdx.value, 288 io.storeIn(i).bits.uop.cf.pc, 289 io.storeIn(i).bits.miss, 290 io.storeIn(i).bits.vaddr, 291 io.storeIn(i).bits.paddr, 292 io.storeIn(i).bits.mmio 293 ) 294 } 295 296 // re-replinish mmio, for pma/pmp will get mmio one cycle later 297 val storeInFireReg = RegNext(io.storeIn(i).fire() && !io.storeIn(i).bits.miss) 298 val stWbIndexReg = RegNext(stWbIndex) 299 when (storeInFireReg) { 300 pending(stWbIndexReg) := io.storeInRe(i).mmio 301 mmio(stWbIndexReg) := io.storeInRe(i).mmio 302 } 303 304 when(vaddrModule.io.wen(i)){ 305 debug_vaddr(vaddrModule.io.waddr(i)) := vaddrModule.io.wdata(i) 306 } 307 } 308 309 // Write data to sq 310 // Now store data pipeline is actually 2 stages 311 for (i <- 0 until StorePipelineWidth) { 312 dataModule.io.data.wen(i) := false.B 313 val stWbIndex = io.storeDataIn(i).bits.uop.sqIdx.value 314 // sq data write takes 2 cycles: 315 // sq data write s0 316 when (io.storeDataIn(i).fire()) { 317 // send data write req to data module 318 dataModule.io.data.waddr(i) := stWbIndex 319 dataModule.io.data.wdata(i) := Mux(io.storeDataIn(i).bits.uop.ctrl.fuOpType === LSUOpType.cbo_zero, 320 0.U, 321 genWdata(io.storeDataIn(i).bits.data, io.storeDataIn(i).bits.uop.ctrl.fuOpType(1,0)) 322 ) 323 dataModule.io.data.wen(i) := true.B 324 325 debug_data(dataModule.io.data.waddr(i)) := dataModule.io.data.wdata(i) 326 327 XSInfo("store data write to sq idx %d pc 0x%x data %x -> %x\n", 328 io.storeDataIn(i).bits.uop.sqIdx.value, 329 io.storeDataIn(i).bits.uop.cf.pc, 330 io.storeDataIn(i).bits.data, 331 dataModule.io.data.wdata(i) 332 ) 333 } 334 // sq data write s1 335 when ( 336 RegNext(io.storeDataIn(i).fire()) 337 // && !RegNext(io.storeDataIn(i).bits.uop).robIdx.needFlush(io.brqRedirect) 338 ) { 339 datavalid(RegNext(stWbIndex)) := true.B 340 } 341 } 342 343 // Write mask to sq 344 for (i <- 0 until StorePipelineWidth) { 345 // sq mask write s0 346 when (io.storeMaskIn(i).fire()) { 347 // send data write req to data module 348 dataModule.io.mask.waddr(i) := io.storeMaskIn(i).bits.sqIdx.value 349 dataModule.io.mask.wdata(i) := io.storeMaskIn(i).bits.mask 350 dataModule.io.mask.wen(i) := true.B 351 } 352 } 353 354 /** 355 * load forward query 356 * 357 * Check store queue for instructions that is older than the load. 358 * The response will be valid at the next cycle after req. 359 */ 360 // check over all lq entries and forward data from the first matched store 361 for (i <- 0 until LoadPipelineWidth) { 362 // Compare deqPtr (deqPtr) and forward.sqIdx, we have two cases: 363 // (1) if they have the same flag, we need to check range(tail, sqIdx) 364 // (2) if they have different flags, we need to check range(tail, LoadQueueSize) and range(0, sqIdx) 365 // Forward1: Mux(same_flag, range(tail, sqIdx), range(tail, LoadQueueSize)) 366 // Forward2: Mux(same_flag, 0.U, range(0, sqIdx) ) 367 // i.e. forward1 is the target entries with the same flag bits and forward2 otherwise 368 val differentFlag = deqPtrExt(0).flag =/= io.forward(i).sqIdx.flag 369 val forwardMask = io.forward(i).sqIdxMask 370 // all addrvalid terms need to be checked 371 val addrValidVec = WireInit(VecInit((0 until StoreQueueSize).map(i => addrvalid(i) && allocated(i)))) 372 val dataValidVec = WireInit(VecInit((0 until StoreQueueSize).map(i => datavalid(i)))) 373 val allValidVec = WireInit(VecInit((0 until StoreQueueSize).map(i => addrvalid(i) && datavalid(i) && allocated(i)))) 374 val canForward1 = Mux(differentFlag, ~deqMask, deqMask ^ forwardMask) & allValidVec.asUInt 375 val canForward2 = Mux(differentFlag, forwardMask, 0.U(StoreQueueSize.W)) & allValidVec.asUInt 376 val needForward = Mux(differentFlag, ~deqMask | forwardMask, deqMask ^ forwardMask) 377 378 XSDebug(p"$i f1 ${Binary(canForward1)} f2 ${Binary(canForward2)} " + 379 p"sqIdx ${io.forward(i).sqIdx} pa ${Hexadecimal(io.forward(i).paddr)}\n" 380 ) 381 382 // do real fwd query (cam lookup in load_s1) 383 dataModule.io.needForward(i)(0) := canForward1 & vaddrModule.io.forwardMmask(i).asUInt 384 dataModule.io.needForward(i)(1) := canForward2 & vaddrModule.io.forwardMmask(i).asUInt 385 386 vaddrModule.io.forwardMdata(i) := io.forward(i).vaddr 387 paddrModule.io.forwardMdata(i) := io.forward(i).paddr 388 389 // vaddr cam result does not equal to paddr cam result 390 // replay needed 391 // val vpmaskNotEqual = ((paddrModule.io.forwardMmask(i).asUInt ^ vaddrModule.io.forwardMmask(i).asUInt) & needForward) =/= 0.U 392 // val vaddrMatchFailed = vpmaskNotEqual && io.forward(i).valid 393 val vpmaskNotEqual = ( 394 (RegNext(paddrModule.io.forwardMmask(i).asUInt) ^ RegNext(vaddrModule.io.forwardMmask(i).asUInt)) & 395 RegNext(needForward) & 396 RegNext(addrValidVec.asUInt) 397 ) =/= 0.U 398 val vaddrMatchFailed = vpmaskNotEqual && RegNext(io.forward(i).valid) 399 when (vaddrMatchFailed) { 400 XSInfo("vaddrMatchFailed: pc %x pmask %x vmask %x\n", 401 RegNext(io.forward(i).uop.cf.pc), 402 RegNext(needForward & paddrModule.io.forwardMmask(i).asUInt), 403 RegNext(needForward & vaddrModule.io.forwardMmask(i).asUInt) 404 ); 405 } 406 XSPerfAccumulate("vaddr_match_failed", vpmaskNotEqual) 407 XSPerfAccumulate("vaddr_match_really_failed", vaddrMatchFailed) 408 409 // Fast forward mask will be generated immediately (load_s1) 410 io.forward(i).forwardMaskFast := dataModule.io.forwardMaskFast(i) 411 412 // Forward result will be generated 1 cycle later (load_s2) 413 io.forward(i).forwardMask := dataModule.io.forwardMask(i) 414 io.forward(i).forwardData := dataModule.io.forwardData(i) 415 416 // If addr match, data not ready, mark it as dataInvalid 417 // load_s1: generate dataInvalid in load_s1 to set fastUop 418 val dataInvalidMask = (addrValidVec.asUInt & ~dataValidVec.asUInt & vaddrModule.io.forwardMmask(i).asUInt & needForward.asUInt) 419 io.forward(i).dataInvalidFast := dataInvalidMask.orR 420 val dataInvalidMaskReg = RegNext(dataInvalidMask) 421 // load_s2 422 io.forward(i).dataInvalid := RegNext(io.forward(i).dataInvalidFast) 423 // check if vaddr forward mismatched 424 io.forward(i).matchInvalid := vaddrMatchFailed 425 val dataInvalidMaskRegWire = Wire(UInt(StoreQueueSize.W)) 426 dataInvalidMaskRegWire := dataInvalidMaskReg // make chisel happy 427 io.forward(i).dataInvalidSqIdx := PriorityEncoder(dataInvalidMaskRegWire) 428 } 429 430 /** 431 * Memory mapped IO / other uncached operations 432 * 433 * States: 434 * (1) writeback from store units: mark as pending 435 * (2) when they reach ROB's head, they can be sent to uncache channel 436 * (3) response from uncache channel: mark as datavalidmask.wen 437 * (4) writeback to ROB (and other units): mark as writebacked 438 * (5) ROB commits the instruction: same as normal instructions 439 */ 440 //(2) when they reach ROB's head, they can be sent to uncache channel 441 val s_idle :: s_req :: s_resp :: s_wb :: s_wait :: Nil = Enum(5) 442 val uncacheState = RegInit(s_idle) 443 switch(uncacheState) { 444 is(s_idle) { 445 when(RegNext(io.rob.pendingst && pending(deqPtr) && allocated(deqPtr) && datavalid(deqPtr) && addrvalid(deqPtr))) { 446 uncacheState := s_req 447 } 448 } 449 is(s_req) { 450 when(io.uncache.req.fire()) { 451 uncacheState := s_resp 452 } 453 } 454 is(s_resp) { 455 when(io.uncache.resp.fire()) { 456 uncacheState := s_wb 457 } 458 } 459 is(s_wb) { 460 when (io.mmioStout.fire()) { 461 uncacheState := s_wait 462 } 463 } 464 is(s_wait) { 465 when(commitCount > 0.U) { 466 uncacheState := s_idle // ready for next mmio 467 } 468 } 469 } 470 io.uncache.req.valid := uncacheState === s_req 471 472 io.uncache.req.bits.cmd := MemoryOpConstants.M_XWR 473 io.uncache.req.bits.addr := paddrModule.io.rdata(0) // data(deqPtr) -> rdata(0) 474 io.uncache.req.bits.data := dataModule.io.rdata(0).data 475 io.uncache.req.bits.mask := dataModule.io.rdata(0).mask 476 477 // CBO op type check can be delayed for 1 cycle, 478 // as uncache op will not start in s_idle 479 val cbo_mmio_addr = paddrModule.io.rdata(0) >> 2 << 2 // clear lowest 2 bits for op 480 val cbo_mmio_op = 0.U //TODO 481 val cbo_mmio_data = cbo_mmio_addr | cbo_mmio_op 482 when(RegNext(LSUOpType.isCbo(uop(deqPtr).ctrl.fuOpType))){ 483 io.uncache.req.bits.addr := DontCare // TODO 484 io.uncache.req.bits.data := paddrModule.io.rdata(0) 485 io.uncache.req.bits.mask := DontCare // TODO 486 } 487 488 io.uncache.req.bits.id := DontCare 489 io.uncache.req.bits.instrtype := DontCare 490 491 when(io.uncache.req.fire()){ 492 // mmio store should not be committed until uncache req is sent 493 pending(deqPtr) := false.B 494 495 XSDebug( 496 p"uncache req: pc ${Hexadecimal(uop(deqPtr).cf.pc)} " + 497 p"addr ${Hexadecimal(io.uncache.req.bits.addr)} " + 498 p"data ${Hexadecimal(io.uncache.req.bits.data)} " + 499 p"op ${Hexadecimal(io.uncache.req.bits.cmd)} " + 500 p"mask ${Hexadecimal(io.uncache.req.bits.mask)}\n" 501 ) 502 } 503 504 // (3) response from uncache channel: mark as datavalid 505 io.uncache.resp.ready := true.B 506 507 // (4) writeback to ROB (and other units): mark as writebacked 508 io.mmioStout.valid := uncacheState === s_wb 509 io.mmioStout.bits.uop := uop(deqPtr) 510 io.mmioStout.bits.uop.sqIdx := deqPtrExt(0) 511 io.mmioStout.bits.data := dataModule.io.rdata(0).data // dataModule.io.rdata.read(deqPtr) 512 io.mmioStout.bits.redirectValid := false.B 513 io.mmioStout.bits.redirect := DontCare 514 io.mmioStout.bits.debug.isMMIO := true.B 515 io.mmioStout.bits.debug.paddr := DontCare 516 io.mmioStout.bits.debug.isPerfCnt := false.B 517 io.mmioStout.bits.fflags := DontCare 518 io.mmioStout.bits.debug.vaddr := DontCare 519 // Remove MMIO inst from store queue after MMIO request is being sent 520 // That inst will be traced by uncache state machine 521 when (io.mmioStout.fire()) { 522 allocated(deqPtr) := false.B 523 } 524 525 /** 526 * ROB commits store instructions (mark them as committed) 527 * 528 * (1) When store commits, mark it as committed. 529 * (2) They will not be cancelled and can be sent to lower level. 530 */ 531 XSError(uncacheState =/= s_idle && uncacheState =/= s_wait && commitCount > 0.U, 532 "should not commit instruction when MMIO has not been finished\n") 533 for (i <- 0 until CommitWidth) { 534 when (commitCount > i.U) { // MMIO inst is not in progress 535 if(i == 0){ 536 // MMIO inst should not update committed flag 537 // Note that commit count has been delayed for 1 cycle 538 when(uncacheState === s_idle){ 539 committed(cmtPtrExt(0).value) := true.B 540 } 541 } else { 542 committed(cmtPtrExt(i).value) := true.B 543 } 544 } 545 } 546 cmtPtrExt := cmtPtrExt.map(_ + commitCount) 547 548 // committed stores will not be cancelled and can be sent to lower level. 549 // remove retired insts from sq, add retired store to sbuffer 550 551 // Read data from data module 552 // As store queue grows larger and larger, time needed to read data from data 553 // module keeps growing higher. Now we give data read a whole cycle. 554 555 val mmioStall = mmio(rdataPtrExt(0).value) 556 for (i <- 0 until EnsbufferWidth) { 557 val ptr = rdataPtrExt(i).value 558 dataBuffer.io.enq(i).valid := allocated(ptr) && committed(ptr) && !mmioStall 559 // Note that store data/addr should both be valid after store's commit 560 assert(!dataBuffer.io.enq(i).valid || allvalid(ptr)) 561 dataBuffer.io.enq(i).bits.addr := paddrModule.io.rdata(i) 562 dataBuffer.io.enq(i).bits.vaddr := vaddrModule.io.rdata(i) 563 dataBuffer.io.enq(i).bits.data := dataModule.io.rdata(i).data 564 dataBuffer.io.enq(i).bits.mask := dataModule.io.rdata(i).mask 565 dataBuffer.io.enq(i).bits.wline := paddrModule.io.rlineflag(i) 566 dataBuffer.io.enq(i).bits.sqPtr := rdataPtrExt(i) 567 } 568 569 // Send data stored in sbufferReqBitsReg to sbuffer 570 for (i <- 0 until EnsbufferWidth) { 571 io.sbuffer(i).valid := dataBuffer.io.deq(i).valid 572 dataBuffer.io.deq(i).ready := io.sbuffer(i).ready 573 // Write line request should have all 1 mask 574 assert(!(io.sbuffer(i).valid && io.sbuffer(i).bits.wline && !io.sbuffer(i).bits.mask.andR)) 575 io.sbuffer(i).bits.cmd := MemoryOpConstants.M_XWR 576 io.sbuffer(i).bits.addr := dataBuffer.io.deq(i).bits.addr 577 io.sbuffer(i).bits.vaddr := dataBuffer.io.deq(i).bits.vaddr 578 io.sbuffer(i).bits.data := dataBuffer.io.deq(i).bits.data 579 io.sbuffer(i).bits.mask := dataBuffer.io.deq(i).bits.mask 580 io.sbuffer(i).bits.wline := dataBuffer.io.deq(i).bits.wline 581 io.sbuffer(i).bits.id := DontCare 582 io.sbuffer(i).bits.instrtype := DontCare 583 584 // io.sbuffer(i).fire() is RegNexted, as sbuffer data write takes 2 cycles. 585 // Before data write finish, sbuffer is unable to provide store to load 586 // forward data. As an workaround, deqPtrExt and allocated flag update 587 // is delayed so that load can get the right data from store queue. 588 val ptr = dataBuffer.io.deq(i).bits.sqPtr.value 589 when (RegNext(io.sbuffer(i).fire())) { 590 allocated(RegEnable(ptr, io.sbuffer(i).fire())) := false.B 591 XSDebug("sbuffer "+i+" fire: ptr %d\n", ptr) 592 } 593 } 594 (1 until EnsbufferWidth).foreach(i => when(io.sbuffer(i).fire) { assert(io.sbuffer(i - 1).fire) }) 595 if (coreParams.dcacheParametersOpt.isEmpty) { 596 for (i <- 0 until EnsbufferWidth) { 597 val ptr = deqPtrExt(i).value 598 val fakeRAM = Module(new RAMHelper(64L * 1024 * 1024 * 1024)) 599 fakeRAM.clk := clock 600 fakeRAM.en := allocated(ptr) && committed(ptr) && !mmio(ptr) 601 fakeRAM.rIdx := 0.U 602 fakeRAM.wIdx := (paddrModule.io.rdata(i) - "h80000000".U) >> 3 603 fakeRAM.wdata := dataModule.io.rdata(i).data 604 fakeRAM.wmask := MaskExpand(dataModule.io.rdata(i).mask) 605 fakeRAM.wen := allocated(ptr) && committed(ptr) && !mmio(ptr) 606 } 607 } 608 609 if (env.EnableDifftest) { 610 for (i <- 0 until EnsbufferWidth) { 611 val storeCommit = io.sbuffer(i).fire() 612 val waddr = SignExt(io.sbuffer(i).bits.addr, 64) 613 val wdata = io.sbuffer(i).bits.data & MaskExpand(io.sbuffer(i).bits.mask) 614 val wmask = io.sbuffer(i).bits.mask 615 616 val difftest = Module(new DifftestStoreEvent) 617 difftest.io.clock := clock 618 difftest.io.coreid := io.hartId 619 difftest.io.index := i.U 620 difftest.io.valid := RegNext(RegNext(storeCommit)) 621 difftest.io.storeAddr := RegNext(RegNext(waddr)) 622 difftest.io.storeData := RegNext(RegNext(wdata)) 623 difftest.io.storeMask := RegNext(RegNext(wmask)) 624 } 625 } 626 627 // Read vaddr for mem exception 628 io.exceptionAddr.vaddr := vaddrModule.io.rdata(EnsbufferWidth) 629 630 // misprediction recovery / exception redirect 631 // invalidate sq term using robIdx 632 val needCancel = Wire(Vec(StoreQueueSize, Bool())) 633 for (i <- 0 until StoreQueueSize) { 634 needCancel(i) := uop(i).robIdx.needFlush(io.brqRedirect) && allocated(i) && !committed(i) 635 when (needCancel(i)) { 636 allocated(i) := false.B 637 } 638 } 639 640 /** 641 * update pointers 642 */ 643 val lastEnqCancel = PopCount(RegNext(VecInit(canEnqueue.zip(enqCancel).map(x => x._1 && x._2)))) 644 val lastCycleRedirect = RegNext(io.brqRedirect.valid) 645 val lastCycleCancelCount = PopCount(RegNext(needCancel)) 646 val enqNumber = Mux(io.enq.canAccept && io.enq.lqCanAccept, PopCount(io.enq.req.map(_.valid)), 0.U) 647 when (lastCycleRedirect) { 648 // we recover the pointers in the next cycle after redirect 649 enqPtrExt := VecInit(enqPtrExt.map(_ - (lastCycleCancelCount + lastEnqCancel))) 650 }.otherwise { 651 enqPtrExt := VecInit(enqPtrExt.map(_ + enqNumber)) 652 } 653 654 deqPtrExt := deqPtrExtNext 655 rdataPtrExt := rdataPtrExtNext 656 657 // val dequeueCount = Mux(io.sbuffer(1).fire(), 2.U, Mux(io.sbuffer(0).fire() || io.mmioStout.fire(), 1.U, 0.U)) 658 659 // If redirect at T0, sqCancelCnt is at T2 660 io.sqCancelCnt := RegNext(lastCycleCancelCount + lastEnqCancel) 661 662 // io.sqempty will be used by sbuffer 663 // We delay it for 1 cycle for better timing 664 // When sbuffer need to check if it is empty, the pipeline is blocked, which means delay io.sqempty 665 // for 1 cycle will also promise that sq is empty in that cycle 666 io.sqempty := RegNext( 667 enqPtrExt(0).value === deqPtrExt(0).value && 668 enqPtrExt(0).flag === deqPtrExt(0).flag 669 ) 670 671 // perf counter 672 QueuePerf(StoreQueueSize, validCount, !allowEnqueue) 673 io.sqFull := !allowEnqueue 674 XSPerfAccumulate("mmioCycle", uncacheState =/= s_idle) // lq is busy dealing with uncache req 675 XSPerfAccumulate("mmioCnt", io.uncache.req.fire()) 676 XSPerfAccumulate("mmio_wb_success", io.mmioStout.fire()) 677 XSPerfAccumulate("mmio_wb_blocked", io.mmioStout.valid && !io.mmioStout.ready) 678 XSPerfAccumulate("validEntryCnt", distanceBetween(enqPtrExt(0), deqPtrExt(0))) 679 XSPerfAccumulate("cmtEntryCnt", distanceBetween(cmtPtrExt(0), deqPtrExt(0))) 680 XSPerfAccumulate("nCmtEntryCnt", distanceBetween(enqPtrExt(0), cmtPtrExt(0))) 681 682 val perfValidCount = distanceBetween(enqPtrExt(0), deqPtrExt(0)) 683 val perfEvents = Seq( 684 ("mmioCycle ", uncacheState =/= s_idle), 685 ("mmioCnt ", io.uncache.req.fire()), 686 ("mmio_wb_success", io.mmioStout.fire()), 687 ("mmio_wb_blocked", io.mmioStout.valid && !io.mmioStout.ready), 688 ("stq_1_4_valid ", (perfValidCount < (StoreQueueSize.U/4.U))), 689 ("stq_2_4_valid ", (perfValidCount > (StoreQueueSize.U/4.U)) & (perfValidCount <= (StoreQueueSize.U/2.U))), 690 ("stq_3_4_valid ", (perfValidCount > (StoreQueueSize.U/2.U)) & (perfValidCount <= (StoreQueueSize.U*3.U/4.U))), 691 ("stq_4_4_valid ", (perfValidCount > (StoreQueueSize.U*3.U/4.U))), 692 ) 693 generatePerfEvent() 694 695 // debug info 696 XSDebug("enqPtrExt %d:%d deqPtrExt %d:%d\n", enqPtrExt(0).flag, enqPtr, deqPtrExt(0).flag, deqPtr) 697 698 def PrintFlag(flag: Bool, name: String): Unit = { 699 when(flag) { 700 XSDebug(false, true.B, name) 701 }.otherwise { 702 XSDebug(false, true.B, " ") 703 } 704 } 705 706 for (i <- 0 until StoreQueueSize) { 707 XSDebug(i + ": pc %x va %x pa %x data %x ", 708 uop(i).cf.pc, 709 debug_vaddr(i), 710 debug_paddr(i), 711 debug_data(i) 712 ) 713 PrintFlag(allocated(i), "a") 714 PrintFlag(allocated(i) && addrvalid(i), "a") 715 PrintFlag(allocated(i) && datavalid(i), "d") 716 PrintFlag(allocated(i) && committed(i), "c") 717 PrintFlag(allocated(i) && pending(i), "p") 718 PrintFlag(allocated(i) && mmio(i), "m") 719 XSDebug(false, true.B, "\n") 720 } 721 722} 723