xref: /XiangShan/src/main/scala/xiangshan/mem/lsqueue/StoreQueue.scala (revision a5e60231c314c4e8c55b6d4ae737645947de5ada)
1package xiangshan.mem
2
3import chisel3._
4import chisel3.util._
5import utils._
6import xiangshan._
7import xiangshan.cache._
8import xiangshan.cache.{DCacheWordIO, DCacheLineIO, TlbRequestIO, MemoryOpConstants}
9import xiangshan.backend.LSUOpType
10import xiangshan.backend.roq.RoqLsqIO
11
12
13class SqPtr extends CircularQueuePtr(SqPtr.StoreQueueSize) { }
14
15object SqPtr extends HasXSParameter {
16  def apply(f: Bool, v: UInt): SqPtr = {
17    val ptr = Wire(new SqPtr)
18    ptr.flag := f
19    ptr.value := v
20    ptr
21  }
22}
23
24class SqEnqIO extends XSBundle {
25  val canAccept = Output(Bool())
26  val lqCanAccept = Input(Bool())
27  val needAlloc = Vec(RenameWidth, Input(Bool()))
28  val req = Vec(RenameWidth, Flipped(ValidIO(new MicroOp)))
29  val resp = Vec(RenameWidth, Output(new SqPtr))
30}
31
32// Store Queue
33class StoreQueue extends XSModule with HasDCacheParameters with HasCircularQueuePtrHelper {
34  val io = IO(new Bundle() {
35    val enq = new SqEnqIO
36    val brqRedirect = Input(Valid(new Redirect))
37    val storeIn = Vec(StorePipelineWidth, Flipped(Valid(new LsPipelineBundle)))
38    val sbuffer = Vec(StorePipelineWidth, Decoupled(new DCacheWordReq))
39    val mmioStout = DecoupledIO(new ExuOutput) // writeback uncached store
40    val forward = Vec(LoadPipelineWidth, Flipped(new LoadForwardQueryIO))
41    val roq = Flipped(new RoqLsqIO)
42    val uncache = new DCacheWordIO
43    // val refill = Flipped(Valid(new DCacheLineReq ))
44    val exceptionAddr = new ExceptionAddrIO
45    val sqempty = Output(Bool())
46  })
47
48  val difftestIO = IO(new Bundle() {
49    val storeCommit = Output(UInt(2.W))
50    val storeAddr   = Output(Vec(2, UInt(64.W)))
51    val storeData   = Output(Vec(2, UInt(64.W)))
52    val storeMask   = Output(Vec(2, UInt(8.W)))
53  })
54  difftestIO <> DontCare
55
56  // data modules
57  val uop = Reg(Vec(StoreQueueSize, new MicroOp))
58  // val data = Reg(Vec(StoreQueueSize, new LsqEntry))
59  val dataModule = Module(new StoreQueueData(StoreQueueSize, numRead = StorePipelineWidth, numWrite = StorePipelineWidth, numForward = StorePipelineWidth))
60  dataModule.io := DontCare
61  val paddrModule = Module(new SQPaddrModule(StoreQueueSize, numRead = StorePipelineWidth, numWrite = StorePipelineWidth, numForward = StorePipelineWidth))
62  paddrModule.io := DontCare
63  val vaddrModule = Module(new AsyncDataModuleTemplate(UInt(VAddrBits.W), StoreQueueSize, numRead = 1, numWrite = StorePipelineWidth))
64  vaddrModule.io := DontCare
65
66  // state & misc
67  val allocated = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // sq entry has been allocated
68  val datavalid = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // non-mmio data is valid
69  val writebacked = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // inst has been writebacked to CDB
70  val commited = Reg(Vec(StoreQueueSize, Bool())) // inst has been commited by roq
71  val pending = Reg(Vec(StoreQueueSize, Bool())) // mmio pending: inst is an mmio inst, it will not be executed until it reachs the end of roq
72  val mmio = Reg(Vec(StoreQueueSize, Bool())) // mmio: inst is an mmio inst
73
74  // ptr
75  require(StoreQueueSize > RenameWidth)
76  val enqPtrExt = RegInit(VecInit((0 until RenameWidth).map(_.U.asTypeOf(new SqPtr))))
77  val deqPtrExt = RegInit(VecInit((0 until StorePipelineWidth).map(_.U.asTypeOf(new SqPtr))))
78  val cmtPtrExt = RegInit(VecInit((0 until CommitWidth).map(_.U.asTypeOf(new SqPtr))))
79  val validCounter = RegInit(0.U(log2Ceil(LoadQueueSize + 1).W))
80  val allowEnqueue = RegInit(true.B)
81
82  val enqPtr = enqPtrExt(0).value
83  val deqPtr = deqPtrExt(0).value
84  val cmtPtr = cmtPtrExt(0).value
85
86  val deqMask = UIntToMask(deqPtr, StoreQueueSize)
87  val enqMask = UIntToMask(enqPtr, StoreQueueSize)
88
89  val commitCount = RegNext(io.roq.scommit)
90
91  // Read dataModule
92  // deqPtrExtNext and deqPtrExtNext+1 entry will be read from dataModule
93  // if !sbuffer.fire(), read the same ptr
94  // if sbuffer.fire(), read next
95  val deqPtrExtNext = WireInit(Mux(io.sbuffer(1).fire(),
96    VecInit(deqPtrExt.map(_ + 2.U)),
97    Mux(io.sbuffer(0).fire() || io.mmioStout.fire(),
98      VecInit(deqPtrExt.map(_ + 1.U)),
99      deqPtrExt
100    )
101  ))
102  for (i <- 0 until StorePipelineWidth) {
103    dataModule.io.raddr(i) := deqPtrExtNext(i).value
104    paddrModule.io.raddr(i) := deqPtrExtNext(i).value
105  }
106  vaddrModule.io.raddr(0) := cmtPtr + commitCount
107
108  /**
109    * Enqueue at dispatch
110    *
111    * Currently, StoreQueue only allows enqueue when #emptyEntries > RenameWidth(EnqWidth)
112    */
113  io.enq.canAccept := allowEnqueue
114  for (i <- 0 until RenameWidth) {
115    val offset = if (i == 0) 0.U else PopCount(io.enq.needAlloc.take(i))
116    val sqIdx = enqPtrExt(offset)
117    val index = sqIdx.value
118    when (io.enq.req(i).valid && io.enq.canAccept && io.enq.lqCanAccept && !io.brqRedirect.valid) {
119      uop(index) := io.enq.req(i).bits
120      allocated(index) := true.B
121      datavalid(index) := false.B
122      writebacked(index) := false.B
123      commited(index) := false.B
124      pending(index) := false.B
125    }
126    io.enq.resp(i) := sqIdx
127  }
128  XSDebug(p"(ready, valid): ${io.enq.canAccept}, ${Binary(Cat(io.enq.req.map(_.valid)))}\n")
129
130  /**
131    * Writeback store from store units
132    *
133    * Most store instructions writeback to regfile in the previous cycle.
134    * However,
135    *   (1) For an mmio instruction with exceptions, we need to mark it as datavalid
136    * (in this way it will trigger an exception when it reaches ROB's head)
137    * instead of pending to avoid sending them to lower level.
138    *   (2) For an mmio instruction without exceptions, we mark it as pending.
139    * When the instruction reaches ROB's head, StoreQueue sends it to uncache channel.
140    * Upon receiving the response, StoreQueue writes back the instruction
141    * through arbiter with store units. It will later commit as normal.
142    */
143  for (i <- 0 until StorePipelineWidth) {
144    dataModule.io.wen(i) := false.B
145    paddrModule.io.wen(i) := false.B
146    vaddrModule.io.wen(i) := false.B
147    when (io.storeIn(i).fire()) {
148      val stWbIndex = io.storeIn(i).bits.uop.sqIdx.value
149      datavalid(stWbIndex) := !io.storeIn(i).bits.mmio
150      writebacked(stWbIndex) := !io.storeIn(i).bits.mmio
151      pending(stWbIndex) := io.storeIn(i).bits.mmio
152
153      val storeWbData = Wire(new SQDataEntry)
154      storeWbData := DontCare
155      storeWbData.mask := io.storeIn(i).bits.mask
156      storeWbData.data := io.storeIn(i).bits.data
157
158      dataModule.io.waddr(i) := stWbIndex
159      dataModule.io.wdata(i) := storeWbData
160      dataModule.io.wen(i) := true.B
161
162      paddrModule.io.waddr(i) := stWbIndex
163      paddrModule.io.wdata(i) := io.storeIn(i).bits.paddr
164      paddrModule.io.wen(i) := true.B
165
166      vaddrModule.io.waddr(i) := stWbIndex
167      vaddrModule.io.wdata(i) := io.storeIn(i).bits.vaddr
168      vaddrModule.io.wen(i) := true.B
169
170      mmio(stWbIndex) := io.storeIn(i).bits.mmio
171
172      XSInfo("store write to sq idx %d pc 0x%x vaddr %x paddr %x data %x mmio %x\n",
173        io.storeIn(i).bits.uop.sqIdx.value,
174        io.storeIn(i).bits.uop.cf.pc,
175        io.storeIn(i).bits.vaddr,
176        io.storeIn(i).bits.paddr,
177        io.storeIn(i).bits.data,
178        io.storeIn(i).bits.mmio
179        )
180    }
181  }
182
183  /**
184    * load forward query
185    *
186    * Check store queue for instructions that is older than the load.
187    * The response will be valid at the next cycle after req.
188    */
189  // check over all lq entries and forward data from the first matched store
190  for (i <- 0 until LoadPipelineWidth) {
191    io.forward(i).forwardMask := 0.U(8.W).asBools
192    io.forward(i).forwardData := DontCare
193
194    // Compare deqPtr (deqPtr) and forward.sqIdx, we have two cases:
195    // (1) if they have the same flag, we need to check range(tail, sqIdx)
196    // (2) if they have different flags, we need to check range(tail, LoadQueueSize) and range(0, sqIdx)
197    // Forward1: Mux(same_flag, range(tail, sqIdx), range(tail, LoadQueueSize))
198    // Forward2: Mux(same_flag, 0.U,                   range(0, sqIdx)    )
199    // i.e. forward1 is the target entries with the same flag bits and forward2 otherwise
200    val differentFlag = deqPtrExt(0).flag =/= io.forward(i).sqIdx.flag
201    val forwardMask = UIntToMask(io.forward(i).sqIdx.value, StoreQueueSize)
202    val storeWritebackedVec = WireInit(VecInit(Seq.fill(StoreQueueSize)(false.B)))
203    for (j <- 0 until StoreQueueSize) {
204      storeWritebackedVec(j) := datavalid(j) && allocated(j) // all datavalid terms need to be checked
205    }
206    val needForward1 = Mux(differentFlag, ~deqMask, deqMask ^ forwardMask) & storeWritebackedVec.asUInt
207    val needForward2 = Mux(differentFlag, forwardMask, 0.U(StoreQueueSize.W)) & storeWritebackedVec.asUInt
208
209    XSDebug(p"$i f1 ${Binary(needForward1)} f2 ${Binary(needForward2)} " +
210      p"sqIdx ${io.forward(i).sqIdx} pa ${Hexadecimal(io.forward(i).paddr)}\n"
211    )
212
213    // do real fwd query
214    dataModule.io.needForward(i)(0) := needForward1 & paddrModule.io.forwardMmask(i).asUInt
215    dataModule.io.needForward(i)(1) := needForward2 & paddrModule.io.forwardMmask(i).asUInt
216
217    paddrModule.io.forwardMdata(i) := io.forward(i).paddr
218
219    io.forward(i).forwardMask := dataModule.io.forwardMask(i)
220    io.forward(i).forwardData := dataModule.io.forwardData(i)
221  }
222
223  /**
224    * Memory mapped IO / other uncached operations
225    *
226    * States:
227    * (1) writeback from store units: mark as pending
228    * (2) when they reach ROB's head, they can be sent to uncache channel
229    * (3) response from uncache channel: mark as datavalid
230    * (4) writeback to ROB (and other units): mark as writebacked
231    * (5) ROB commits the instruction: same as normal instructions
232    */
233  //(2) when they reach ROB's head, they can be sent to uncache channel
234  val s_idle :: s_req :: s_resp :: s_wait :: Nil = Enum(4)
235  val uncacheState = RegInit(s_idle)
236  switch(uncacheState) {
237    is(s_idle) {
238      when(io.roq.pendingst && pending(deqPtr) && allocated(deqPtr)) {
239        uncacheState := s_req
240      }
241    }
242    is(s_req) {
243      when(io.uncache.req.fire()) {
244        uncacheState := s_resp
245      }
246    }
247    is(s_resp) {
248      when(io.uncache.resp.fire()) {
249        uncacheState := s_wait
250      }
251    }
252    is(s_wait) {
253      when(io.roq.commit) {
254        uncacheState := s_idle // ready for next mmio
255      }
256    }
257  }
258  io.uncache.req.valid := uncacheState === s_req
259
260  io.uncache.req.bits.cmd  := MemoryOpConstants.M_XWR
261  io.uncache.req.bits.addr := paddrModule.io.rdata(0) // data(deqPtr) -> rdata(0)
262  io.uncache.req.bits.data := dataModule.io.rdata(0).data
263  io.uncache.req.bits.mask := dataModule.io.rdata(0).mask
264
265  io.uncache.req.bits.id   := DontCare
266
267  when(io.uncache.req.fire()){
268    pending(deqPtr) := false.B
269
270    XSDebug(
271      p"uncache req: pc ${Hexadecimal(uop(deqPtr).cf.pc)} " +
272      p"addr ${Hexadecimal(io.uncache.req.bits.addr)} " +
273      p"data ${Hexadecimal(io.uncache.req.bits.data)} " +
274      p"op ${Hexadecimal(io.uncache.req.bits.cmd)} " +
275      p"mask ${Hexadecimal(io.uncache.req.bits.mask)}\n"
276    )
277  }
278
279  // (3) response from uncache channel: mark as datavalid
280  io.uncache.resp.ready := true.B
281  when (io.uncache.resp.fire()) {
282    datavalid(deqPtr) := true.B
283  }
284
285  // (4) writeback to ROB (and other units): mark as writebacked
286  io.mmioStout.valid := allocated(deqPtr) && datavalid(deqPtr) && !writebacked(deqPtr)
287  io.mmioStout.bits.uop := uop(deqPtr)
288  io.mmioStout.bits.uop.sqIdx := deqPtrExt(0)
289  io.mmioStout.bits.data := dataModule.io.rdata(0).data // dataModule.io.rdata.read(deqPtr)
290  io.mmioStout.bits.redirectValid := false.B
291  io.mmioStout.bits.redirect := DontCare
292  io.mmioStout.bits.brUpdate := DontCare
293  io.mmioStout.bits.debug.isMMIO := true.B
294  io.mmioStout.bits.debug.isPerfCnt := false.B
295  io.mmioStout.bits.fflags := DontCare
296  when (io.mmioStout.fire()) {
297    writebacked(deqPtr) := true.B
298    allocated(deqPtr) := false.B
299  }
300
301  /**
302    * ROB commits store instructions (mark them as commited)
303    *
304    * (1) When store commits, mark it as commited.
305    * (2) They will not be cancelled and can be sent to lower level.
306    */
307  for (i <- 0 until CommitWidth) {
308    when (commitCount > i.U) {
309      commited(cmtPtrExt(i).value) := true.B
310    }
311  }
312  cmtPtrExt := cmtPtrExt.map(_ + commitCount)
313
314  // Commited stores will not be cancelled and can be sent to lower level.
315  // remove retired insts from sq, add retired store to sbuffer
316  for (i <- 0 until StorePipelineWidth) {
317    // We use RegNext to prepare data for sbuffer
318    val ptr = deqPtrExt(i).value
319    // if !sbuffer.fire(), read the same ptr
320    // if sbuffer.fire(), read next
321    io.sbuffer(i).valid := allocated(ptr) && commited(ptr) && !mmio(ptr)
322    io.sbuffer(i).bits.cmd  := MemoryOpConstants.M_XWR
323    io.sbuffer(i).bits.addr := paddrModule.io.rdata(i)
324    io.sbuffer(i).bits.data := dataModule.io.rdata(i).data
325    io.sbuffer(i).bits.mask := dataModule.io.rdata(i).mask
326    io.sbuffer(i).bits.id   := DontCare
327
328    when (io.sbuffer(i).fire()) {
329      allocated(ptr) := false.B
330      XSDebug("sbuffer "+i+" fire: ptr %d\n", ptr)
331    }
332  }
333  when (io.sbuffer(1).fire()) {
334    assert(io.sbuffer(0).fire())
335  }
336
337  val storeCommit = PopCount(io.sbuffer.map(_.fire()))
338  val waddr = VecInit(io.sbuffer.map(req => SignExt(req.bits.addr, 64)))
339  val wdata = VecInit(io.sbuffer.map(req => req.bits.data & MaskExpand(req.bits.mask)))
340  val wmask = VecInit(io.sbuffer.map(_.bits.mask))
341
342  if (!env.FPGAPlatform) {
343    ExcitingUtils.addSource(RegNext(storeCommit), "difftestStoreCommit", ExcitingUtils.Debug)
344    ExcitingUtils.addSource(RegNext(waddr), "difftestStoreAddr", ExcitingUtils.Debug)
345    ExcitingUtils.addSource(RegNext(wdata), "difftestStoreData", ExcitingUtils.Debug)
346    ExcitingUtils.addSource(RegNext(wmask), "difftestStoreMask", ExcitingUtils.Debug)
347  }
348  if (env.DualCoreDifftest) {
349    difftestIO.storeCommit := RegNext(storeCommit)
350    difftestIO.storeAddr   := RegNext(waddr)
351    difftestIO.storeData   := RegNext(wdata)
352    difftestIO.storeMask   := RegNext(wmask)
353  }
354
355  // Read vaddr for mem exception
356  io.exceptionAddr.vaddr := vaddrModule.io.rdata(0)
357
358  // misprediction recovery / exception redirect
359  // invalidate sq term using robIdx
360  val needCancel = Wire(Vec(StoreQueueSize, Bool()))
361  for (i <- 0 until StoreQueueSize) {
362    needCancel(i) := uop(i).roqIdx.needFlush(io.brqRedirect) && allocated(i) && !commited(i)
363    when (needCancel(i)) {
364        allocated(i) := false.B
365    }
366  }
367
368  /**
369    * update pointers
370    */
371  val lastCycleRedirect = RegNext(io.brqRedirect.valid)
372  val lastCycleCancelCount = PopCount(RegNext(needCancel))
373  // when io.brqRedirect.valid, we don't allow eneuque even though it may fire.
374  val enqNumber = Mux(io.enq.canAccept && io.enq.lqCanAccept && !io.brqRedirect.valid, PopCount(io.enq.req.map(_.valid)), 0.U)
375  when (lastCycleRedirect) {
376    // we recover the pointers in the next cycle after redirect
377    enqPtrExt := VecInit(enqPtrExt.map(_ - lastCycleCancelCount))
378  }.otherwise {
379    enqPtrExt := VecInit(enqPtrExt.map(_ + enqNumber))
380  }
381
382  deqPtrExt := deqPtrExtNext
383
384  val lastLastCycleRedirect = RegNext(lastCycleRedirect)
385  val dequeueCount = Mux(io.sbuffer(1).fire(), 2.U, Mux(io.sbuffer(0).fire() || io.mmioStout.fire(), 1.U, 0.U))
386  val validCount = distanceBetween(enqPtrExt(0), deqPtrExt(0))
387
388  allowEnqueue := validCount + enqNumber <= (StoreQueueSize - RenameWidth).U
389
390  // io.sqempty will be used by sbuffer
391  // We delay it for 1 cycle for better timing
392  // When sbuffer need to check if it is empty, the pipeline is blocked, which means delay io.sqempty
393  // for 1 cycle will also promise that sq is empty in that cycle
394  io.sqempty := RegNext(enqPtrExt(0).value === deqPtrExt(0).value && enqPtrExt(0).flag === deqPtrExt(0).flag)
395
396  // debug info
397  XSDebug("enqPtrExt %d:%d deqPtrExt %d:%d\n", enqPtrExt(0).flag, enqPtr, deqPtrExt(0).flag, deqPtr)
398
399  def PrintFlag(flag: Bool, name: String): Unit = {
400    when(flag) {
401      XSDebug(false, true.B, name)
402    }.otherwise {
403      XSDebug(false, true.B, " ")
404    }
405  }
406
407  for (i <- 0 until StoreQueueSize) {
408    if (i % 4 == 0) XSDebug("")
409    XSDebug(false, true.B, "%x ", uop(i).cf.pc)
410    PrintFlag(allocated(i), "a")
411    PrintFlag(allocated(i) && datavalid(i), "v")
412    PrintFlag(allocated(i) && writebacked(i), "w")
413    PrintFlag(allocated(i) && commited(i), "c")
414    PrintFlag(allocated(i) && pending(i), "p")
415    XSDebug(false, true.B, " ")
416    if (i % 4 == 3 || i == StoreQueueSize - 1) XSDebug(false, true.B, "\n")
417  }
418
419}
420