1/*************************************************************************************** 2* Copyright (c) 2020-2021 Institute of Computing Technology, Chinese Academy of Sciences 3* Copyright (c) 2020-2021 Peng Cheng Laboratory 4* 5* XiangShan is licensed under Mulan PSL v2. 6* You can use this software according to the terms and conditions of the Mulan PSL v2. 7* You may obtain a copy of Mulan PSL v2 at: 8* http://license.coscl.org.cn/MulanPSL2 9* 10* THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND, 11* EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT, 12* MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE. 13* 14* See the Mulan PSL v2 for more details. 15***************************************************************************************/ 16 17package xiangshan.mem 18 19import chisel3._ 20import chisel3.util._ 21import difftest._ 22import difftest.common.DifftestMem 23import org.chipsalliance.cde.config.Parameters 24import utility._ 25import utils._ 26import xiangshan._ 27import xiangshan.cache._ 28import xiangshan.cache.{DCacheLineIO, DCacheWordIO, MemoryOpConstants} 29import xiangshan.backend._ 30import xiangshan.backend.rob.{RobLsqIO, RobPtr} 31import xiangshan.backend.Bundles.{DynInst, MemExuOutput} 32import xiangshan.backend.decode.isa.bitfield.{Riscv32BitInst, XSInstBitFields} 33import xiangshan.backend.fu.FuConfig._ 34import xiangshan.backend.fu.FuType 35 36class SqPtr(implicit p: Parameters) extends CircularQueuePtr[SqPtr]( 37 p => p(XSCoreParamsKey).StoreQueueSize 38){ 39} 40 41object SqPtr { 42 def apply(f: Bool, v: UInt)(implicit p: Parameters): SqPtr = { 43 val ptr = Wire(new SqPtr) 44 ptr.flag := f 45 ptr.value := v 46 ptr 47 } 48} 49 50class SqEnqIO(implicit p: Parameters) extends MemBlockBundle { 51 val canAccept = Output(Bool()) 52 val lqCanAccept = Input(Bool()) 53 val needAlloc = Vec(LSQEnqWidth, Input(Bool())) 54 val req = Vec(LSQEnqWidth, Flipped(ValidIO(new DynInst))) 55 val resp = Vec(LSQEnqWidth, Output(new SqPtr)) 56} 57 58class DataBufferEntry (implicit p: Parameters) extends DCacheBundle { 59 val addr = UInt(PAddrBits.W) 60 val vaddr = UInt(VAddrBits.W) 61 val data = UInt(VLEN.W) 62 val mask = UInt((VLEN/8).W) 63 val wline = Bool() 64 val sqPtr = new SqPtr 65 val prefetch = Bool() 66 val vecValid = Bool() 67} 68 69class StoreExceptionBuffer(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper { 70 val io = IO(new Bundle() { 71 val redirect = Flipped(ValidIO(new Redirect)) 72 val storeAddrIn = Vec(StorePipelineWidth + 1, Flipped(ValidIO(new LsPipelineBundle()))) 73 val exceptionAddr = new ExceptionAddrIO 74 }) 75 76 val req_valid = RegInit(false.B) 77 val req = Reg(new LsPipelineBundle()) 78 79 // enqueue 80 // S1: 81 val s1_req = VecInit(io.storeAddrIn.map(_.bits)) 82 val s1_valid = VecInit(io.storeAddrIn.map(_.valid)) 83 84 // S2: delay 1 cycle 85 val s2_req = RegNext(s1_req) 86 val s2_valid = (0 until StorePipelineWidth + 1).map(i => 87 RegNext(s1_valid(i)) && 88 !s2_req(i).uop.robIdx.needFlush(RegNext(io.redirect)) && 89 !s2_req(i).uop.robIdx.needFlush(io.redirect) 90 ) 91 val s2_has_exception = s2_req.map(x => ExceptionNO.selectByFu(x.uop.exceptionVec, StaCfg).asUInt.orR) 92 93 val s2_enqueue = Wire(Vec(StorePipelineWidth + 1, Bool())) 94 for (w <- 0 until StorePipelineWidth + 1) { 95 s2_enqueue(w) := s2_valid(w) && s2_has_exception(w) 96 } 97 98 when (req_valid && req.uop.robIdx.needFlush(io.redirect)) { 99 req_valid := s2_enqueue.asUInt.orR 100 }.elsewhen (s2_enqueue.asUInt.orR) { 101 req_valid := req_valid || true.B 102 } 103 104 def selectOldest[T <: LsPipelineBundle](valid: Seq[Bool], bits: Seq[T]): (Seq[Bool], Seq[T]) = { 105 assert(valid.length == bits.length) 106 if (valid.length == 0 || valid.length == 1) { 107 (valid, bits) 108 } else if (valid.length == 2) { 109 val res = Seq.fill(2)(Wire(Valid(chiselTypeOf(bits(0))))) 110 for (i <- res.indices) { 111 res(i).valid := valid(i) 112 res(i).bits := bits(i) 113 } 114 val oldest = Mux(valid(0) && valid(1), 115 Mux(isAfter(bits(0).uop.robIdx, bits(1).uop.robIdx) || 116 (isNotBefore(bits(0).uop.robIdx, bits(1).uop.robIdx) && bits(0).uop.uopIdx > bits(1).uop.uopIdx), res(1), res(0)), 117 Mux(valid(0) && !valid(1), res(0), res(1))) 118 (Seq(oldest.valid), Seq(oldest.bits)) 119 } else { 120 val left = selectOldest(valid.take(valid.length / 2), bits.take(bits.length / 2)) 121 val right = selectOldest(valid.takeRight(valid.length - (valid.length / 2)), bits.takeRight(bits.length - (bits.length / 2))) 122 selectOldest(left._1 ++ right._1, left._2 ++ right._2) 123 } 124 } 125 126 val reqSel = selectOldest(s2_enqueue, s2_req) 127 128 when (req_valid) { 129 req := Mux(reqSel._1(0) && isAfter(req.uop.robIdx, reqSel._2(0).uop.robIdx) || 130 (isNotBefore(req.uop.robIdx, reqSel._2(0).uop.robIdx) && req.uop.uopIdx > reqSel._2(0).uop.uopIdx), reqSel._2(0), req) 131 } .elsewhen (s2_enqueue.asUInt.orR) { 132 req := reqSel._2(0) 133 } 134 135 io.exceptionAddr.vaddr := req.vaddr 136} 137 138// Store Queue 139class StoreQueue(implicit p: Parameters) extends XSModule 140 with HasDCacheParameters 141 with HasCircularQueuePtrHelper 142 with HasPerfEvents 143 with HasVLSUParameters { 144 val io = IO(new Bundle() { 145 val hartId = Input(UInt(8.W)) 146 val enq = new SqEnqIO 147 val brqRedirect = Flipped(ValidIO(new Redirect)) 148 val vecFeedback = Flipped(ValidIO(new FeedbackToLsqIO)) 149 val storeAddrIn = Vec(StorePipelineWidth, Flipped(Valid(new LsPipelineBundle))) // store addr, data is not included 150 val storeAddrInRe = Vec(StorePipelineWidth, Input(new LsPipelineBundle())) // store more mmio and exception 151 val storeDataIn = Vec(StorePipelineWidth, Flipped(Valid(new MemExuOutput(isVector = true)))) // store data, send to sq from rs 152 val storeMaskIn = Vec(StorePipelineWidth, Flipped(Valid(new StoreMaskBundle))) // store mask, send to sq from rs 153 val sbuffer = Vec(EnsbufferWidth, Decoupled(new DCacheWordReqWithVaddrAndPfFlag)) // write committed store to sbuffer 154 val sbufferVecDifftestInfo = Vec(EnsbufferWidth, Decoupled(new DynInst)) // The vector store difftest needs is, write committed store to sbuffer 155 val uncacheOutstanding = Input(Bool()) 156 val mmioStout = DecoupledIO(new MemExuOutput) // writeback uncached store 157 val vecmmioStout = DecoupledIO(new MemExuOutput(isVector = true)) 158 val forward = Vec(LoadPipelineWidth, Flipped(new PipeLoadForwardQueryIO)) 159 // TODO: scommit is only for scalar store 160 val rob = Flipped(new RobLsqIO) 161 val uncache = new UncacheWordIO 162 // val refill = Flipped(Valid(new DCacheLineReq )) 163 val exceptionAddr = new ExceptionAddrIO 164 val sqEmpty = Output(Bool()) 165 val stAddrReadySqPtr = Output(new SqPtr) 166 val stAddrReadyVec = Output(Vec(StoreQueueSize, Bool())) 167 val stDataReadySqPtr = Output(new SqPtr) 168 val stDataReadyVec = Output(Vec(StoreQueueSize, Bool())) 169 val stIssuePtr = Output(new SqPtr) 170 val sqDeqPtr = Output(new SqPtr) 171 val sqFull = Output(Bool()) 172 val sqCancelCnt = Output(UInt(log2Up(StoreQueueSize + 1).W)) 173 val sqDeq = Output(UInt(log2Ceil(EnsbufferWidth + 1).W)) 174 val force_write = Output(Bool()) 175 }) 176 177 println("StoreQueue: size:" + StoreQueueSize) 178 179 // data modules 180 val uop = Reg(Vec(StoreQueueSize, new DynInst)) 181 // val data = Reg(Vec(StoreQueueSize, new LsqEntry)) 182 val dataModule = Module(new SQDataModule( 183 numEntries = StoreQueueSize, 184 numRead = EnsbufferWidth, 185 numWrite = StorePipelineWidth, 186 numForward = LoadPipelineWidth 187 )) 188 dataModule.io := DontCare 189 val paddrModule = Module(new SQAddrModule( 190 dataWidth = PAddrBits, 191 numEntries = StoreQueueSize, 192 numRead = EnsbufferWidth, 193 numWrite = StorePipelineWidth, 194 numForward = LoadPipelineWidth 195 )) 196 paddrModule.io := DontCare 197 val vaddrModule = Module(new SQAddrModule( 198 dataWidth = VAddrBits, 199 numEntries = StoreQueueSize, 200 numRead = EnsbufferWidth, // sbuffer; badvaddr will be sent from exceptionBuffer 201 numWrite = StorePipelineWidth, 202 numForward = LoadPipelineWidth 203 )) 204 vaddrModule.io := DontCare 205 val dataBuffer = Module(new DatamoduleResultBuffer(new DataBufferEntry)) 206 val difftestBuffer = if (env.EnableDifftest) Some(Module(new DatamoduleResultBuffer(new DynInst))) else None 207 val exceptionBuffer = Module(new StoreExceptionBuffer) 208 exceptionBuffer.io.redirect := io.brqRedirect 209 exceptionBuffer.io.exceptionAddr.isStore := DontCare 210 // TODO: implement it! 211 exceptionBuffer.io.storeAddrIn(StorePipelineWidth) := DontCare 212 213 val debug_paddr = Reg(Vec(StoreQueueSize, UInt((PAddrBits).W))) 214 val debug_vaddr = Reg(Vec(StoreQueueSize, UInt((VAddrBits).W))) 215 val debug_data = Reg(Vec(StoreQueueSize, UInt((XLEN).W))) 216 217 // state & misc 218 val allocated = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // sq entry has been allocated 219 val addrvalid = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // non-mmio addr is valid 220 val datavalid = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // non-mmio data is valid 221 val allvalid = VecInit((0 until StoreQueueSize).map(i => addrvalid(i) && datavalid(i))) // non-mmio data & addr is valid 222 val committed = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // inst has been committed by rob 223 val pending = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // mmio pending: inst is an mmio inst, it will not be executed until it reachs the end of rob 224 val mmio = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // mmio: inst is an mmio inst 225 val atomic = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) 226 val prefetch = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // need prefetch when committing this store to sbuffer? 227 val isVec = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // vector store instruction 228 //val vec_lastuop = Reg(Vec(StoreQueueSize, Bool())) // last uop of vector store instruction 229 val vecMbCommit = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // vector store committed from merge buffer to rob 230 val vecDataValid = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // vector store need write to sbuffer 231 // val vec_robCommit = Reg(Vec(StoreQueueSize, Bool())) // vector store committed by rob 232 // val vec_secondInv = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // Vector unit-stride, second entry is invalid 233 234 // ptr 235 val enqPtrExt = RegInit(VecInit((0 until io.enq.req.length).map(_.U.asTypeOf(new SqPtr)))) 236 val rdataPtrExt = RegInit(VecInit((0 until EnsbufferWidth).map(_.U.asTypeOf(new SqPtr)))) 237 val deqPtrExt = RegInit(VecInit((0 until EnsbufferWidth).map(_.U.asTypeOf(new SqPtr)))) 238 val cmtPtrExt = RegInit(VecInit((0 until CommitWidth).map(_.U.asTypeOf(new SqPtr)))) 239 val addrReadyPtrExt = RegInit(0.U.asTypeOf(new SqPtr)) 240 val dataReadyPtrExt = RegInit(0.U.asTypeOf(new SqPtr)) 241 242 val enqPtr = enqPtrExt(0).value 243 val deqPtr = deqPtrExt(0).value 244 val cmtPtr = cmtPtrExt(0).value 245 246 val validCount = distanceBetween(enqPtrExt(0), deqPtrExt(0)) 247 val allowEnqueue = validCount <= (StoreQueueSize - LSQStEnqWidth).U 248 249 val deqMask = UIntToMask(deqPtr, StoreQueueSize) 250 val enqMask = UIntToMask(enqPtr, StoreQueueSize) 251 252 // TODO: count commit numbers for scalar / vector store separately 253 val scalarCommitCount = RegInit(0.U(log2Ceil(StoreQueueSize + 1).W)) 254 val scalarCommitted = WireInit(0.U(log2Ceil(CommitWidth + 1).W)) 255 val vecCommitted = WireInit(0.U(log2Ceil(CommitWidth + 1).W)) 256 val commitCount = WireInit(0.U(log2Ceil(CommitWidth + 1).W)) 257 val scommit = RegNext(io.rob.scommit) 258 259 scalarCommitCount := scalarCommitCount + scommit - scalarCommitted 260 261 // store can be committed by ROB 262 io.rob.mmio := DontCare 263 io.rob.uop := DontCare 264 265 // Read dataModule 266 assert(EnsbufferWidth <= 2) 267 // rdataPtrExtNext and rdataPtrExtNext+1 entry will be read from dataModule 268 val rdataPtrExtNext = WireInit(Mux(dataBuffer.io.enq(1).fire, 269 VecInit(rdataPtrExt.map(_ + 2.U)), 270 Mux(dataBuffer.io.enq(0).fire || io.mmioStout.fire || io.vecmmioStout.fire, 271 VecInit(rdataPtrExt.map(_ + 1.U)), 272 rdataPtrExt 273 ) 274 )) 275 276 // deqPtrExtNext traces which inst is about to leave store queue 277 // 278 // io.sbuffer(i).fire is RegNexted, as sbuffer data write takes 2 cycles. 279 // Before data write finish, sbuffer is unable to provide store to load 280 // forward data. As an workaround, deqPtrExt and allocated flag update 281 // is delayed so that load can get the right data from store queue. 282 // 283 // Modify deqPtrExtNext and io.sqDeq with care! 284 val deqPtrExtNext = Mux(RegNext(io.sbuffer(1).fire), 285 VecInit(deqPtrExt.map(_ + 2.U)), 286 Mux((RegNext(io.sbuffer(0).fire)) || io.mmioStout.fire || io.vecmmioStout.fire, 287 VecInit(deqPtrExt.map(_ + 1.U)), 288 deqPtrExt 289 ) 290 ) 291 io.sqDeq := RegNext(Mux(RegNext(io.sbuffer(1).fire), 2.U, 292 Mux((RegNext(io.sbuffer(0).fire)) || io.mmioStout.fire || io.vecmmioStout.fire, 1.U, 0.U) 293 )) 294 assert(!RegNext(RegNext(io.sbuffer(0).fire) && (io.mmioStout.fire || io.vecmmioStout.fire))) 295 296 for (i <- 0 until EnsbufferWidth) { 297 dataModule.io.raddr(i) := rdataPtrExtNext(i).value 298 paddrModule.io.raddr(i) := rdataPtrExtNext(i).value 299 vaddrModule.io.raddr(i) := rdataPtrExtNext(i).value 300 } 301 302 /** 303 * Enqueue at dispatch 304 * 305 * Currently, StoreQueue only allows enqueue when #emptyEntries > EnqWidth 306 */ 307 io.enq.canAccept := allowEnqueue 308 val canEnqueue = io.enq.req.map(_.valid) 309 val enqCancel = io.enq.req.map(_.bits.robIdx.needFlush(io.brqRedirect)) 310 val vStoreFlow = io.enq.req.map(_.bits.numLsElem) 311 val validVStoreFlow = vStoreFlow.zipWithIndex.map{case (vLoadFlowNumItem, index) => Mux(!RegNext(io.brqRedirect.valid) && io.enq.canAccept && io.enq.lqCanAccept && canEnqueue(index), vLoadFlowNumItem, 0.U)} 312 val validVStoreOffset = vStoreFlow.zip(io.enq.needAlloc).map{case (flow, needAllocItem) => Mux(needAllocItem, flow, 0.U)} 313 val validVStoreOffsetRShift = 0.U +: validVStoreOffset.take(vStoreFlow.length - 1) 314 315 for (i <- 0 until io.enq.req.length) { 316 val sqIdx = enqPtrExt(0) + validVStoreOffsetRShift.take(i + 1).reduce(_ + _) 317 val index = io.enq.req(i).bits.sqIdx 318 val enqInstr = io.enq.req(i).bits.instr.asTypeOf(new XSInstBitFields) 319 when (canEnqueue(i) && !enqCancel(i)) { 320 for (j <- 0 until VecMemDispatchMaxNumber) { 321 when (j.U < validVStoreOffset(i)) { 322 uop((index + j.U).value) := io.enq.req(i).bits 323 // NOTE: the index will be used when replay 324 uop((index + j.U).value).sqIdx := sqIdx + j.U 325 allocated((index + j.U).value) := true.B 326 datavalid((index + j.U).value) := false.B 327 addrvalid((index + j.U).value) := false.B 328 committed((index + j.U).value) := false.B 329 pending((index + j.U).value) := false.B 330 prefetch((index + j.U).value) := false.B 331 mmio((index + j.U).value) := false.B 332 isVec((index + j.U).value) := enqInstr.isVecStore // check vector store by the encoding of inst 333 vecMbCommit((index + j.U).value) := false.B 334 vecDataValid((index + j.U).value) := false.B 335 XSError(!io.enq.canAccept || !io.enq.lqCanAccept, s"must accept $i\n") 336 XSError(index.value =/= sqIdx.value, s"must be the same entry $i\n") 337 } 338 } 339 } 340 io.enq.resp(i) := sqIdx 341 } 342 XSDebug(p"(ready, valid): ${io.enq.canAccept}, ${Binary(Cat(io.enq.req.map(_.valid)))}\n") 343 344 /** 345 * Update addr/dataReadyPtr when issue from rs 346 */ 347 // update issuePtr 348 val IssuePtrMoveStride = 4 349 require(IssuePtrMoveStride >= 2) 350 351 val addrReadyLookupVec = (0 until IssuePtrMoveStride).map(addrReadyPtrExt + _.U) 352 val addrReadyLookup = addrReadyLookupVec.map(ptr => allocated(ptr.value) && 353 (mmio(ptr.value) || addrvalid(ptr.value) || vecMbCommit(ptr.value)) 354 && ptr =/= enqPtrExt(0)) 355 val nextAddrReadyPtr = addrReadyPtrExt + PriorityEncoder(VecInit(addrReadyLookup.map(!_) :+ true.B)) 356 addrReadyPtrExt := nextAddrReadyPtr 357 358 (0 until StoreQueueSize).map(i => { 359 io.stAddrReadyVec(i) := RegNext(allocated(i) && (mmio(i) || addrvalid(i))) 360 }) 361 362 when (io.brqRedirect.valid) { 363 addrReadyPtrExt := Mux( 364 isAfter(cmtPtrExt(0), deqPtrExt(0)), 365 cmtPtrExt(0), 366 deqPtrExtNext(0) // for mmio insts, deqPtr may be ahead of cmtPtr 367 ) 368 } 369 370 io.stAddrReadySqPtr := addrReadyPtrExt 371 372 // update 373 val dataReadyLookupVec = (0 until IssuePtrMoveStride).map(dataReadyPtrExt + _.U) 374 val dataReadyLookup = dataReadyLookupVec.map(ptr => allocated(ptr.value) && 375 (mmio(ptr.value) || datavalid(ptr.value) || vecMbCommit(ptr.value)) 376 && ptr =/= enqPtrExt(0)) 377 val nextDataReadyPtr = dataReadyPtrExt + PriorityEncoder(VecInit(dataReadyLookup.map(!_) :+ true.B)) 378 dataReadyPtrExt := nextDataReadyPtr 379 380 (0 until StoreQueueSize).map(i => { 381 io.stDataReadyVec(i) := RegNext(allocated(i) && (mmio(i) || datavalid(i))) 382 }) 383 384 when (io.brqRedirect.valid) { 385 dataReadyPtrExt := Mux( 386 isAfter(cmtPtrExt(0), deqPtrExt(0)), 387 cmtPtrExt(0), 388 deqPtrExtNext(0) // for mmio insts, deqPtr may be ahead of cmtPtr 389 ) 390 } 391 392 io.stDataReadySqPtr := dataReadyPtrExt 393 io.stIssuePtr := enqPtrExt(0) 394 io.sqDeqPtr := deqPtrExt(0) 395 396 /** 397 * Writeback store from store units 398 * 399 * Most store instructions writeback to regfile in the previous cycle. 400 * However, 401 * (1) For an mmio instruction with exceptions, we need to mark it as addrvalid 402 * (in this way it will trigger an exception when it reaches ROB's head) 403 * instead of pending to avoid sending them to lower level. 404 * (2) For an mmio instruction without exceptions, we mark it as pending. 405 * When the instruction reaches ROB's head, StoreQueue sends it to uncache channel. 406 * Upon receiving the response, StoreQueue writes back the instruction 407 * through arbiter with store units. It will later commit as normal. 408 */ 409 410 // Write addr to sq 411 for (i <- 0 until StorePipelineWidth) { 412 paddrModule.io.wen(i) := false.B 413 vaddrModule.io.wen(i) := false.B 414 dataModule.io.mask.wen(i) := false.B 415 val stWbIndex = io.storeAddrIn(i).bits.uop.sqIdx.value 416 exceptionBuffer.io.storeAddrIn(i).valid := io.storeAddrIn(i).fire && !io.storeAddrIn(i).bits.miss && !io.storeAddrIn(i).bits.isvec 417 exceptionBuffer.io.storeAddrIn(i).bits := io.storeAddrIn(i).bits 418 419 when (io.storeAddrIn(i).fire) { 420 val addr_valid = !io.storeAddrIn(i).bits.miss 421 addrvalid(stWbIndex) := addr_valid //!io.storeAddrIn(i).bits.mmio 422 // pending(stWbIndex) := io.storeAddrIn(i).bits.mmio 423 424 paddrModule.io.waddr(i) := stWbIndex 425 paddrModule.io.wdata(i) := io.storeAddrIn(i).bits.paddr 426 paddrModule.io.wmask(i) := io.storeAddrIn(i).bits.mask 427 paddrModule.io.wlineflag(i) := io.storeAddrIn(i).bits.wlineflag 428 paddrModule.io.wen(i) := true.B 429 430 vaddrModule.io.waddr(i) := stWbIndex 431 vaddrModule.io.wdata(i) := io.storeAddrIn(i).bits.vaddr 432 vaddrModule.io.wmask(i) := io.storeAddrIn(i).bits.mask 433 vaddrModule.io.wlineflag(i) := io.storeAddrIn(i).bits.wlineflag 434 vaddrModule.io.wen(i) := true.B 435 436 debug_paddr(paddrModule.io.waddr(i)) := paddrModule.io.wdata(i) 437 438 // mmio(stWbIndex) := io.storeAddrIn(i).bits.mmio 439 440 uop(stWbIndex) := io.storeAddrIn(i).bits.uop 441 uop(stWbIndex).debugInfo := io.storeAddrIn(i).bits.uop.debugInfo 442 443 vecDataValid(stWbIndex) := io.storeAddrIn(i).bits.isvec 444 445 XSInfo("store addr write to sq idx %d pc 0x%x miss:%d vaddr %x paddr %x mmio %x isvec %x\n", 446 io.storeAddrIn(i).bits.uop.sqIdx.value, 447 io.storeAddrIn(i).bits.uop.pc, 448 io.storeAddrIn(i).bits.miss, 449 io.storeAddrIn(i).bits.vaddr, 450 io.storeAddrIn(i).bits.paddr, 451 io.storeAddrIn(i).bits.mmio, 452 io.storeAddrIn(i).bits.isvec 453 ) 454 } 455 456 // re-replinish mmio, for pma/pmp will get mmio one cycle later 457 val storeAddrInFireReg = RegNext(io.storeAddrIn(i).fire && !io.storeAddrIn(i).bits.miss) 458 val stWbIndexReg = RegNext(stWbIndex) 459 when (storeAddrInFireReg) { 460 pending(stWbIndexReg) := io.storeAddrInRe(i).mmio 461 mmio(stWbIndexReg) := io.storeAddrInRe(i).mmio 462 atomic(stWbIndexReg) := io.storeAddrInRe(i).atomic 463 } 464 // dcache miss info (one cycle later than storeIn) 465 // if dcache report a miss in sta pipeline, this store will trigger a prefetch when committing to sbuffer (if EnableAtCommitMissTrigger) 466 when (storeAddrInFireReg) { 467 prefetch(stWbIndexReg) := io.storeAddrInRe(i).miss 468 } 469 470 when(vaddrModule.io.wen(i)){ 471 debug_vaddr(vaddrModule.io.waddr(i)) := vaddrModule.io.wdata(i) 472 } 473 } 474 475 // Write data to sq 476 // Now store data pipeline is actually 2 stages 477 for (i <- 0 until StorePipelineWidth) { 478 dataModule.io.data.wen(i) := false.B 479 val stWbIndex = io.storeDataIn(i).bits.uop.sqIdx.value 480 val isVec = FuType.isVStore(io.storeDataIn(i).bits.uop.fuType) 481 // sq data write takes 2 cycles: 482 // sq data write s0 483 when (io.storeDataIn(i).fire) { 484 // send data write req to data module 485 dataModule.io.data.waddr(i) := stWbIndex 486 dataModule.io.data.wdata(i) := Mux(io.storeDataIn(i).bits.uop.fuOpType === LSUOpType.cbo_zero, 487 0.U, 488 Mux(isVec, 489 io.storeDataIn(i).bits.data, 490 genVWdata(io.storeDataIn(i).bits.data, io.storeDataIn(i).bits.uop.fuOpType(2,0))) 491 ) 492 dataModule.io.data.wen(i) := true.B 493 494 debug_data(dataModule.io.data.waddr(i)) := dataModule.io.data.wdata(i) 495 496 XSInfo("store data write to sq idx %d pc 0x%x data %x -> %x\n", 497 io.storeDataIn(i).bits.uop.sqIdx.value, 498 io.storeDataIn(i).bits.uop.pc, 499 io.storeDataIn(i).bits.data, 500 dataModule.io.data.wdata(i) 501 ) 502 } 503 // sq data write s1 504 when ( 505 RegNext(io.storeDataIn(i).fire) 506 // && !RegNext(io.storeDataIn(i).bits.uop).robIdx.needFlush(io.brqRedirect) 507 ) { 508 datavalid(RegNext(stWbIndex)) := true.B 509 } 510 } 511 512 // Write mask to sq 513 for (i <- 0 until StorePipelineWidth) { 514 // sq mask write s0 515 when (io.storeMaskIn(i).fire) { 516 // send data write req to data module 517 dataModule.io.mask.waddr(i) := io.storeMaskIn(i).bits.sqIdx.value 518 dataModule.io.mask.wdata(i) := io.storeMaskIn(i).bits.mask 519 dataModule.io.mask.wen(i) := true.B 520 } 521 } 522 523 /** 524 * load forward query 525 * 526 * Check store queue for instructions that is older than the load. 527 * The response will be valid at the next cycle after req. 528 */ 529 // check over all lq entries and forward data from the first matched store 530 for (i <- 0 until LoadPipelineWidth) { 531 // Compare deqPtr (deqPtr) and forward.sqIdx, we have two cases: 532 // (1) if they have the same flag, we need to check range(tail, sqIdx) 533 // (2) if they have different flags, we need to check range(tail, VirtualLoadQueueSize) and range(0, sqIdx) 534 // Forward1: Mux(same_flag, range(tail, sqIdx), range(tail, VirtualLoadQueueSize)) 535 // Forward2: Mux(same_flag, 0.U, range(0, sqIdx) ) 536 // i.e. forward1 is the target entries with the same flag bits and forward2 otherwise 537 val differentFlag = deqPtrExt(0).flag =/= io.forward(i).sqIdx.flag 538 val forwardMask = io.forward(i).sqIdxMask 539 // all addrvalid terms need to be checked 540 // Real Vaild: all scalar stores, and vector store with (!inactive && !secondInvalid) 541 val addrRealValidVec = WireInit(VecInit((0 until StoreQueueSize).map(j => addrvalid(j) && allocated(j)))) 542 // vector store will consider all inactive || secondInvalid flows as valid 543 val addrValidVec = WireInit(VecInit((0 until StoreQueueSize).map(j => addrvalid(j) && allocated(j)))) 544 val dataValidVec = WireInit(VecInit((0 until StoreQueueSize).map(j => datavalid(j)))) 545 val allValidVec = WireInit(VecInit((0 until StoreQueueSize).map(j => addrvalid(j) && datavalid(j) && allocated(j)))) 546 547 val lfstEnable = Constantin.createRecord("LFSTEnable", LFSTEnable.B).orR 548 val storeSetHitVec = Mux(lfstEnable, 549 WireInit(VecInit((0 until StoreQueueSize).map(j => io.forward(i).uop.loadWaitBit && uop(j).robIdx === io.forward(i).uop.waitForRobIdx))), 550 WireInit(VecInit((0 until StoreQueueSize).map(j => uop(j).storeSetHit && uop(j).ssid === io.forward(i).uop.ssid))) 551 ) 552 553 val forwardMask1 = Mux(differentFlag, ~deqMask, deqMask ^ forwardMask) 554 val forwardMask2 = Mux(differentFlag, forwardMask, 0.U(StoreQueueSize.W)) 555 val canForward1 = forwardMask1 & allValidVec.asUInt 556 val canForward2 = forwardMask2 & allValidVec.asUInt 557 val needForward = Mux(differentFlag, ~deqMask | forwardMask, deqMask ^ forwardMask) 558 559 XSDebug(p"$i f1 ${Binary(canForward1)} f2 ${Binary(canForward2)} " + 560 p"sqIdx ${io.forward(i).sqIdx} pa ${Hexadecimal(io.forward(i).paddr)}\n" 561 ) 562 563 // do real fwd query (cam lookup in load_s1) 564 dataModule.io.needForward(i)(0) := canForward1 & vaddrModule.io.forwardMmask(i).asUInt 565 dataModule.io.needForward(i)(1) := canForward2 & vaddrModule.io.forwardMmask(i).asUInt 566 567 vaddrModule.io.forwardMdata(i) := io.forward(i).vaddr 568 vaddrModule.io.forwardDataMask(i) := io.forward(i).mask 569 paddrModule.io.forwardMdata(i) := io.forward(i).paddr 570 paddrModule.io.forwardDataMask(i) := io.forward(i).mask 571 572 573 // vaddr cam result does not equal to paddr cam result 574 // replay needed 575 // val vpmaskNotEqual = ((paddrModule.io.forwardMmask(i).asUInt ^ vaddrModule.io.forwardMmask(i).asUInt) & needForward) =/= 0.U 576 // val vaddrMatchFailed = vpmaskNotEqual && io.forward(i).valid 577 val vpmaskNotEqual = ( 578 (RegNext(paddrModule.io.forwardMmask(i).asUInt) ^ RegNext(vaddrModule.io.forwardMmask(i).asUInt)) & 579 RegNext(needForward) & 580 RegNext(addrRealValidVec.asUInt) 581 ) =/= 0.U 582 val vaddrMatchFailed = vpmaskNotEqual && RegNext(io.forward(i).valid) 583 when (vaddrMatchFailed) { 584 XSInfo("vaddrMatchFailed: pc %x pmask %x vmask %x\n", 585 RegNext(io.forward(i).uop.pc), 586 RegNext(needForward & paddrModule.io.forwardMmask(i).asUInt), 587 RegNext(needForward & vaddrModule.io.forwardMmask(i).asUInt) 588 ); 589 } 590 XSPerfAccumulate("vaddr_match_failed", vpmaskNotEqual) 591 XSPerfAccumulate("vaddr_match_really_failed", vaddrMatchFailed) 592 593 // Fast forward mask will be generated immediately (load_s1) 594 io.forward(i).forwardMaskFast := dataModule.io.forwardMaskFast(i) 595 596 // Forward result will be generated 1 cycle later (load_s2) 597 io.forward(i).forwardMask := dataModule.io.forwardMask(i) 598 io.forward(i).forwardData := dataModule.io.forwardData(i) 599 // If addr match, data not ready, mark it as dataInvalid 600 // load_s1: generate dataInvalid in load_s1 to set fastUop 601 val dataInvalidMask1 = (addrValidVec.asUInt & ~dataValidVec.asUInt & vaddrModule.io.forwardMmask(i).asUInt & forwardMask1.asUInt) 602 val dataInvalidMask2 = (addrValidVec.asUInt & ~dataValidVec.asUInt & vaddrModule.io.forwardMmask(i).asUInt & forwardMask2.asUInt) 603 val dataInvalidMask = dataInvalidMask1 | dataInvalidMask2 604 io.forward(i).dataInvalidFast := dataInvalidMask.orR 605 606 // make chisel happy 607 val dataInvalidMask1Reg = Wire(UInt(StoreQueueSize.W)) 608 dataInvalidMask1Reg := RegNext(dataInvalidMask1) 609 // make chisel happy 610 val dataInvalidMask2Reg = Wire(UInt(StoreQueueSize.W)) 611 dataInvalidMask2Reg := RegNext(dataInvalidMask2) 612 val dataInvalidMaskReg = dataInvalidMask1Reg | dataInvalidMask2Reg 613 614 // If SSID match, address not ready, mark it as addrInvalid 615 // load_s2: generate addrInvalid 616 val addrInvalidMask1 = (~addrValidVec.asUInt & storeSetHitVec.asUInt & forwardMask1.asUInt) 617 val addrInvalidMask2 = (~addrValidVec.asUInt & storeSetHitVec.asUInt & forwardMask2.asUInt) 618 // make chisel happy 619 val addrInvalidMask1Reg = Wire(UInt(StoreQueueSize.W)) 620 addrInvalidMask1Reg := RegNext(addrInvalidMask1) 621 // make chisel happy 622 val addrInvalidMask2Reg = Wire(UInt(StoreQueueSize.W)) 623 addrInvalidMask2Reg := RegNext(addrInvalidMask2) 624 val addrInvalidMaskReg = addrInvalidMask1Reg | addrInvalidMask2Reg 625 626 // load_s2 627 io.forward(i).dataInvalid := RegNext(io.forward(i).dataInvalidFast) 628 // check if vaddr forward mismatched 629 io.forward(i).matchInvalid := vaddrMatchFailed 630 631 // data invalid sq index 632 // check whether false fail 633 // check flag 634 val s2_differentFlag = RegNext(differentFlag) 635 val s2_enqPtrExt = RegNext(enqPtrExt(0)) 636 val s2_deqPtrExt = RegNext(deqPtrExt(0)) 637 638 // addr invalid sq index 639 // make chisel happy 640 val addrInvalidMaskRegWire = Wire(UInt(StoreQueueSize.W)) 641 addrInvalidMaskRegWire := addrInvalidMaskReg 642 val addrInvalidFlag = addrInvalidMaskRegWire.orR 643 val hasInvalidAddr = (~addrValidVec.asUInt & needForward).orR 644 645 val addrInvalidSqIdx1 = OHToUInt(Reverse(PriorityEncoderOH(Reverse(addrInvalidMask1Reg)))) 646 val addrInvalidSqIdx2 = OHToUInt(Reverse(PriorityEncoderOH(Reverse(addrInvalidMask2Reg)))) 647 val addrInvalidSqIdx = Mux(addrInvalidMask2Reg.orR, addrInvalidSqIdx2, addrInvalidSqIdx1) 648 649 // store-set content management 650 // +-----------------------+ 651 // | Search a SSID for the | 652 // | load operation | 653 // +-----------------------+ 654 // | 655 // V 656 // +-------------------+ 657 // | load wait strict? | 658 // +-------------------+ 659 // | 660 // V 661 // +----------------------+ 662 // Set| |Clean 663 // V V 664 // +------------------------+ +------------------------------+ 665 // | Waiting for all older | | Wait until the corresponding | 666 // | stores operations | | older store operations | 667 // +------------------------+ +------------------------------+ 668 669 670 671 when (RegNext(io.forward(i).uop.loadWaitStrict)) { 672 io.forward(i).addrInvalidSqIdx := RegNext(io.forward(i).uop.sqIdx - 1.U) 673 } .elsewhen (addrInvalidFlag) { 674 io.forward(i).addrInvalidSqIdx.flag := Mux(!s2_differentFlag || addrInvalidSqIdx >= s2_deqPtrExt.value, s2_deqPtrExt.flag, s2_enqPtrExt.flag) 675 io.forward(i).addrInvalidSqIdx.value := addrInvalidSqIdx 676 } .otherwise { 677 // may be store inst has been written to sbuffer already. 678 io.forward(i).addrInvalidSqIdx := RegNext(io.forward(i).uop.sqIdx) 679 } 680 io.forward(i).addrInvalid := Mux(RegNext(io.forward(i).uop.loadWaitStrict), RegNext(hasInvalidAddr), addrInvalidFlag) 681 682 // data invalid sq index 683 // make chisel happy 684 val dataInvalidMaskRegWire = Wire(UInt(StoreQueueSize.W)) 685 dataInvalidMaskRegWire := dataInvalidMaskReg 686 val dataInvalidFlag = dataInvalidMaskRegWire.orR 687 688 val dataInvalidSqIdx1 = OHToUInt(Reverse(PriorityEncoderOH(Reverse(dataInvalidMask1Reg)))) 689 val dataInvalidSqIdx2 = OHToUInt(Reverse(PriorityEncoderOH(Reverse(dataInvalidMask2Reg)))) 690 val dataInvalidSqIdx = Mux(dataInvalidMask2Reg.orR, dataInvalidSqIdx2, dataInvalidSqIdx1) 691 692 when (dataInvalidFlag) { 693 io.forward(i).dataInvalidSqIdx.flag := Mux(!s2_differentFlag || dataInvalidSqIdx >= s2_deqPtrExt.value, s2_deqPtrExt.flag, s2_enqPtrExt.flag) 694 io.forward(i).dataInvalidSqIdx.value := dataInvalidSqIdx 695 } .otherwise { 696 // may be store inst has been written to sbuffer already. 697 io.forward(i).dataInvalidSqIdx := RegNext(io.forward(i).uop.sqIdx) 698 } 699 } 700 701 /** 702 * Memory mapped IO / other uncached operations 703 * 704 * States: 705 * (1) writeback from store units: mark as pending 706 * (2) when they reach ROB's head, they can be sent to uncache channel 707 * (3) response from uncache channel: mark as datavalidmask.wen 708 * (4) writeback to ROB (and other units): mark as writebacked 709 * (5) ROB commits the instruction: same as normal instructions 710 */ 711 //(2) when they reach ROB's head, they can be sent to uncache channel 712 // TODO: CAN NOT deal with vector mmio now! 713 val s_idle :: s_req :: s_resp :: s_wb :: s_wait :: Nil = Enum(5) 714 val uncacheState = RegInit(s_idle) 715 switch(uncacheState) { 716 is(s_idle) { 717 when(RegNext(io.rob.pendingst && pending(deqPtr) && allocated(deqPtr) && datavalid(deqPtr) && addrvalid(deqPtr))) { 718 uncacheState := s_req 719 } 720 } 721 is(s_req) { 722 when (io.uncache.req.fire) { 723 when (io.uncacheOutstanding) { 724 uncacheState := s_wb 725 } .otherwise { 726 uncacheState := s_resp 727 } 728 } 729 } 730 is(s_resp) { 731 when(io.uncache.resp.fire) { 732 uncacheState := s_wb 733 } 734 } 735 is(s_wb) { 736 when (io.mmioStout.fire || io.vecmmioStout.fire) { 737 uncacheState := s_wait 738 } 739 } 740 is(s_wait) { 741 // A MMIO store can always move cmtPtrExt as it must be ROB head 742 when(scommit > 0.U) { 743 uncacheState := s_idle // ready for next mmio 744 } 745 } 746 } 747 io.uncache.req.valid := uncacheState === s_req 748 749 io.uncache.req.bits := DontCare 750 io.uncache.req.bits.cmd := MemoryOpConstants.M_XWR 751 io.uncache.req.bits.addr := paddrModule.io.rdata(0) // data(deqPtr) -> rdata(0) 752 io.uncache.req.bits.data := shiftDataToLow(paddrModule.io.rdata(0), dataModule.io.rdata(0).data) 753 io.uncache.req.bits.mask := shiftMaskToLow(paddrModule.io.rdata(0), dataModule.io.rdata(0).mask) 754 755 // CBO op type check can be delayed for 1 cycle, 756 // as uncache op will not start in s_idle 757 val cbo_mmio_addr = paddrModule.io.rdata(0) >> 2 << 2 // clear lowest 2 bits for op 758 val cbo_mmio_op = 0.U //TODO 759 val cbo_mmio_data = cbo_mmio_addr | cbo_mmio_op 760 when(RegNext(LSUOpType.isCbo(uop(deqPtr).fuOpType))){ 761 io.uncache.req.bits.addr := DontCare // TODO 762 io.uncache.req.bits.data := paddrModule.io.rdata(0) 763 io.uncache.req.bits.mask := DontCare // TODO 764 } 765 766 io.uncache.req.bits.atomic := atomic(RegNext(rdataPtrExtNext(0)).value) 767 768 when(io.uncache.req.fire){ 769 // mmio store should not be committed until uncache req is sent 770 pending(deqPtr) := false.B 771 772 XSDebug( 773 p"uncache req: pc ${Hexadecimal(uop(deqPtr).pc)} " + 774 p"addr ${Hexadecimal(io.uncache.req.bits.addr)} " + 775 p"data ${Hexadecimal(io.uncache.req.bits.data)} " + 776 p"op ${Hexadecimal(io.uncache.req.bits.cmd)} " + 777 p"mask ${Hexadecimal(io.uncache.req.bits.mask)}\n" 778 ) 779 } 780 781 // (3) response from uncache channel: mark as datavalid 782 io.uncache.resp.ready := true.B 783 784 // (4) scalar store: writeback to ROB (and other units): mark as writebacked 785 io.mmioStout.valid := uncacheState === s_wb && !isVec(deqPtr) 786 io.mmioStout.bits.uop := uop(deqPtr) 787 io.mmioStout.bits.uop.sqIdx := deqPtrExt(0) 788 io.mmioStout.bits.data := shiftDataToLow(paddrModule.io.rdata(0), dataModule.io.rdata(0).data) // dataModule.io.rdata.read(deqPtr) 789 io.mmioStout.bits.debug.isMMIO := true.B 790 io.mmioStout.bits.debug.paddr := DontCare 791 io.mmioStout.bits.debug.isPerfCnt := false.B 792 io.mmioStout.bits.debug.vaddr := DontCare 793 // Remove MMIO inst from store queue after MMIO request is being sent 794 // That inst will be traced by uncache state machine 795 when (io.mmioStout.fire) { 796 allocated(deqPtr) := false.B 797 } 798 799 // (4) or vector store: 800 // TODO: implement it! 801 io.vecmmioStout := DontCare 802 io.vecmmioStout.valid := uncacheState === s_wb && isVec(deqPtr) 803 io.vecmmioStout.bits.uop := uop(deqPtr) 804 io.vecmmioStout.bits.uop.sqIdx := deqPtrExt(0) 805 io.vecmmioStout.bits.data := shiftDataToLow(paddrModule.io.rdata(0), dataModule.io.rdata(0).data) // dataModule.io.rdata.read(deqPtr) 806 io.vecmmioStout.bits.debug.isMMIO := true.B 807 io.vecmmioStout.bits.debug.paddr := DontCare 808 io.vecmmioStout.bits.debug.isPerfCnt := false.B 809 io.vecmmioStout.bits.debug.vaddr := DontCare 810 // Remove MMIO inst from store queue after MMIO request is being sent 811 // That inst will be traced by uncache state machine 812 when (io.vecmmioStout.fire) { 813 allocated(deqPtr) := false.B 814 } 815 816 /** 817 * ROB commits store instructions (mark them as committed) 818 * 819 * (1) When store commits, mark it as committed. 820 * (2) They will not be cancelled and can be sent to lower level. 821 */ 822 XSError(uncacheState =/= s_idle && uncacheState =/= s_wait && commitCount > 0.U, 823 "should not commit instruction when MMIO has not been finished\n") 824 825 val scalarcommitVec = WireInit(VecInit(Seq.fill(CommitWidth)(false.B))) 826 val veccommitVec = WireInit(VecInit(Seq.fill(CommitWidth)(false.B))) 827 // TODO: Deal with vector store mmio 828 for (i <- 0 until CommitWidth) { 829 val veccount = PopCount(veccommitVec.take(i)) 830 when (allocated(cmtPtrExt(i).value) && isVec(cmtPtrExt(i).value) && isNotAfter(uop(cmtPtrExt(i).value).robIdx, io.rob.pendingPtr) && vecMbCommit(cmtPtrExt(i).value)) { 831 if (i == 0){ 832 // TODO: fixme for vector mmio 833 when ((uncacheState === s_idle) || (uncacheState === s_wait && scommit > 0.U)){ 834 committed(cmtPtrExt(0).value) := true.B 835 veccommitVec(i) := true.B 836 } 837 } else { 838 committed(cmtPtrExt(i).value) := true.B 839 veccommitVec(i) := true.B 840 } 841 } .elsewhen (scalarCommitCount > i.U - veccount) { 842 if (i == 0){ 843 when ((uncacheState === s_idle) || (uncacheState === s_wait && scommit > 0.U)){ 844 committed(cmtPtrExt(0).value) := true.B 845 scalarcommitVec(i) := true.B 846 } 847 } else { 848 committed(cmtPtrExt(i).value) := true.B 849 scalarcommitVec(i) := true.B 850 } 851 } 852 } 853 854 scalarCommitted := PopCount(scalarcommitVec) 855 vecCommitted := PopCount(veccommitVec) 856 commitCount := scalarCommitted + vecCommitted 857 858 cmtPtrExt := cmtPtrExt.map(_ + commitCount) 859 860 // committed stores will not be cancelled and can be sent to lower level. 861 // remove retired insts from sq, add retired store to sbuffer 862 863 // Read data from data module 864 // As store queue grows larger and larger, time needed to read data from data 865 // module keeps growing higher. Now we give data read a whole cycle. 866 val mmioStall = mmio(rdataPtrExt(0).value) 867 for (i <- 0 until EnsbufferWidth) { 868 val ptr = rdataPtrExt(i).value 869 dataBuffer.io.enq(i).valid := allocated(ptr) && committed(ptr) && (!isVec(ptr) || vecMbCommit(ptr)) && !mmioStall 870 // Note that store data/addr should both be valid after store's commit 871 assert(!dataBuffer.io.enq(i).valid || allvalid(ptr) || (allocated(ptr) && vecMbCommit(ptr))) 872 dataBuffer.io.enq(i).bits.addr := paddrModule.io.rdata(i) 873 dataBuffer.io.enq(i).bits.vaddr := vaddrModule.io.rdata(i) 874 dataBuffer.io.enq(i).bits.data := dataModule.io.rdata(i).data 875 dataBuffer.io.enq(i).bits.mask := dataModule.io.rdata(i).mask 876 dataBuffer.io.enq(i).bits.wline := paddrModule.io.rlineflag(i) 877 dataBuffer.io.enq(i).bits.sqPtr := rdataPtrExt(i) 878 dataBuffer.io.enq(i).bits.prefetch := prefetch(ptr) 879 dataBuffer.io.enq(i).bits.vecValid := !isVec(ptr) || vecDataValid(ptr) // scalar is always valid 880 } 881 882 // Send data stored in sbufferReqBitsReg to sbuffer 883 for (i <- 0 until EnsbufferWidth) { 884 io.sbuffer(i).valid := dataBuffer.io.deq(i).valid 885 dataBuffer.io.deq(i).ready := io.sbuffer(i).ready 886 // Write line request should have all 1 mask 887 assert(!(io.sbuffer(i).valid && io.sbuffer(i).bits.wline && io.sbuffer(i).bits.vecValid && !io.sbuffer(i).bits.mask.andR)) 888 io.sbuffer(i).bits := DontCare 889 io.sbuffer(i).bits.cmd := MemoryOpConstants.M_XWR 890 io.sbuffer(i).bits.addr := dataBuffer.io.deq(i).bits.addr 891 io.sbuffer(i).bits.vaddr := dataBuffer.io.deq(i).bits.vaddr 892 io.sbuffer(i).bits.data := dataBuffer.io.deq(i).bits.data 893 io.sbuffer(i).bits.mask := dataBuffer.io.deq(i).bits.mask 894 io.sbuffer(i).bits.wline := dataBuffer.io.deq(i).bits.wline 895 io.sbuffer(i).bits.prefetch := dataBuffer.io.deq(i).bits.prefetch 896 io.sbuffer(i).bits.vecValid := dataBuffer.io.deq(i).bits.vecValid 897 // io.sbuffer(i).fire is RegNexted, as sbuffer data write takes 2 cycles. 898 // Before data write finish, sbuffer is unable to provide store to load 899 // forward data. As an workaround, deqPtrExt and allocated flag update 900 // is delayed so that load can get the right data from store queue. 901 val ptr = dataBuffer.io.deq(i).bits.sqPtr.value 902 when (RegNext(io.sbuffer(i).fire)) { 903 allocated(RegEnable(ptr, io.sbuffer(i).fire)) := false.B 904 XSDebug("sbuffer "+i+" fire: ptr %d\n", ptr) 905 } 906 } 907 908 // Consistent with the logic above, only the vectore difftest required signal is separated from the rtl code 909 if (env.EnableDifftest) { 910 for (i <- 0 until EnsbufferWidth) { 911 val ptr = rdataPtrExt(i).value 912 difftestBuffer.get.io.enq(i).valid := allocated(ptr) && committed(ptr) && (!isVec(ptr) || vecMbCommit(ptr)) && !mmioStall 913 difftestBuffer.get.io.enq(i).bits := uop(ptr) 914 } 915 for (i <- 0 until EnsbufferWidth) { 916 io.sbufferVecDifftestInfo(i).valid := difftestBuffer.get.io.deq(i).valid 917 difftestBuffer.get.io.deq(i).ready := io.sbufferVecDifftestInfo(i).ready 918 919 io.sbufferVecDifftestInfo(i).bits := difftestBuffer.get.io.deq(i).bits 920 } 921 } 922 923 (1 until EnsbufferWidth).foreach(i => when(io.sbuffer(i).fire) { assert(io.sbuffer(i - 1).fire) }) 924 if (coreParams.dcacheParametersOpt.isEmpty) { 925 for (i <- 0 until EnsbufferWidth) { 926 val ptr = deqPtrExt(i).value 927 val ram = DifftestMem(64L * 1024 * 1024 * 1024, 8) 928 val wen = allocated(ptr) && committed(ptr) && !mmio(ptr) 929 val waddr = ((paddrModule.io.rdata(i) - "h80000000".U) >> 3).asUInt 930 val wdata = Mux(paddrModule.io.rdata(i)(3), dataModule.io.rdata(i).data(127, 64), dataModule.io.rdata(i).data(63, 0)) 931 val wmask = Mux(paddrModule.io.rdata(i)(3), dataModule.io.rdata(i).mask(15, 8), dataModule.io.rdata(i).mask(7, 0)) 932 when (wen) { 933 ram.write(waddr, wdata.asTypeOf(Vec(8, UInt(8.W))), wmask.asBools) 934 } 935 } 936 } 937 938 // Read vaddr for mem exception 939 io.exceptionAddr.vaddr := exceptionBuffer.io.exceptionAddr.vaddr 940 941 // vector commit or replay from 942 val vecCommit = Wire(Vec(StoreQueueSize, Bool())) 943 for (i <- 0 until StoreQueueSize) { 944 val fbk = io.vecFeedback 945 vecCommit(i) := fbk.valid && fbk.bits.isCommit && uop(i).robIdx === fbk.bits.robidx && uop(i).uopIdx === fbk.bits.uopidx 946 when (vecCommit(i)) { 947 vecMbCommit(i) := true.B 948 } 949 } 950 951 // misprediction recovery / exception redirect 952 // invalidate sq term using robIdx 953 val needCancel = Wire(Vec(StoreQueueSize, Bool())) 954 for (i <- 0 until StoreQueueSize) { 955 needCancel(i) := uop(i).robIdx.needFlush(io.brqRedirect) && allocated(i) && !committed(i) 956 when (needCancel(i)) { 957 allocated(i) := false.B 958 } 959 } 960 961 /** 962* update pointers 963**/ 964 val enqCancelValid = canEnqueue.zip(io.enq.req).map{case (v , x) => 965 v && x.bits.robIdx.needFlush(io.brqRedirect) 966 } 967 val enqCancelNum = enqCancelValid.zip(io.enq.req).map{case (v, req) => 968 Mux(v, req.bits.numLsElem, 0.U) 969 } 970 val lastEnqCancel = RegNext(enqCancelNum.reduce(_ + _)) // 1 cycle after redirect 971 972 val lastCycleCancelCount = PopCount(RegNext(needCancel)) // 1 cycle after redirect 973 val lastCycleRedirect = RegNext(io.brqRedirect.valid) // 1 cycle after redirect 974 val enqNumber = validVStoreFlow.reduce(_ + _) 975 976 val lastlastCycleRedirect=RegNext(lastCycleRedirect)// 2 cycle after redirect 977 val redirectCancelCount = RegEnable(lastCycleCancelCount + lastEnqCancel, lastCycleRedirect) // 2 cycle after redirect 978 979 when (lastlastCycleRedirect) { 980 // we recover the pointers in 2 cycle after redirect for better timing 981 enqPtrExt := VecInit(enqPtrExt.map(_ - redirectCancelCount)) 982 }.otherwise { 983 // lastCycleRedirect.valid or nornal case 984 // when lastCycleRedirect.valid, enqNumber === 0.U, enqPtrExt will not change 985 enqPtrExt := VecInit(enqPtrExt.map(_ + enqNumber)) 986 } 987 assert(!(lastCycleRedirect && enqNumber =/= 0.U)) 988 989 deqPtrExt := deqPtrExtNext 990 rdataPtrExt := rdataPtrExtNext 991 992 // val dequeueCount = Mux(io.sbuffer(1).fire, 2.U, Mux(io.sbuffer(0).fire || io.mmioStout.fire, 1.U, 0.U)) 993 994 // If redirect at T0, sqCancelCnt is at T2 995 io.sqCancelCnt := redirectCancelCount 996 val ForceWriteUpper = Wire(UInt(log2Up(StoreQueueSize + 1).W)) 997 ForceWriteUpper := Constantin.createRecord("ForceWriteUpper_"+p(XSCoreParamsKey).HartId.toString(), initValue = 60.U) 998 val ForceWriteLower = Wire(UInt(log2Up(StoreQueueSize + 1).W)) 999 ForceWriteLower := Constantin.createRecord("ForceWriteLower_"+p(XSCoreParamsKey).HartId.toString(), initValue = 55.U) 1000 1001 val valid_cnt = PopCount(allocated) 1002 io.force_write := RegNext(Mux(valid_cnt >= ForceWriteUpper, true.B, valid_cnt >= ForceWriteLower && io.force_write), init = false.B) 1003 1004 // io.sqempty will be used by sbuffer 1005 // We delay it for 1 cycle for better timing 1006 // When sbuffer need to check if it is empty, the pipeline is blocked, which means delay io.sqempty 1007 // for 1 cycle will also promise that sq is empty in that cycle 1008 io.sqEmpty := RegNext( 1009 enqPtrExt(0).value === deqPtrExt(0).value && 1010 enqPtrExt(0).flag === deqPtrExt(0).flag 1011 ) 1012 // perf counter 1013 QueuePerf(StoreQueueSize, validCount, !allowEnqueue) 1014 val vecValidVec = WireInit(VecInit((0 until StoreQueueSize).map(i => allocated(i) && isVec(i)))) 1015 QueuePerf(StoreQueueSize, PopCount(vecValidVec), !allowEnqueue) 1016 io.sqFull := !allowEnqueue 1017 XSPerfAccumulate("mmioCycle", uncacheState =/= s_idle) // lq is busy dealing with uncache req 1018 XSPerfAccumulate("mmioCnt", io.uncache.req.fire) 1019 XSPerfAccumulate("mmio_wb_success", io.mmioStout.fire || io.vecmmioStout.fire) 1020 XSPerfAccumulate("mmio_wb_blocked", (io.mmioStout.valid && !io.mmioStout.ready) || (io.vecmmioStout.valid && !io.vecmmioStout.ready)) 1021 XSPerfAccumulate("validEntryCnt", distanceBetween(enqPtrExt(0), deqPtrExt(0))) 1022 XSPerfAccumulate("cmtEntryCnt", distanceBetween(cmtPtrExt(0), deqPtrExt(0))) 1023 XSPerfAccumulate("nCmtEntryCnt", distanceBetween(enqPtrExt(0), cmtPtrExt(0))) 1024 1025 val perfValidCount = distanceBetween(enqPtrExt(0), deqPtrExt(0)) 1026 val perfEvents = Seq( 1027 ("mmioCycle ", uncacheState =/= s_idle), 1028 ("mmioCnt ", io.uncache.req.fire), 1029 ("mmio_wb_success", io.mmioStout.fire || io.vecmmioStout.fire), 1030 ("mmio_wb_blocked", (io.mmioStout.valid && !io.mmioStout.ready) || (io.vecmmioStout.valid && !io.vecmmioStout.ready)), 1031 ("stq_1_4_valid ", (perfValidCount < (StoreQueueSize.U/4.U))), 1032 ("stq_2_4_valid ", (perfValidCount > (StoreQueueSize.U/4.U)) & (perfValidCount <= (StoreQueueSize.U/2.U))), 1033 ("stq_3_4_valid ", (perfValidCount > (StoreQueueSize.U/2.U)) & (perfValidCount <= (StoreQueueSize.U*3.U/4.U))), 1034 ("stq_4_4_valid ", (perfValidCount > (StoreQueueSize.U*3.U/4.U))), 1035 ) 1036 generatePerfEvent() 1037 1038 // debug info 1039 XSDebug("enqPtrExt %d:%d deqPtrExt %d:%d\n", enqPtrExt(0).flag, enqPtr, deqPtrExt(0).flag, deqPtr) 1040 1041 def PrintFlag(flag: Bool, name: String): Unit = { 1042 when(flag) { 1043 XSDebug(false, true.B, name) 1044 }.otherwise { 1045 XSDebug(false, true.B, " ") 1046 } 1047 } 1048 1049 for (i <- 0 until StoreQueueSize) { 1050 XSDebug(i + ": pc %x va %x pa %x data %x ", 1051 uop(i).pc, 1052 debug_vaddr(i), 1053 debug_paddr(i), 1054 debug_data(i) 1055 ) 1056 PrintFlag(allocated(i), "a") 1057 PrintFlag(allocated(i) && addrvalid(i), "a") 1058 PrintFlag(allocated(i) && datavalid(i), "d") 1059 PrintFlag(allocated(i) && committed(i), "c") 1060 PrintFlag(allocated(i) && pending(i), "p") 1061 PrintFlag(allocated(i) && mmio(i), "m") 1062 XSDebug(false, true.B, "\n") 1063 } 1064 1065} 1066