1package xiangshan.mem 2 3import chisel3._ 4import chisel3.util._ 5import utils._ 6import xiangshan._ 7import xiangshan.cache._ 8import xiangshan.cache.{DCacheWordIO, DCacheLineIO, TlbRequestIO, MemoryOpConstants} 9import xiangshan.backend.LSUOpType 10import xiangshan.backend.roq.RoqLsqIO 11 12 13class SqPtr extends CircularQueuePtr(SqPtr.StoreQueueSize) { } 14 15object SqPtr extends HasXSParameter { 16 def apply(f: Bool, v: UInt): SqPtr = { 17 val ptr = Wire(new SqPtr) 18 ptr.flag := f 19 ptr.value := v 20 ptr 21 } 22} 23 24class SqEnqIO extends XSBundle { 25 val canAccept = Output(Bool()) 26 val lqCanAccept = Input(Bool()) 27 val needAlloc = Vec(RenameWidth, Input(Bool())) 28 val req = Vec(RenameWidth, Flipped(ValidIO(new MicroOp))) 29 val resp = Vec(RenameWidth, Output(new SqPtr)) 30} 31 32// Store Queue 33class StoreQueue extends XSModule with HasDCacheParameters with HasCircularQueuePtrHelper { 34 val io = IO(new Bundle() { 35 val enq = new SqEnqIO 36 val brqRedirect = Input(Valid(new Redirect)) 37 val storeIn = Vec(StorePipelineWidth, Flipped(Valid(new LsPipelineBundle))) 38 val sbuffer = Vec(StorePipelineWidth, Decoupled(new DCacheWordReq)) 39 val mmioStout = DecoupledIO(new ExuOutput) // writeback uncached store 40 val forward = Vec(LoadPipelineWidth, Flipped(new LoadForwardQueryIO)) 41 val roq = Flipped(new RoqLsqIO) 42 val uncache = new DCacheWordIO 43 // val refill = Flipped(Valid(new DCacheLineReq )) 44 val exceptionAddr = new ExceptionAddrIO 45 val sqempty = Output(Bool()) 46 }) 47 48 val difftestIO = IO(new Bundle() { 49 val storeCommit = Output(UInt(2.W)) 50 val storeAddr = Output(Vec(2, UInt(64.W))) 51 val storeData = Output(Vec(2, UInt(64.W))) 52 val storeMask = Output(Vec(2, UInt(8.W))) 53 }) 54 difftestIO <> DontCare 55 56 // data modules 57 val uop = Reg(Vec(StoreQueueSize, new MicroOp)) 58 // val data = Reg(Vec(StoreQueueSize, new LsqEntry)) 59 val dataModule = Module(new StoreQueueData(StoreQueueSize, numRead = StorePipelineWidth, numWrite = StorePipelineWidth, numForward = StorePipelineWidth)) 60 dataModule.io := DontCare 61 val paddrModule = Module(new SQPaddrModule(StoreQueueSize, numRead = StorePipelineWidth, numWrite = StorePipelineWidth, numForward = StorePipelineWidth)) 62 paddrModule.io := DontCare 63 val vaddrModule = Module(new AsyncDataModuleTemplate(UInt(VAddrBits.W), StoreQueueSize, numRead = 1, numWrite = StorePipelineWidth)) 64 vaddrModule.io := DontCare 65 66 // state & misc 67 val allocated = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // sq entry has been allocated 68 val datavalid = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // non-mmio data is valid 69 val writebacked = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // inst has been writebacked to CDB 70 val commited = Reg(Vec(StoreQueueSize, Bool())) // inst has been commited by roq 71 val pending = Reg(Vec(StoreQueueSize, Bool())) // mmio pending: inst is an mmio inst, it will not be executed until it reachs the end of roq 72 val mmio = Reg(Vec(StoreQueueSize, Bool())) // mmio: inst is an mmio inst 73 74 // ptr 75 require(StoreQueueSize > RenameWidth) 76 val enqPtrExt = RegInit(VecInit((0 until RenameWidth).map(_.U.asTypeOf(new SqPtr)))) 77 val deqPtrExt = RegInit(VecInit((0 until StorePipelineWidth).map(_.U.asTypeOf(new SqPtr)))) 78 val cmtPtrExt = RegInit(VecInit((0 until CommitWidth).map(_.U.asTypeOf(new SqPtr)))) 79 val validCounter = RegInit(0.U(log2Ceil(LoadQueueSize + 1).W)) 80 val allowEnqueue = RegInit(true.B) 81 82 val enqPtr = enqPtrExt(0).value 83 val deqPtr = deqPtrExt(0).value 84 val cmtPtr = cmtPtrExt(0).value 85 86 val deqMask = UIntToMask(deqPtr, StoreQueueSize) 87 val enqMask = UIntToMask(enqPtr, StoreQueueSize) 88 89 val commitCount = RegNext(io.roq.scommit) 90 91 // Read dataModule 92 // deqPtrExtNext and deqPtrExtNext+1 entry will be read from dataModule 93 // if !sbuffer.fire(), read the same ptr 94 // if sbuffer.fire(), read next 95 val deqPtrExtNext = WireInit(Mux(io.sbuffer(1).fire(), 96 VecInit(deqPtrExt.map(_ + 2.U)), 97 Mux(io.sbuffer(0).fire() || io.mmioStout.fire(), 98 VecInit(deqPtrExt.map(_ + 1.U)), 99 deqPtrExt 100 ) 101 )) 102 for (i <- 0 until StorePipelineWidth) { 103 dataModule.io.raddr(i) := deqPtrExtNext(i).value 104 paddrModule.io.raddr(i) := deqPtrExtNext(i).value 105 } 106 vaddrModule.io.raddr(0) := cmtPtr + commitCount 107 108 /** 109 * Enqueue at dispatch 110 * 111 * Currently, StoreQueue only allows enqueue when #emptyEntries > RenameWidth(EnqWidth) 112 */ 113 io.enq.canAccept := allowEnqueue 114 for (i <- 0 until RenameWidth) { 115 val offset = if (i == 0) 0.U else PopCount(io.enq.needAlloc.take(i)) 116 val sqIdx = enqPtrExt(offset) 117 val index = sqIdx.value 118 when (io.enq.req(i).valid && io.enq.canAccept && io.enq.lqCanAccept && !io.brqRedirect.valid) { 119 uop(index) := io.enq.req(i).bits 120 allocated(index) := true.B 121 datavalid(index) := false.B 122 writebacked(index) := false.B 123 commited(index) := false.B 124 pending(index) := false.B 125 } 126 io.enq.resp(i) := sqIdx 127 } 128 XSDebug(p"(ready, valid): ${io.enq.canAccept}, ${Binary(Cat(io.enq.req.map(_.valid)))}\n") 129 130 /** 131 * Writeback store from store units 132 * 133 * Most store instructions writeback to regfile in the previous cycle. 134 * However, 135 * (1) For an mmio instruction with exceptions, we need to mark it as datavalid 136 * (in this way it will trigger an exception when it reaches ROB's head) 137 * instead of pending to avoid sending them to lower level. 138 * (2) For an mmio instruction without exceptions, we mark it as pending. 139 * When the instruction reaches ROB's head, StoreQueue sends it to uncache channel. 140 * Upon receiving the response, StoreQueue writes back the instruction 141 * through arbiter with store units. It will later commit as normal. 142 */ 143 for (i <- 0 until StorePipelineWidth) { 144 dataModule.io.wen(i) := false.B 145 paddrModule.io.wen(i) := false.B 146 vaddrModule.io.wen(i) := false.B 147 when (io.storeIn(i).fire()) { 148 val stWbIndex = io.storeIn(i).bits.uop.sqIdx.value 149 datavalid(stWbIndex) := !io.storeIn(i).bits.mmio 150 writebacked(stWbIndex) := !io.storeIn(i).bits.mmio 151 pending(stWbIndex) := io.storeIn(i).bits.mmio 152 153 val storeWbData = Wire(new SQDataEntry) 154 storeWbData := DontCare 155 storeWbData.mask := io.storeIn(i).bits.mask 156 storeWbData.data := io.storeIn(i).bits.data 157 158 dataModule.io.waddr(i) := stWbIndex 159 dataModule.io.wdata(i) := storeWbData 160 dataModule.io.wen(i) := true.B 161 162 paddrModule.io.waddr(i) := stWbIndex 163 paddrModule.io.wdata(i) := io.storeIn(i).bits.paddr 164 paddrModule.io.wen(i) := true.B 165 166 vaddrModule.io.waddr(i) := stWbIndex 167 vaddrModule.io.wdata(i) := io.storeIn(i).bits.vaddr 168 vaddrModule.io.wen(i) := true.B 169 170 mmio(stWbIndex) := io.storeIn(i).bits.mmio 171 172 XSInfo("store write to sq idx %d pc 0x%x vaddr %x paddr %x data %x mmio %x\n", 173 io.storeIn(i).bits.uop.sqIdx.value, 174 io.storeIn(i).bits.uop.cf.pc, 175 io.storeIn(i).bits.vaddr, 176 io.storeIn(i).bits.paddr, 177 io.storeIn(i).bits.data, 178 io.storeIn(i).bits.mmio 179 ) 180 } 181 } 182 183 /** 184 * load forward query 185 * 186 * Check store queue for instructions that is older than the load. 187 * The response will be valid at the next cycle after req. 188 */ 189 // check over all lq entries and forward data from the first matched store 190 for (i <- 0 until LoadPipelineWidth) { 191 io.forward(i).forwardMask := 0.U(8.W).asBools 192 io.forward(i).forwardData := DontCare 193 194 // Compare deqPtr (deqPtr) and forward.sqIdx, we have two cases: 195 // (1) if they have the same flag, we need to check range(tail, sqIdx) 196 // (2) if they have different flags, we need to check range(tail, LoadQueueSize) and range(0, sqIdx) 197 // Forward1: Mux(same_flag, range(tail, sqIdx), range(tail, LoadQueueSize)) 198 // Forward2: Mux(same_flag, 0.U, range(0, sqIdx) ) 199 // i.e. forward1 is the target entries with the same flag bits and forward2 otherwise 200 val differentFlag = deqPtrExt(0).flag =/= io.forward(i).sqIdx.flag 201 val forwardMask = UIntToMask(io.forward(i).sqIdx.value, StoreQueueSize) 202 val storeWritebackedVec = WireInit(VecInit(Seq.fill(StoreQueueSize)(false.B))) 203 for (j <- 0 until StoreQueueSize) { 204 storeWritebackedVec(j) := datavalid(j) && allocated(j) // all datavalid terms need to be checked 205 } 206 val needForward1 = Mux(differentFlag, ~deqMask, deqMask ^ forwardMask) & storeWritebackedVec.asUInt 207 val needForward2 = Mux(differentFlag, forwardMask, 0.U(StoreQueueSize.W)) & storeWritebackedVec.asUInt 208 209 XSDebug(p"$i f1 ${Binary(needForward1)} f2 ${Binary(needForward2)} " + 210 p"sqIdx ${io.forward(i).sqIdx} pa ${Hexadecimal(io.forward(i).paddr)}\n" 211 ) 212 213 // do real fwd query 214 dataModule.io.needForward(i)(0) := needForward1 & paddrModule.io.forwardMmask(i).asUInt 215 dataModule.io.needForward(i)(1) := needForward2 & paddrModule.io.forwardMmask(i).asUInt 216 217 paddrModule.io.forwardMdata(i) := io.forward(i).paddr 218 219 io.forward(i).forwardMask := dataModule.io.forwardMask(i) 220 io.forward(i).forwardData := dataModule.io.forwardData(i) 221 } 222 223 /** 224 * Memory mapped IO / other uncached operations 225 * 226 * States: 227 * (1) writeback from store units: mark as pending 228 * (2) when they reach ROB's head, they can be sent to uncache channel 229 * (3) response from uncache channel: mark as datavalid 230 * (4) writeback to ROB (and other units): mark as writebacked 231 * (5) ROB commits the instruction: same as normal instructions 232 */ 233 //(2) when they reach ROB's head, they can be sent to uncache channel 234 val s_idle :: s_req :: s_resp :: s_wait :: Nil = Enum(4) 235 val uncacheState = RegInit(s_idle) 236 switch(uncacheState) { 237 is(s_idle) { 238 when(io.roq.pendingst && pending(deqPtr) && allocated(deqPtr)) { 239 uncacheState := s_req 240 } 241 } 242 is(s_req) { 243 when(io.uncache.req.fire()) { 244 uncacheState := s_resp 245 } 246 } 247 is(s_resp) { 248 when(io.uncache.resp.fire()) { 249 uncacheState := s_wait 250 } 251 } 252 is(s_wait) { 253 when(io.roq.commit) { 254 uncacheState := s_idle // ready for next mmio 255 } 256 } 257 } 258 io.uncache.req.valid := uncacheState === s_req 259 260 io.uncache.req.bits.cmd := MemoryOpConstants.M_XWR 261 io.uncache.req.bits.addr := paddrModule.io.rdata(0) // data(deqPtr) -> rdata(0) 262 io.uncache.req.bits.data := dataModule.io.rdata(0).data 263 io.uncache.req.bits.mask := dataModule.io.rdata(0).mask 264 265 io.uncache.req.bits.id := DontCare 266 267 when(io.uncache.req.fire()){ 268 pending(deqPtr) := false.B 269 270 XSDebug( 271 p"uncache req: pc ${Hexadecimal(uop(deqPtr).cf.pc)} " + 272 p"addr ${Hexadecimal(io.uncache.req.bits.addr)} " + 273 p"data ${Hexadecimal(io.uncache.req.bits.data)} " + 274 p"op ${Hexadecimal(io.uncache.req.bits.cmd)} " + 275 p"mask ${Hexadecimal(io.uncache.req.bits.mask)}\n" 276 ) 277 } 278 279 // (3) response from uncache channel: mark as datavalid 280 io.uncache.resp.ready := true.B 281 when (io.uncache.resp.fire()) { 282 datavalid(deqPtr) := true.B 283 } 284 285 // (4) writeback to ROB (and other units): mark as writebacked 286 io.mmioStout.valid := allocated(deqPtr) && datavalid(deqPtr) && !writebacked(deqPtr) 287 io.mmioStout.bits.uop := uop(deqPtr) 288 io.mmioStout.bits.uop.sqIdx := deqPtrExt(0) 289 io.mmioStout.bits.data := dataModule.io.rdata(0).data // dataModule.io.rdata.read(deqPtr) 290 io.mmioStout.bits.redirectValid := false.B 291 io.mmioStout.bits.redirect := DontCare 292 io.mmioStout.bits.brUpdate := DontCare 293 io.mmioStout.bits.debug.isMMIO := true.B 294 io.mmioStout.bits.debug.isPerfCnt := false.B 295 io.mmioStout.bits.fflags := DontCare 296 when (io.mmioStout.fire()) { 297 writebacked(deqPtr) := true.B 298 allocated(deqPtr) := false.B 299 } 300 301 /** 302 * ROB commits store instructions (mark them as commited) 303 * 304 * (1) When store commits, mark it as commited. 305 * (2) They will not be cancelled and can be sent to lower level. 306 */ 307 for (i <- 0 until CommitWidth) { 308 when (commitCount > i.U) { 309 commited(cmtPtrExt(i).value) := true.B 310 } 311 } 312 cmtPtrExt := cmtPtrExt.map(_ + commitCount) 313 314 // Commited stores will not be cancelled and can be sent to lower level. 315 // remove retired insts from sq, add retired store to sbuffer 316 for (i <- 0 until StorePipelineWidth) { 317 // We use RegNext to prepare data for sbuffer 318 val ptr = deqPtrExt(i).value 319 // if !sbuffer.fire(), read the same ptr 320 // if sbuffer.fire(), read next 321 io.sbuffer(i).valid := allocated(ptr) && commited(ptr) && !mmio(ptr) 322 io.sbuffer(i).bits.cmd := MemoryOpConstants.M_XWR 323 io.sbuffer(i).bits.addr := paddrModule.io.rdata(i) 324 io.sbuffer(i).bits.data := dataModule.io.rdata(i).data 325 io.sbuffer(i).bits.mask := dataModule.io.rdata(i).mask 326 io.sbuffer(i).bits.id := DontCare 327 328 when (io.sbuffer(i).fire()) { 329 allocated(ptr) := false.B 330 XSDebug("sbuffer "+i+" fire: ptr %d\n", ptr) 331 } 332 } 333 when (io.sbuffer(1).fire()) { 334 assert(io.sbuffer(0).fire()) 335 } 336 337 val storeCommit = PopCount(io.sbuffer.map(_.fire())) 338 val waddr = VecInit(io.sbuffer.map(req => SignExt(req.bits.addr, 64))) 339 val wdata = VecInit(io.sbuffer.map(req => req.bits.data & MaskExpand(req.bits.mask))) 340 val wmask = VecInit(io.sbuffer.map(_.bits.mask)) 341 342 if (!env.FPGAPlatform) { 343 ExcitingUtils.addSource(RegNext(storeCommit), "difftestStoreCommit", ExcitingUtils.Debug) 344 ExcitingUtils.addSource(RegNext(waddr), "difftestStoreAddr", ExcitingUtils.Debug) 345 ExcitingUtils.addSource(RegNext(wdata), "difftestStoreData", ExcitingUtils.Debug) 346 ExcitingUtils.addSource(RegNext(wmask), "difftestStoreMask", ExcitingUtils.Debug) 347 } 348 if (env.DualCoreDifftest) { 349 difftestIO.storeCommit := RegNext(storeCommit) 350 difftestIO.storeAddr := RegNext(waddr) 351 difftestIO.storeData := RegNext(wdata) 352 difftestIO.storeMask := RegNext(wmask) 353 } 354 355 // Read vaddr for mem exception 356 io.exceptionAddr.vaddr := vaddrModule.io.rdata(0) 357 358 // misprediction recovery / exception redirect 359 // invalidate sq term using robIdx 360 val needCancel = Wire(Vec(StoreQueueSize, Bool())) 361 for (i <- 0 until StoreQueueSize) { 362 needCancel(i) := uop(i).roqIdx.needFlush(io.brqRedirect) && allocated(i) && !commited(i) 363 when (needCancel(i)) { 364 allocated(i) := false.B 365 } 366 } 367 368 /** 369 * update pointers 370 */ 371 val lastCycleRedirect = RegNext(io.brqRedirect.valid) 372 val lastCycleCancelCount = PopCount(RegNext(needCancel)) 373 // when io.brqRedirect.valid, we don't allow eneuque even though it may fire. 374 val enqNumber = Mux(io.enq.canAccept && io.enq.lqCanAccept && !io.brqRedirect.valid, PopCount(io.enq.req.map(_.valid)), 0.U) 375 when (lastCycleRedirect) { 376 // we recover the pointers in the next cycle after redirect 377 enqPtrExt := VecInit(enqPtrExt.map(_ - lastCycleCancelCount)) 378 }.otherwise { 379 enqPtrExt := VecInit(enqPtrExt.map(_ + enqNumber)) 380 } 381 382 deqPtrExt := deqPtrExtNext 383 384 val lastLastCycleRedirect = RegNext(lastCycleRedirect) 385 val dequeueCount = Mux(io.sbuffer(1).fire(), 2.U, Mux(io.sbuffer(0).fire() || io.mmioStout.fire(), 1.U, 0.U)) 386 val validCount = distanceBetween(enqPtrExt(0), deqPtrExt(0)) 387 388 allowEnqueue := validCount + enqNumber <= (StoreQueueSize - RenameWidth).U 389 390 // io.sqempty will be used by sbuffer 391 // We delay it for 1 cycle for better timing 392 // When sbuffer need to check if it is empty, the pipeline is blocked, which means delay io.sqempty 393 // for 1 cycle will also promise that sq is empty in that cycle 394 io.sqempty := RegNext(enqPtrExt(0).value === deqPtrExt(0).value && enqPtrExt(0).flag === deqPtrExt(0).flag) 395 396 // debug info 397 XSDebug("enqPtrExt %d:%d deqPtrExt %d:%d\n", enqPtrExt(0).flag, enqPtr, deqPtrExt(0).flag, deqPtr) 398 399 def PrintFlag(flag: Bool, name: String): Unit = { 400 when(flag) { 401 XSDebug(false, true.B, name) 402 }.otherwise { 403 XSDebug(false, true.B, " ") 404 } 405 } 406 407 for (i <- 0 until StoreQueueSize) { 408 if (i % 4 == 0) XSDebug("") 409 XSDebug(false, true.B, "%x ", uop(i).cf.pc) 410 PrintFlag(allocated(i), "a") 411 PrintFlag(allocated(i) && datavalid(i), "v") 412 PrintFlag(allocated(i) && writebacked(i), "w") 413 PrintFlag(allocated(i) && commited(i), "c") 414 PrintFlag(allocated(i) && pending(i), "p") 415 XSDebug(false, true.B, " ") 416 if (i % 4 == 3 || i == StoreQueueSize - 1) XSDebug(false, true.B, "\n") 417 } 418 419} 420