1/*************************************************************************************** 2* Copyright (c) 2024 Beijing Institute of Open Source Chip (BOSC) 3* Copyright (c) 2020-2024 Institute of Computing Technology, Chinese Academy of Sciences 4* Copyright (c) 2020-2021 Peng Cheng Laboratory 5* 6* XiangShan is licensed under Mulan PSL v2. 7* You can use this software according to the terms and conditions of the Mulan PSL v2. 8* You may obtain a copy of Mulan PSL v2 at: 9* http://license.coscl.org.cn/MulanPSL2 10* 11* THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND, 12* EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT, 13* MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE. 14* 15* See the Mulan PSL v2 for more details. 16***************************************************************************************/ 17 18package xiangshan.mem 19 20import chisel3._ 21import chisel3.util._ 22import difftest._ 23import difftest.common.DifftestMem 24import org.chipsalliance.cde.config.Parameters 25import utility._ 26import utils._ 27import xiangshan._ 28import xiangshan.cache._ 29import xiangshan.cache.{DCacheLineIO, DCacheWordIO, MemoryOpConstants} 30import xiangshan.cache.{CMOReq, CMOResp} 31import xiangshan.backend._ 32import xiangshan.backend.rob.{RobLsqIO, RobPtr} 33import xiangshan.backend.Bundles.{DynInst, MemExuOutput} 34import xiangshan.backend.decode.isa.bitfield.{Riscv32BitInst, XSInstBitFields} 35import xiangshan.backend.fu.FuConfig._ 36import xiangshan.backend.fu.FuType 37import xiangshan.ExceptionNO._ 38 39class SqPtr(implicit p: Parameters) extends CircularQueuePtr[SqPtr]( 40 p => p(XSCoreParamsKey).StoreQueueSize 41){ 42} 43 44object SqPtr { 45 def apply(f: Bool, v: UInt)(implicit p: Parameters): SqPtr = { 46 val ptr = Wire(new SqPtr) 47 ptr.flag := f 48 ptr.value := v 49 ptr 50 } 51} 52 53class SqEnqIO(implicit p: Parameters) extends MemBlockBundle { 54 val canAccept = Output(Bool()) 55 val lqCanAccept = Input(Bool()) 56 val needAlloc = Vec(LSQEnqWidth, Input(Bool())) 57 val req = Vec(LSQEnqWidth, Flipped(ValidIO(new DynInst))) 58 val resp = Vec(LSQEnqWidth, Output(new SqPtr)) 59} 60 61class DataBufferEntry (implicit p: Parameters) extends DCacheBundle { 62 val addr = UInt(PAddrBits.W) 63 val vaddr = UInt(VAddrBits.W) 64 val data = UInt(VLEN.W) 65 val mask = UInt((VLEN/8).W) 66 val wline = Bool() 67 val sqPtr = new SqPtr 68 val prefetch = Bool() 69 val vecValid = Bool() 70 val sqNeedDeq = Bool() 71} 72 73class StoreExceptionBuffer(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper { 74 // The 1st StorePipelineWidth ports: sta exception generated at s1, except for af 75 // The 2nd StorePipelineWidth ports: sta af generated at s2 76 // The following VecStorePipelineWidth ports: vector st exception 77 // The last port: non-data error generated in SoC 78 val enqPortNum = StorePipelineWidth * 2 + VecStorePipelineWidth + 1 79 80 val io = IO(new Bundle() { 81 val redirect = Flipped(ValidIO(new Redirect)) 82 val storeAddrIn = Vec(enqPortNum, Flipped(ValidIO(new LsPipelineBundle()))) 83 val exceptionAddr = new ExceptionAddrIO 84 }) 85 86 val req_valid = RegInit(false.B) 87 val req = Reg(new LsPipelineBundle()) 88 89 // enqueue 90 // S1: 91 val s1_req = VecInit(io.storeAddrIn.map(_.bits)) 92 val s1_valid = VecInit(io.storeAddrIn.map(x => 93 x.valid && !x.bits.uop.robIdx.needFlush(io.redirect) && ExceptionNO.selectByFu(x.bits.uop.exceptionVec, StaCfg).asUInt.orR 94 )) 95 96 // S2: delay 1 cycle 97 val s2_req = (0 until enqPortNum).map(i => 98 RegEnable(s1_req(i), s1_valid(i))) 99 val s2_valid = (0 until enqPortNum).map(i => 100 RegNext(s1_valid(i)) && !s2_req(i).uop.robIdx.needFlush(io.redirect) 101 ) 102 103 val s2_enqueue = Wire(Vec(enqPortNum, Bool())) 104 for (w <- 0 until enqPortNum) { 105 s2_enqueue(w) := s2_valid(w) 106 } 107 108 when (req_valid && req.uop.robIdx.needFlush(io.redirect)) { 109 req_valid := s2_enqueue.asUInt.orR 110 }.elsewhen (s2_enqueue.asUInt.orR) { 111 req_valid := true.B 112 } 113 114 def selectOldest[T <: LsPipelineBundle](valid: Seq[Bool], bits: Seq[T]): (Seq[Bool], Seq[T]) = { 115 assert(valid.length == bits.length) 116 if (valid.length == 0 || valid.length == 1) { 117 (valid, bits) 118 } else if (valid.length == 2) { 119 val res = Seq.fill(2)(Wire(Valid(chiselTypeOf(bits(0))))) 120 for (i <- res.indices) { 121 res(i).valid := valid(i) 122 res(i).bits := bits(i) 123 } 124 val oldest = Mux(valid(0) && valid(1), 125 Mux(isAfter(bits(0).uop.robIdx, bits(1).uop.robIdx) || 126 (bits(0).uop.robIdx === bits(1).uop.robIdx && bits(0).uop.uopIdx > bits(1).uop.uopIdx), res(1), res(0)), 127 Mux(valid(0) && !valid(1), res(0), res(1))) 128 (Seq(oldest.valid), Seq(oldest.bits)) 129 } else { 130 val left = selectOldest(valid.take(valid.length / 2), bits.take(bits.length / 2)) 131 val right = selectOldest(valid.takeRight(valid.length - (valid.length / 2)), bits.takeRight(bits.length - (bits.length / 2))) 132 selectOldest(left._1 ++ right._1, left._2 ++ right._2) 133 } 134 } 135 136 val reqSel = selectOldest(s2_enqueue, s2_req) 137 138 when (req_valid) { 139 req := Mux( 140 reqSel._1(0) && (isAfter(req.uop.robIdx, reqSel._2(0).uop.robIdx) || (isNotBefore(req.uop.robIdx, reqSel._2(0).uop.robIdx) && req.uop.uopIdx > reqSel._2(0).uop.uopIdx)), 141 reqSel._2(0), 142 req) 143 } .elsewhen (s2_enqueue.asUInt.orR) { 144 req := reqSel._2(0) 145 } 146 147 io.exceptionAddr.vaddr := req.fullva 148 io.exceptionAddr.vaNeedExt := req.vaNeedExt 149 io.exceptionAddr.isHyper := req.isHyper 150 io.exceptionAddr.gpaddr := req.gpaddr 151 io.exceptionAddr.vstart := req.uop.vpu.vstart 152 io.exceptionAddr.vl := req.uop.vpu.vl 153 io.exceptionAddr.isForVSnonLeafPTE := req.isForVSnonLeafPTE 154 155} 156 157// Store Queue 158class StoreQueue(implicit p: Parameters) extends XSModule 159 with HasDCacheParameters 160 with HasCircularQueuePtrHelper 161 with HasPerfEvents 162 with HasVLSUParameters { 163 val io = IO(new Bundle() { 164 val hartId = Input(UInt(hartIdLen.W)) 165 val enq = new SqEnqIO 166 val brqRedirect = Flipped(ValidIO(new Redirect)) 167 val vecFeedback = Vec(VecLoadPipelineWidth, Flipped(ValidIO(new FeedbackToLsqIO))) 168 val storeAddrIn = Vec(StorePipelineWidth, Flipped(Valid(new LsPipelineBundle))) // store addr, data is not included 169 val storeAddrInRe = Vec(StorePipelineWidth, Input(new LsPipelineBundle())) // store more mmio and exception 170 val storeDataIn = Vec(StorePipelineWidth, Flipped(Valid(new MemExuOutput(isVector = true)))) // store data, send to sq from rs 171 val storeMaskIn = Vec(StorePipelineWidth, Flipped(Valid(new StoreMaskBundle))) // store mask, send to sq from rs 172 val sbuffer = Vec(EnsbufferWidth, Decoupled(new DCacheWordReqWithVaddrAndPfFlag)) // write committed store to sbuffer 173 val sbufferVecDifftestInfo = Vec(EnsbufferWidth, Decoupled(new DynInst)) // The vector store difftest needs is, write committed store to sbuffer 174 val uncacheOutstanding = Input(Bool()) 175 val cmoOpReq = DecoupledIO(new CMOReq) 176 val cmoOpResp = Flipped(DecoupledIO(new CMOResp)) 177 val mmioStout = DecoupledIO(new MemExuOutput) // writeback uncached store 178 val vecmmioStout = DecoupledIO(new MemExuOutput(isVector = true)) 179 val forward = Vec(LoadPipelineWidth, Flipped(new PipeLoadForwardQueryIO)) 180 // TODO: scommit is only for scalar store 181 val rob = Flipped(new RobLsqIO) 182 val uncache = new UncacheWordIO 183 // val refill = Flipped(Valid(new DCacheLineReq )) 184 val exceptionAddr = new ExceptionAddrIO 185 val flushSbuffer = new SbufferFlushBundle 186 val sqEmpty = Output(Bool()) 187 val stAddrReadySqPtr = Output(new SqPtr) 188 val stAddrReadyVec = Output(Vec(StoreQueueSize, Bool())) 189 val stDataReadySqPtr = Output(new SqPtr) 190 val stDataReadyVec = Output(Vec(StoreQueueSize, Bool())) 191 val stIssuePtr = Output(new SqPtr) 192 val sqDeqPtr = Output(new SqPtr) 193 val sqFull = Output(Bool()) 194 val sqCancelCnt = Output(UInt(log2Up(StoreQueueSize + 1).W)) 195 val sqDeq = Output(UInt(log2Ceil(EnsbufferWidth + 1).W)) 196 val force_write = Output(Bool()) 197 val maControl = Flipped(new StoreMaBufToSqControlIO) 198 }) 199 200 println("StoreQueue: size:" + StoreQueueSize) 201 202 // data modules 203 val uop = Reg(Vec(StoreQueueSize, new DynInst)) 204 // val data = Reg(Vec(StoreQueueSize, new LsqEntry)) 205 val dataModule = Module(new SQDataModule( 206 numEntries = StoreQueueSize, 207 numRead = EnsbufferWidth, 208 numWrite = StorePipelineWidth, 209 numForward = LoadPipelineWidth 210 )) 211 dataModule.io := DontCare 212 val paddrModule = Module(new SQAddrModule( 213 dataWidth = PAddrBits, 214 numEntries = StoreQueueSize, 215 numRead = EnsbufferWidth, 216 numWrite = StorePipelineWidth, 217 numForward = LoadPipelineWidth 218 )) 219 paddrModule.io := DontCare 220 val vaddrModule = Module(new SQAddrModule( 221 dataWidth = VAddrBits, 222 numEntries = StoreQueueSize, 223 numRead = EnsbufferWidth, // sbuffer; badvaddr will be sent from exceptionBuffer 224 numWrite = StorePipelineWidth, 225 numForward = LoadPipelineWidth 226 )) 227 vaddrModule.io := DontCare 228 val dataBuffer = Module(new DatamoduleResultBuffer(new DataBufferEntry)) 229 val difftestBuffer = if (env.EnableDifftest) Some(Module(new DatamoduleResultBuffer(new DynInst))) else None 230 val exceptionBuffer = Module(new StoreExceptionBuffer) 231 exceptionBuffer.io.redirect := io.brqRedirect 232 exceptionBuffer.io.exceptionAddr.isStore := DontCare 233 // vlsu exception! 234 for (i <- 0 until VecStorePipelineWidth) { 235 exceptionBuffer.io.storeAddrIn(StorePipelineWidth * 2 + i).valid := io.vecFeedback(i).valid && io.vecFeedback(i).bits.feedback(VecFeedbacks.FLUSH) // have exception 236 exceptionBuffer.io.storeAddrIn(StorePipelineWidth * 2 + i).bits := DontCare 237 exceptionBuffer.io.storeAddrIn(StorePipelineWidth * 2 + i).bits.fullva := io.vecFeedback(i).bits.vaddr 238 exceptionBuffer.io.storeAddrIn(StorePipelineWidth * 2 + i).bits.vaNeedExt := io.vecFeedback(i).bits.vaNeedExt 239 exceptionBuffer.io.storeAddrIn(StorePipelineWidth * 2 + i).bits.gpaddr := io.vecFeedback(i).bits.gpaddr 240 exceptionBuffer.io.storeAddrIn(StorePipelineWidth * 2 + i).bits.uop.uopIdx := io.vecFeedback(i).bits.uopidx 241 exceptionBuffer.io.storeAddrIn(StorePipelineWidth * 2 + i).bits.uop.robIdx := io.vecFeedback(i).bits.robidx 242 exceptionBuffer.io.storeAddrIn(StorePipelineWidth * 2 + i).bits.uop.vpu.vstart := io.vecFeedback(i).bits.vstart 243 exceptionBuffer.io.storeAddrIn(StorePipelineWidth * 2 + i).bits.uop.vpu.vl := io.vecFeedback(i).bits.vl 244 exceptionBuffer.io.storeAddrIn(StorePipelineWidth * 2 + i).bits.isForVSnonLeafPTE := io.vecFeedback(i).bits.isForVSnonLeafPTE 245 exceptionBuffer.io.storeAddrIn(StorePipelineWidth * 2 + i).bits.uop.exceptionVec := io.vecFeedback(i).bits.exceptionVec 246 } 247 248 249 val debug_paddr = Reg(Vec(StoreQueueSize, UInt((PAddrBits).W))) 250 val debug_vaddr = Reg(Vec(StoreQueueSize, UInt((VAddrBits).W))) 251 val debug_data = Reg(Vec(StoreQueueSize, UInt((XLEN).W))) 252 253 // state & misc 254 val allocated = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // sq entry has been allocated 255 val addrvalid = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) 256 val datavalid = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) 257 val allvalid = VecInit((0 until StoreQueueSize).map(i => addrvalid(i) && datavalid(i))) 258 val committed = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // inst has been committed by rob 259 val unaligned = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // unaligned store 260 val cross16Byte = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // unaligned cross 16Byte boundary 261 val pending = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // mmio pending: inst is an mmio inst, it will not be executed until it reachs the end of rob 262 val nc = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // nc: inst is a nc inst 263 val mmio = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // mmio: inst is an mmio inst 264 val atomic = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) 265 val prefetch = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // need prefetch when committing this store to sbuffer? 266 val isVec = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // vector store instruction 267 val vecLastFlow = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // last uop the last flow of vector store instruction 268 val vecMbCommit = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // vector store committed from merge buffer to rob 269 val hasException = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // store has exception, should deq but not write sbuffer 270 val waitStoreS2 = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // wait for mmio and exception result until store_s2 271 // val vec_robCommit = Reg(Vec(StoreQueueSize, Bool())) // vector store committed by rob 272 // val vec_secondInv = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // Vector unit-stride, second entry is invalid 273 val vecExceptionFlag = RegInit(0.U.asTypeOf(Valid(new DynInst))) 274 275 // ptr 276 val enqPtrExt = RegInit(VecInit((0 until io.enq.req.length).map(_.U.asTypeOf(new SqPtr)))) 277 val rdataPtrExt = RegInit(VecInit((0 until EnsbufferWidth).map(_.U.asTypeOf(new SqPtr)))) 278 val deqPtrExt = RegInit(VecInit((0 until EnsbufferWidth).map(_.U.asTypeOf(new SqPtr)))) 279 val cmtPtrExt = RegInit(VecInit((0 until CommitWidth).map(_.U.asTypeOf(new SqPtr)))) 280 val addrReadyPtrExt = RegInit(0.U.asTypeOf(new SqPtr)) 281 val dataReadyPtrExt = RegInit(0.U.asTypeOf(new SqPtr)) 282 283 val enqPtr = enqPtrExt(0).value 284 val deqPtr = deqPtrExt(0).value 285 val cmtPtr = cmtPtrExt(0).value 286 287 val validCount = distanceBetween(enqPtrExt(0), deqPtrExt(0)) 288 val allowEnqueue = validCount <= (StoreQueueSize - LSQStEnqWidth).U 289 290 val deqMask = UIntToMask(deqPtr, StoreQueueSize) 291 val enqMask = UIntToMask(enqPtr, StoreQueueSize) 292 293 val commitCount = WireInit(0.U(log2Ceil(CommitWidth + 1).W)) 294 val scommit = GatedRegNext(io.rob.scommit) 295 val mmioReq = Wire(chiselTypeOf(io.uncache.req)) 296 val ncReq = Wire(chiselTypeOf(io.uncache.req)) 297 val ncResp = Wire(chiselTypeOf(io.uncache.resp)) 298 val ncDoReq = Wire(Bool()) 299 val ncDoResp = Wire(Bool()) 300 val ncReadNextTrigger = Mux(io.uncacheOutstanding, ncDoReq, ncDoResp) 301 // ncDoReq is double RegNexted, as ubuffer data write takes 3 cycles. 302 // TODO lyq: to eliminate coupling by passing signals through ubuffer 303 val ncDeqTrigger = Mux(io.uncacheOutstanding, RegNext(RegNext(ncDoReq)), ncDoResp) 304 val ncPtr = Mux(io.uncacheOutstanding, RegNext(RegNext(io.uncache.req.bits.id)), io.uncache.resp.bits.id) 305 306 // store can be committed by ROB 307 io.rob.mmio := DontCare 308 io.rob.uop := DontCare 309 310 // Read dataModule 311 assert(EnsbufferWidth <= 2) 312 // rdataPtrExtNext and rdataPtrExtNext+1 entry will be read from dataModule 313 val rdataPtrExtNext = Wire(Vec(EnsbufferWidth, new SqPtr)) 314 rdataPtrExtNext := rdataPtrExt.map(i => i + 315 PopCount(dataBuffer.io.enq.map(x=> x.fire && x.bits.sqNeedDeq)) + 316 PopCount(ncReadNextTrigger || io.mmioStout.fire || io.vecmmioStout.fire) 317 ) 318 319 // deqPtrExtNext traces which inst is about to leave store queue 320 // 321 // io.sbuffer(i).fire is RegNexted, as sbuffer data write takes 2 cycles. 322 // Before data write finish, sbuffer is unable to provide store to load 323 // forward data. As an workaround, deqPtrExt and allocated flag update 324 // is delayed so that load can get the right data from store queue. 325 // 326 // Modify deqPtrExtNext and io.sqDeq with care! 327 val deqPtrExtNext = Wire(Vec(EnsbufferWidth, new SqPtr)) 328 // Only sqNeedDeq can move the ptr 329 deqPtrExtNext := deqPtrExt.map(i => i + 330 RegNext(PopCount(VecInit(io.sbuffer.map(x=> x.fire && x.bits.sqNeedDeq)))) + 331 PopCount(ncDeqTrigger || io.mmioStout.fire || io.vecmmioStout.fire) 332 ) 333 334 io.sqDeq := RegNext( 335 RegNext(PopCount(VecInit(io.sbuffer.map(x=> x.fire && x.bits.sqNeedDeq)))) + 336 PopCount(ncDeqTrigger || io.mmioStout.fire || io.vecmmioStout.fire) 337 ) 338 339 assert(!RegNext(RegNext(io.sbuffer(0).fire) && (io.mmioStout.fire || io.vecmmioStout.fire))) 340 341 for (i <- 0 until EnsbufferWidth) { 342 dataModule.io.raddr(i) := rdataPtrExtNext(i).value 343 paddrModule.io.raddr(i) := rdataPtrExtNext(i).value 344 vaddrModule.io.raddr(i) := rdataPtrExtNext(i).value 345 } 346 347 /** 348 * Enqueue at dispatch 349 * 350 * Currently, StoreQueue only allows enqueue when #emptyEntries > EnqWidth 351 * Dynamic enq based on numLsElem number 352 */ 353 io.enq.canAccept := allowEnqueue 354 val canEnqueue = io.enq.req.map(_.valid) 355 val enqCancel = io.enq.req.map(_.bits.robIdx.needFlush(io.brqRedirect)) 356 val vStoreFlow = io.enq.req.map(_.bits.numLsElem) 357 val validVStoreFlow = vStoreFlow.zipWithIndex.map{case (vLoadFlowNumItem, index) => Mux(!RegNext(io.brqRedirect.valid) && canEnqueue(index), vLoadFlowNumItem, 0.U)} 358 val validVStoreOffset = vStoreFlow.zip(io.enq.needAlloc).map{case (flow, needAllocItem) => Mux(needAllocItem, flow, 0.U)} 359 val validVStoreOffsetRShift = 0.U +: validVStoreOffset.take(vStoreFlow.length - 1) 360 361 val enqLowBound = io.enq.req.map(_.bits.sqIdx) 362 val enqUpBound = io.enq.req.map(x => x.bits.sqIdx + x.bits.numLsElem) 363 val enqCrossLoop = enqLowBound.zip(enqUpBound).map{case (low, up) => low.flag =/= up.flag} 364 365 for(i <- 0 until StoreQueueSize) { 366 val entryCanEnqSeq = (0 until io.enq.req.length).map { j => 367 val entryHitBound = Mux( 368 enqCrossLoop(j), 369 enqLowBound(j).value <= i.U || i.U < enqUpBound(j).value, 370 enqLowBound(j).value <= i.U && i.U < enqUpBound(j).value 371 ) 372 canEnqueue(j) && !enqCancel(j) && entryHitBound 373 } 374 375 val entryCanEnq = entryCanEnqSeq.reduce(_ || _) 376 val selectBits = ParallelPriorityMux(entryCanEnqSeq, io.enq.req.map(_.bits)) 377 val selectUpBound = ParallelPriorityMux(entryCanEnqSeq, enqUpBound) 378 when (entryCanEnq) { 379 uop(i) := selectBits 380 vecLastFlow(i) := Mux((i + 1).U === selectUpBound.value, selectBits.lastUop, false.B) 381 allocated(i) := true.B 382 datavalid(i) := false.B 383 addrvalid(i) := false.B 384 unaligned(i) := false.B 385 cross16Byte(i) := false.B 386 committed(i) := false.B 387 pending(i) := false.B 388 prefetch(i) := false.B 389 nc(i) := false.B 390 mmio(i) := false.B 391 isVec(i) := FuType.isVStore(selectBits.fuType) 392 vecMbCommit(i) := false.B 393 hasException(i) := false.B 394 waitStoreS2(i) := true.B 395 } 396 } 397 398 for (i <- 0 until io.enq.req.length) { 399 val sqIdx = enqPtrExt(0) + validVStoreOffsetRShift.take(i + 1).reduce(_ + _) 400 val index = io.enq.req(i).bits.sqIdx 401 XSError(canEnqueue(i) && !enqCancel(i) && (!io.enq.canAccept || !io.enq.lqCanAccept), s"must accept $i\n") 402 XSError(canEnqueue(i) && !enqCancel(i) && index.value =/= sqIdx.value, s"must be the same entry $i\n") 403 io.enq.resp(i) := sqIdx 404 } 405 XSDebug(p"(ready, valid): ${io.enq.canAccept}, ${Binary(Cat(io.enq.req.map(_.valid)))}\n") 406 407 /** 408 * Update addr/dataReadyPtr when issue from rs 409 */ 410 // update issuePtr 411 val IssuePtrMoveStride = 4 412 require(IssuePtrMoveStride >= 2) 413 414 val addrReadyLookupVec = (0 until IssuePtrMoveStride).map(addrReadyPtrExt + _.U) 415 val addrReadyLookup = addrReadyLookupVec.map(ptr => allocated(ptr.value) && 416 (mmio(ptr.value) || addrvalid(ptr.value) || vecMbCommit(ptr.value)) 417 && ptr =/= enqPtrExt(0)) 418 val nextAddrReadyPtr = addrReadyPtrExt + PriorityEncoder(VecInit(addrReadyLookup.map(!_) :+ true.B)) 419 addrReadyPtrExt := nextAddrReadyPtr 420 421 val stAddrReadyVecReg = Wire(Vec(StoreQueueSize, Bool())) 422 (0 until StoreQueueSize).map(i => { 423 stAddrReadyVecReg(i) := allocated(i) && (mmio(i) || addrvalid(i) || (isVec(i) && vecMbCommit(i))) 424 }) 425 io.stAddrReadyVec := GatedValidRegNext(stAddrReadyVecReg) 426 427 when (io.brqRedirect.valid) { 428 addrReadyPtrExt := Mux( 429 isAfter(cmtPtrExt(0), deqPtrExt(0)), 430 cmtPtrExt(0), 431 deqPtrExtNext(0) // for mmio insts, deqPtr may be ahead of cmtPtr 432 ) 433 } 434 435 io.stAddrReadySqPtr := addrReadyPtrExt 436 437 // update 438 val dataReadyLookupVec = (0 until IssuePtrMoveStride).map(dataReadyPtrExt + _.U) 439 val dataReadyLookup = dataReadyLookupVec.map(ptr => allocated(ptr.value) && 440 (mmio(ptr.value) || datavalid(ptr.value) || vecMbCommit(ptr.value)) 441 && ptr =/= enqPtrExt(0)) 442 val nextDataReadyPtr = dataReadyPtrExt + PriorityEncoder(VecInit(dataReadyLookup.map(!_) :+ true.B)) 443 dataReadyPtrExt := nextDataReadyPtr 444 445 val stDataReadyVecReg = Wire(Vec(StoreQueueSize, Bool())) 446 (0 until StoreQueueSize).map(i => { 447 stDataReadyVecReg(i) := allocated(i) && (mmio(i) || datavalid(i) || (isVec(i) && vecMbCommit(i))) 448 }) 449 io.stDataReadyVec := GatedValidRegNext(stDataReadyVecReg) 450 451 when (io.brqRedirect.valid) { 452 dataReadyPtrExt := Mux( 453 isAfter(cmtPtrExt(0), deqPtrExt(0)), 454 cmtPtrExt(0), 455 deqPtrExtNext(0) // for mmio insts, deqPtr may be ahead of cmtPtr 456 ) 457 } 458 459 io.stDataReadySqPtr := dataReadyPtrExt 460 io.stIssuePtr := enqPtrExt(0) 461 io.sqDeqPtr := deqPtrExt(0) 462 463 /** 464 * Writeback store from store units 465 * 466 * Most store instructions writeback to regfile in the previous cycle. 467 * However, 468 * (1) For an mmio instruction with exceptions, we need to mark it as addrvalid 469 * (in this way it will trigger an exception when it reaches ROB's head) 470 * instead of pending to avoid sending them to lower level. 471 * (2) For an mmio instruction without exceptions, we mark it as pending. 472 * When the instruction reaches ROB's head, StoreQueue sends it to uncache channel. 473 * Upon receiving the response, StoreQueue writes back the instruction 474 * through arbiter with store units. It will later commit as normal. 475 */ 476 477 // Write addr to sq 478 for (i <- 0 until StorePipelineWidth) { 479 paddrModule.io.wen(i) := false.B 480 vaddrModule.io.wen(i) := false.B 481 dataModule.io.mask.wen(i) := false.B 482 val stWbIndex = io.storeAddrIn(i).bits.uop.sqIdx.value 483 exceptionBuffer.io.storeAddrIn(i).valid := io.storeAddrIn(i).fire && !io.storeAddrIn(i).bits.miss && !io.storeAddrIn(i).bits.isvec 484 exceptionBuffer.io.storeAddrIn(i).bits := io.storeAddrIn(i).bits 485 // will re-enter exceptionbuffer at store_s2 486 exceptionBuffer.io.storeAddrIn(StorePipelineWidth + i).valid := false.B 487 exceptionBuffer.io.storeAddrIn(StorePipelineWidth + i).bits := 0.U.asTypeOf(new LsPipelineBundle) 488 489 when (io.storeAddrIn(i).fire && io.storeAddrIn(i).bits.updateAddrValid) { 490 val addr_valid = !io.storeAddrIn(i).bits.miss 491 addrvalid(stWbIndex) := addr_valid //!io.storeAddrIn(i).bits.mmio 492 nc(stWbIndex) := io.storeAddrIn(i).bits.nc 493 494 } 495 when (io.storeAddrIn(i).fire && !io.storeAddrIn(i).bits.isFrmMisAlignBuf) { 496 // pending(stWbIndex) := io.storeAddrIn(i).bits.mmio 497 unaligned(stWbIndex) := io.storeAddrIn(i).bits.isMisalign 498 cross16Byte(stWbIndex) := io.storeAddrIn(i).bits.isMisalign && !io.storeAddrIn(i).bits.misalignWith16Byte 499 500 paddrModule.io.waddr(i) := stWbIndex 501 paddrModule.io.wdata(i) := io.storeAddrIn(i).bits.paddr 502 paddrModule.io.wmask(i) := io.storeAddrIn(i).bits.mask 503 paddrModule.io.wlineflag(i) := io.storeAddrIn(i).bits.wlineflag 504 paddrModule.io.wen(i) := true.B 505 506 vaddrModule.io.waddr(i) := stWbIndex 507 vaddrModule.io.wdata(i) := io.storeAddrIn(i).bits.vaddr 508 vaddrModule.io.wmask(i) := io.storeAddrIn(i).bits.mask 509 vaddrModule.io.wlineflag(i) := io.storeAddrIn(i).bits.wlineflag 510 vaddrModule.io.wen(i) := true.B 511 512 debug_paddr(paddrModule.io.waddr(i)) := paddrModule.io.wdata(i) 513 514 // mmio(stWbIndex) := io.storeAddrIn(i).bits.mmio 515 } 516 when (io.storeAddrIn(i).fire) { 517 uop(stWbIndex) := io.storeAddrIn(i).bits.uop 518 uop(stWbIndex).debugInfo := io.storeAddrIn(i).bits.uop.debugInfo 519 } 520 XSInfo(io.storeAddrIn(i).fire && !io.storeAddrIn(i).bits.isFrmMisAlignBuf, 521 "store addr write to sq idx %d pc 0x%x miss:%d vaddr %x paddr %x mmio %x isvec %x\n", 522 io.storeAddrIn(i).bits.uop.sqIdx.value, 523 io.storeAddrIn(i).bits.uop.pc, 524 io.storeAddrIn(i).bits.miss, 525 io.storeAddrIn(i).bits.vaddr, 526 io.storeAddrIn(i).bits.paddr, 527 io.storeAddrIn(i).bits.mmio, 528 io.storeAddrIn(i).bits.isvec 529 ) 530 531 // re-replinish mmio, for pma/pmp will get mmio one cycle later 532 val storeAddrInFireReg = RegNext(io.storeAddrIn(i).fire && !io.storeAddrIn(i).bits.miss) && io.storeAddrInRe(i).updateAddrValid 533 //val stWbIndexReg = RegNext(stWbIndex) 534 val stWbIndexReg = RegEnable(stWbIndex, io.storeAddrIn(i).fire) 535 when (storeAddrInFireReg) { 536 pending(stWbIndexReg) := io.storeAddrInRe(i).mmio 537 mmio(stWbIndexReg) := io.storeAddrInRe(i).mmio 538 atomic(stWbIndexReg) := io.storeAddrInRe(i).atomic 539 hasException(stWbIndexReg) := io.storeAddrInRe(i).hasException 540 waitStoreS2(stWbIndexReg) := false.B 541 } 542 // dcache miss info (one cycle later than storeIn) 543 // if dcache report a miss in sta pipeline, this store will trigger a prefetch when committing to sbuffer (if EnableAtCommitMissTrigger) 544 when (storeAddrInFireReg) { 545 prefetch(stWbIndexReg) := io.storeAddrInRe(i).miss 546 } 547 // enter exceptionbuffer again 548 when (storeAddrInFireReg) { 549 exceptionBuffer.io.storeAddrIn(StorePipelineWidth + i).valid := io.storeAddrInRe(i).hasException && !io.storeAddrInRe(i).isvec 550 exceptionBuffer.io.storeAddrIn(StorePipelineWidth + i).bits := io.storeAddrInRe(i) 551 exceptionBuffer.io.storeAddrIn(StorePipelineWidth + i).bits.uop.exceptionVec(storeAccessFault) := io.storeAddrInRe(i).af 552 } 553 554 when(vaddrModule.io.wen(i)){ 555 debug_vaddr(vaddrModule.io.waddr(i)) := vaddrModule.io.wdata(i) 556 } 557 } 558 559 // Write data to sq 560 // Now store data pipeline is actually 2 stages 561 for (i <- 0 until StorePipelineWidth) { 562 dataModule.io.data.wen(i) := false.B 563 val stWbIndex = io.storeDataIn(i).bits.uop.sqIdx.value 564 val isVec = FuType.isVStore(io.storeDataIn(i).bits.uop.fuType) 565 // sq data write takes 2 cycles: 566 // sq data write s0 567 when (io.storeDataIn(i).fire) { 568 // send data write req to data module 569 dataModule.io.data.waddr(i) := stWbIndex 570 dataModule.io.data.wdata(i) := Mux(io.storeDataIn(i).bits.uop.fuOpType === LSUOpType.cbo_zero, 571 0.U, 572 Mux(isVec, 573 io.storeDataIn(i).bits.data, 574 genVWdata(io.storeDataIn(i).bits.data, io.storeDataIn(i).bits.uop.fuOpType(2,0))) 575 ) 576 dataModule.io.data.wen(i) := true.B 577 578 debug_data(dataModule.io.data.waddr(i)) := dataModule.io.data.wdata(i) 579 } 580 XSInfo(io.storeDataIn(i).fire, 581 "store data write to sq idx %d pc 0x%x data %x -> %x\n", 582 io.storeDataIn(i).bits.uop.sqIdx.value, 583 io.storeDataIn(i).bits.uop.pc, 584 io.storeDataIn(i).bits.data, 585 dataModule.io.data.wdata(i) 586 ) 587 // sq data write s1 588 val lastStWbIndex = RegEnable(stWbIndex, io.storeDataIn(i).fire) 589 when ( 590 RegNext(io.storeDataIn(i).fire) && allocated(lastStWbIndex) 591 // && !RegNext(io.storeDataIn(i).bits.uop).robIdx.needFlush(io.brqRedirect) 592 ) { 593 datavalid(lastStWbIndex) := true.B 594 } 595 } 596 597 // Write mask to sq 598 for (i <- 0 until StorePipelineWidth) { 599 // sq mask write s0 600 when (io.storeMaskIn(i).fire) { 601 // send data write req to data module 602 dataModule.io.mask.waddr(i) := io.storeMaskIn(i).bits.sqIdx.value 603 dataModule.io.mask.wdata(i) := io.storeMaskIn(i).bits.mask 604 dataModule.io.mask.wen(i) := true.B 605 } 606 } 607 608 /** 609 * load forward query 610 * 611 * Check store queue for instructions that is older than the load. 612 * The response will be valid at the next cycle after req. 613 */ 614 // check over all lq entries and forward data from the first matched store 615 for (i <- 0 until LoadPipelineWidth) { 616 // Compare deqPtr (deqPtr) and forward.sqIdx, we have two cases: 617 // (1) if they have the same flag, we need to check range(tail, sqIdx) 618 // (2) if they have different flags, we need to check range(tail, VirtualLoadQueueSize) and range(0, sqIdx) 619 // Forward1: Mux(same_flag, range(tail, sqIdx), range(tail, VirtualLoadQueueSize)) 620 // Forward2: Mux(same_flag, 0.U, range(0, sqIdx) ) 621 // i.e. forward1 is the target entries with the same flag bits and forward2 otherwise 622 val differentFlag = deqPtrExt(0).flag =/= io.forward(i).sqIdx.flag 623 val forwardMask = io.forward(i).sqIdxMask 624 // all addrvalid terms need to be checked 625 // Real Vaild: all scalar stores, and vector store with (!inactive && !secondInvalid) 626 val addrRealValidVec = WireInit(VecInit((0 until StoreQueueSize).map(j => addrvalid(j) && allocated(j)))) 627 // vector store will consider all inactive || secondInvalid flows as valid 628 val addrValidVec = WireInit(VecInit((0 until StoreQueueSize).map(j => addrvalid(j) && allocated(j)))) 629 val dataValidVec = WireInit(VecInit((0 until StoreQueueSize).map(j => datavalid(j)))) 630 val allValidVec = WireInit(VecInit((0 until StoreQueueSize).map(j => addrvalid(j) && datavalid(j) && allocated(j)))) 631 632 val lfstEnable = Constantin.createRecord("LFSTEnable", LFSTEnable) 633 val storeSetHitVec = Mux(lfstEnable, 634 WireInit(VecInit((0 until StoreQueueSize).map(j => io.forward(i).uop.loadWaitBit && uop(j).robIdx === io.forward(i).uop.waitForRobIdx))), 635 WireInit(VecInit((0 until StoreQueueSize).map(j => uop(j).storeSetHit && uop(j).ssid === io.forward(i).uop.ssid))) 636 ) 637 638 val forwardMask1 = Mux(differentFlag, ~deqMask, deqMask ^ forwardMask) 639 val forwardMask2 = Mux(differentFlag, forwardMask, 0.U(StoreQueueSize.W)) 640 val canForward1 = forwardMask1 & allValidVec.asUInt 641 val canForward2 = forwardMask2 & allValidVec.asUInt 642 val needForward = Mux(differentFlag, ~deqMask | forwardMask, deqMask ^ forwardMask) 643 644 XSDebug(p"$i f1 ${Binary(canForward1)} f2 ${Binary(canForward2)} " + 645 p"sqIdx ${io.forward(i).sqIdx} pa ${Hexadecimal(io.forward(i).paddr)}\n" 646 ) 647 648 // do real fwd query (cam lookup in load_s1) 649 dataModule.io.needForward(i)(0) := canForward1 & vaddrModule.io.forwardMmask(i).asUInt 650 dataModule.io.needForward(i)(1) := canForward2 & vaddrModule.io.forwardMmask(i).asUInt 651 652 vaddrModule.io.forwardMdata(i) := io.forward(i).vaddr 653 vaddrModule.io.forwardDataMask(i) := io.forward(i).mask 654 paddrModule.io.forwardMdata(i) := io.forward(i).paddr 655 paddrModule.io.forwardDataMask(i) := io.forward(i).mask 656 657 // vaddr cam result does not equal to paddr cam result 658 // replay needed 659 // val vpmaskNotEqual = ((paddrModule.io.forwardMmask(i).asUInt ^ vaddrModule.io.forwardMmask(i).asUInt) & needForward) =/= 0.U 660 // val vaddrMatchFailed = vpmaskNotEqual && io.forward(i).valid 661 val vpmaskNotEqual = ( 662 (RegEnable(paddrModule.io.forwardMmask(i).asUInt, io.forward(i).valid) ^ RegEnable(vaddrModule.io.forwardMmask(i).asUInt, io.forward(i).valid)) & 663 RegNext(needForward) & 664 GatedRegNext(addrRealValidVec.asUInt) 665 ) =/= 0.U 666 val vaddrMatchFailed = vpmaskNotEqual && RegNext(io.forward(i).valid) 667 XSInfo(vaddrMatchFailed, 668 "vaddrMatchFailed: pc %x pmask %x vmask %x\n", 669 RegEnable(io.forward(i).uop.pc, io.forward(i).valid), 670 RegEnable(needForward & paddrModule.io.forwardMmask(i).asUInt, io.forward(i).valid), 671 RegEnable(needForward & vaddrModule.io.forwardMmask(i).asUInt, io.forward(i).valid) 672 ); 673 XSPerfAccumulate("vaddr_match_failed", vpmaskNotEqual) 674 XSPerfAccumulate("vaddr_match_really_failed", vaddrMatchFailed) 675 676 // Fast forward mask will be generated immediately (load_s1) 677 io.forward(i).forwardMaskFast := dataModule.io.forwardMaskFast(i) 678 679 // Forward result will be generated 1 cycle later (load_s2) 680 io.forward(i).forwardMask := dataModule.io.forwardMask(i) 681 io.forward(i).forwardData := dataModule.io.forwardData(i) 682 683 //TODO If the previous store appears out of alignment, then simply FF, this is a very unreasonable way to do it. 684 //TODO But for the time being, this is the way to ensure correctness. Such a suitable opportunity to support unaligned forward. 685 // If addr match, data not ready, mark it as dataInvalid 686 // load_s1: generate dataInvalid in load_s1 to set fastUop 687 val dataInvalidMask1 = ((addrValidVec.asUInt & ~dataValidVec.asUInt & vaddrModule.io.forwardMmask(i).asUInt) | unaligned.asUInt & allocated.asUInt) & forwardMask1.asUInt 688 val dataInvalidMask2 = ((addrValidVec.asUInt & ~dataValidVec.asUInt & vaddrModule.io.forwardMmask(i).asUInt) | unaligned.asUInt & allocated.asUInt) & forwardMask2.asUInt 689 val dataInvalidMask = dataInvalidMask1 | dataInvalidMask2 690 io.forward(i).dataInvalidFast := dataInvalidMask.orR 691 692 // make chisel happy 693 val dataInvalidMask1Reg = Wire(UInt(StoreQueueSize.W)) 694 dataInvalidMask1Reg := RegNext(dataInvalidMask1) 695 // make chisel happy 696 val dataInvalidMask2Reg = Wire(UInt(StoreQueueSize.W)) 697 dataInvalidMask2Reg := RegNext(dataInvalidMask2) 698 val dataInvalidMaskReg = dataInvalidMask1Reg | dataInvalidMask2Reg 699 700 // If SSID match, address not ready, mark it as addrInvalid 701 // load_s2: generate addrInvalid 702 val addrInvalidMask1 = (~addrValidVec.asUInt & storeSetHitVec.asUInt & forwardMask1.asUInt) 703 val addrInvalidMask2 = (~addrValidVec.asUInt & storeSetHitVec.asUInt & forwardMask2.asUInt) 704 // make chisel happy 705 val addrInvalidMask1Reg = Wire(UInt(StoreQueueSize.W)) 706 addrInvalidMask1Reg := RegNext(addrInvalidMask1) 707 // make chisel happy 708 val addrInvalidMask2Reg = Wire(UInt(StoreQueueSize.W)) 709 addrInvalidMask2Reg := RegNext(addrInvalidMask2) 710 val addrInvalidMaskReg = addrInvalidMask1Reg | addrInvalidMask2Reg 711 712 // load_s2 713 io.forward(i).dataInvalid := RegNext(io.forward(i).dataInvalidFast) 714 // check if vaddr forward mismatched 715 io.forward(i).matchInvalid := vaddrMatchFailed 716 717 // data invalid sq index 718 // check whether false fail 719 // check flag 720 val s2_differentFlag = RegNext(differentFlag) 721 val s2_enqPtrExt = RegNext(enqPtrExt(0)) 722 val s2_deqPtrExt = RegNext(deqPtrExt(0)) 723 724 // addr invalid sq index 725 // make chisel happy 726 val addrInvalidMaskRegWire = Wire(UInt(StoreQueueSize.W)) 727 addrInvalidMaskRegWire := addrInvalidMaskReg 728 val addrInvalidFlag = addrInvalidMaskRegWire.orR 729 val hasInvalidAddr = (~addrValidVec.asUInt & needForward).orR 730 731 val addrInvalidSqIdx1 = OHToUInt(Reverse(PriorityEncoderOH(Reverse(addrInvalidMask1Reg)))) 732 val addrInvalidSqIdx2 = OHToUInt(Reverse(PriorityEncoderOH(Reverse(addrInvalidMask2Reg)))) 733 val addrInvalidSqIdx = Mux(addrInvalidMask2Reg.orR, addrInvalidSqIdx2, addrInvalidSqIdx1) 734 735 // store-set content management 736 // +-----------------------+ 737 // | Search a SSID for the | 738 // | load operation | 739 // +-----------------------+ 740 // | 741 // V 742 // +-------------------+ 743 // | load wait strict? | 744 // +-------------------+ 745 // | 746 // V 747 // +----------------------+ 748 // Set| |Clean 749 // V V 750 // +------------------------+ +------------------------------+ 751 // | Waiting for all older | | Wait until the corresponding | 752 // | stores operations | | older store operations | 753 // +------------------------+ +------------------------------+ 754 755 756 757 when (RegEnable(io.forward(i).uop.loadWaitStrict, io.forward(i).valid)) { 758 io.forward(i).addrInvalidSqIdx := RegEnable((io.forward(i).uop.sqIdx - 1.U), io.forward(i).valid) 759 } .elsewhen (addrInvalidFlag) { 760 io.forward(i).addrInvalidSqIdx.flag := Mux(!s2_differentFlag || addrInvalidSqIdx >= s2_deqPtrExt.value, s2_deqPtrExt.flag, s2_enqPtrExt.flag) 761 io.forward(i).addrInvalidSqIdx.value := addrInvalidSqIdx 762 } .otherwise { 763 // may be store inst has been written to sbuffer already. 764 io.forward(i).addrInvalidSqIdx := RegEnable(io.forward(i).uop.sqIdx, io.forward(i).valid) 765 } 766 io.forward(i).addrInvalid := Mux(RegEnable(io.forward(i).uop.loadWaitStrict, io.forward(i).valid), RegNext(hasInvalidAddr), addrInvalidFlag) 767 768 // data invalid sq index 769 // make chisel happy 770 val dataInvalidMaskRegWire = Wire(UInt(StoreQueueSize.W)) 771 dataInvalidMaskRegWire := dataInvalidMaskReg 772 val dataInvalidFlag = dataInvalidMaskRegWire.orR 773 774 val dataInvalidSqIdx1 = OHToUInt(Reverse(PriorityEncoderOH(Reverse(dataInvalidMask1Reg)))) 775 val dataInvalidSqIdx2 = OHToUInt(Reverse(PriorityEncoderOH(Reverse(dataInvalidMask2Reg)))) 776 val dataInvalidSqIdx = Mux(dataInvalidMask2Reg.orR, dataInvalidSqIdx2, dataInvalidSqIdx1) 777 778 when (dataInvalidFlag) { 779 io.forward(i).dataInvalidSqIdx.flag := Mux(!s2_differentFlag || dataInvalidSqIdx >= s2_deqPtrExt.value, s2_deqPtrExt.flag, s2_enqPtrExt.flag) 780 io.forward(i).dataInvalidSqIdx.value := dataInvalidSqIdx 781 } .otherwise { 782 // may be store inst has been written to sbuffer already. 783 io.forward(i).dataInvalidSqIdx := RegEnable(io.forward(i).uop.sqIdx, io.forward(i).valid) 784 } 785 } 786 787 /** 788 * Memory mapped IO / other uncached operations / CMO 789 * 790 * States: 791 * (1) writeback from store units: mark as pending 792 * (2) when they reach ROB's head, they can be sent to uncache channel 793 * (3) response from uncache channel: mark as datavalidmask.wen 794 * (4) writeback to ROB (and other units): mark as writebacked 795 * (5) ROB commits the instruction: same as normal instructions 796 */ 797 //(2) when they reach ROB's head, they can be sent to uncache channel 798 // TODO: CAN NOT deal with vector mmio now! 799 val s_idle :: s_req :: s_resp :: s_wb :: s_wait :: Nil = Enum(5) 800 val mmioState = RegInit(s_idle) 801 val uncacheUop = Reg(new DynInst) 802 val cboFlushedSb = RegInit(false.B) 803 val cmoOpCode = uncacheUop.fuOpType(1, 0) 804 val mmioDoReq = io.uncache.req.fire && !io.uncache.req.bits.nc 805 val cboMmioPAddr = Reg(UInt(PAddrBits.W)) 806 switch(mmioState) { 807 is(s_idle) { 808 when(RegNext(io.rob.pendingst && uop(deqPtr).robIdx === io.rob.pendingPtr && pending(deqPtr) && allocated(deqPtr) && datavalid(deqPtr) && addrvalid(deqPtr) && !hasException(deqPtr))) { 809 mmioState := s_req 810 uncacheUop := uop(deqPtr) 811 uncacheUop.exceptionVec := 0.U.asTypeOf(ExceptionVec()) 812 uncacheUop.trigger := 0.U.asTypeOf(TriggerAction()) 813 cboFlushedSb := false.B 814 cboMmioPAddr := paddrModule.io.rdata(0) 815 } 816 } 817 is(s_req) { 818 when (mmioDoReq) { 819 mmioState := s_resp 820 } 821 } 822 is(s_resp) { 823 when(io.uncache.resp.fire && !io.uncache.resp.bits.nc) { 824 mmioState := s_wb 825 826 when (io.uncache.resp.bits.nderr) { 827 uncacheUop.exceptionVec(storeAccessFault) := true.B 828 } 829 } 830 } 831 is(s_wb) { 832 when (io.mmioStout.fire || io.vecmmioStout.fire) { 833 when (uncacheUop.exceptionVec(storeAccessFault)) { 834 mmioState := s_idle 835 }.otherwise { 836 mmioState := s_wait 837 } 838 } 839 } 840 is(s_wait) { 841 // A MMIO store can always move cmtPtrExt as it must be ROB head 842 when(scommit > 0.U) { 843 mmioState := s_idle // ready for next mmio 844 } 845 } 846 } 847 848 mmioReq.valid := mmioState === s_req 849 mmioReq.bits := DontCare 850 mmioReq.bits.cmd := MemoryOpConstants.M_XWR 851 mmioReq.bits.addr := paddrModule.io.rdata(0) // data(deqPtr) -> rdata(0) 852 mmioReq.bits.vaddr:= vaddrModule.io.rdata(0) 853 mmioReq.bits.data := shiftDataToLow(paddrModule.io.rdata(0), dataModule.io.rdata(0).data) 854 mmioReq.bits.mask := shiftMaskToLow(paddrModule.io.rdata(0), dataModule.io.rdata(0).mask) 855 mmioReq.bits.atomic := atomic(GatedRegNext(rdataPtrExtNext(0)).value) 856 mmioReq.bits.nc := false.B 857 mmioReq.bits.id := rdataPtrExt(0).value 858 859 /** 860 * NC Store 861 * (1) req: when it has been commited, it can be sent to lower level. 862 * (2) resp: because SQ data forward is required, it can only be deq when ncResp is received 863 */ 864 // TODO: CAN NOT deal with vector nc now! 865 val nc_idle :: nc_req :: nc_resp :: Nil = Enum(3) 866 val ncState = RegInit(nc_idle) 867 val rptr0 = rdataPtrExt(0).value 868 switch(ncState){ 869 is(nc_idle) { 870 when(nc(rptr0) && allocated(rptr0) && committed(rptr0) && !mmio(rptr0) && !isVec(rptr0)) { 871 ncState := nc_req 872 } 873 } 874 is(nc_req) { 875 when(ncDoReq) { 876 when(io.uncacheOutstanding) { 877 ncState := nc_idle 878 }.otherwise{ 879 ncState := nc_resp 880 } 881 } 882 } 883 is(nc_resp) { 884 when(ncResp.fire) { 885 ncState := nc_idle 886 } 887 } 888 } 889 890 ncDoReq := io.uncache.req.fire && io.uncache.req.bits.nc 891 ncDoResp := ncResp.fire 892 893 ncReq.valid := ncState === nc_req 894 ncReq.bits := DontCare 895 ncReq.bits.cmd := MemoryOpConstants.M_XWR 896 ncReq.bits.addr := paddrModule.io.rdata(0) 897 ncReq.bits.vaddr:= vaddrModule.io.rdata(0) 898 ncReq.bits.data := shiftDataToLow(paddrModule.io.rdata(0), dataModule.io.rdata(0).data) 899 ncReq.bits.mask := shiftMaskToLow(paddrModule.io.rdata(0), dataModule.io.rdata(0).mask) 900 ncReq.bits.atomic := atomic(GatedRegNext(rdataPtrExtNext(0)).value) 901 ncReq.bits.nc := true.B 902 ncReq.bits.id := rptr0 903 904 ncResp.ready := io.uncache.resp.ready 905 ncResp.valid := io.uncache.resp.fire && io.uncache.resp.bits.nc 906 ncResp.bits <> io.uncache.resp.bits 907 when (ncDeqTrigger) { 908 allocated(ncPtr) := false.B 909 XSDebug("nc fire: ptr %d\n", ncPtr) 910 } 911 912 mmioReq.ready := io.uncache.req.ready 913 ncReq.ready := io.uncache.req.ready && !mmioReq.valid 914 io.uncache.req.valid := mmioReq.valid || ncReq.valid 915 io.uncache.req.bits := Mux(mmioReq.valid, mmioReq.bits, ncReq.bits) 916 917 // CBO op type check can be delayed for 1 cycle, 918 // as uncache op will not start in s_idle 919 val cboMmioAddr = get_block_addr(cboMmioPAddr) 920 val deqCanDoCbo = GatedRegNext(LSUOpType.isCbo(uop(deqPtr).fuOpType) && allocated(deqPtr) && addrvalid(deqPtr)) 921 when (deqCanDoCbo) { 922 // disable uncache channel 923 io.uncache.req.valid := false.B 924 925 when (io.cmoOpReq.fire) { 926 mmioState := s_resp 927 } 928 929 when (mmioState === s_resp) { 930 when (io.cmoOpResp.fire) { 931 mmioState := s_wb 932 } 933 } 934 } 935 936 io.cmoOpReq.valid := deqCanDoCbo && cboFlushedSb && (mmioState === s_req) 937 io.cmoOpReq.bits.opcode := cmoOpCode 938 io.cmoOpReq.bits.address := cboMmioAddr 939 940 io.cmoOpResp.ready := deqCanDoCbo && (mmioState === s_resp) 941 942 io.flushSbuffer.valid := deqCanDoCbo && !cboFlushedSb && (mmioState === s_req) && !io.flushSbuffer.empty 943 944 when(deqCanDoCbo && !cboFlushedSb && (mmioState === s_req) && io.flushSbuffer.empty) { 945 cboFlushedSb := true.B 946 } 947 948 when(mmioDoReq){ 949 // mmio store should not be committed until uncache req is sent 950 pending(deqPtr) := false.B 951 } 952 XSDebug( 953 mmioDoReq, 954 p"uncache req: pc ${Hexadecimal(uop(deqPtr).pc)} " + 955 p"addr ${Hexadecimal(io.uncache.req.bits.addr)} " + 956 p"data ${Hexadecimal(io.uncache.req.bits.data)} " + 957 p"op ${Hexadecimal(io.uncache.req.bits.cmd)} " + 958 p"mask ${Hexadecimal(io.uncache.req.bits.mask)}\n" 959 ) 960 961 // (3) response from uncache channel: mark as datavalid 962 io.uncache.resp.ready := true.B 963 964 // (4) scalar store: writeback to ROB (and other units): mark as writebacked 965 io.mmioStout.valid := mmioState === s_wb && !isVec(deqPtr) 966 io.mmioStout.bits.uop := uncacheUop 967 io.mmioStout.bits.uop.exceptionVec := ExceptionNO.selectByFu(uncacheUop.exceptionVec, StaCfg) 968 io.mmioStout.bits.uop.sqIdx := deqPtrExt(0) 969 io.mmioStout.bits.uop.flushPipe := deqCanDoCbo // flush Pipeline to keep order in CMO 970 io.mmioStout.bits.data := shiftDataToLow(paddrModule.io.rdata(0), dataModule.io.rdata(0).data) // dataModule.io.rdata.read(deqPtr) 971 io.mmioStout.bits.isFromLoadUnit := DontCare 972 io.mmioStout.bits.debug.isMMIO := true.B 973 io.mmioStout.bits.debug.isNC := false.B 974 io.mmioStout.bits.debug.paddr := DontCare 975 io.mmioStout.bits.debug.isPerfCnt := false.B 976 io.mmioStout.bits.debug.vaddr := DontCare 977 // Remove MMIO inst from store queue after MMIO request is being sent 978 // That inst will be traced by uncache state machine 979 when (io.mmioStout.fire) { 980 allocated(deqPtr) := false.B 981 } 982 983 exceptionBuffer.io.storeAddrIn.last.valid := io.mmioStout.fire 984 exceptionBuffer.io.storeAddrIn.last.bits := DontCare 985 exceptionBuffer.io.storeAddrIn.last.bits.fullva := vaddrModule.io.rdata.head 986 exceptionBuffer.io.storeAddrIn.last.bits.vaNeedExt := true.B 987 exceptionBuffer.io.storeAddrIn.last.bits.uop := uncacheUop 988 989 // (4) or vector store: 990 // TODO: implement it! 991 io.vecmmioStout := DontCare 992 io.vecmmioStout.valid := false.B //mmioState === s_wb && isVec(deqPtr) 993 io.vecmmioStout.bits.uop := uop(deqPtr) 994 io.vecmmioStout.bits.uop.sqIdx := deqPtrExt(0) 995 io.vecmmioStout.bits.data := shiftDataToLow(paddrModule.io.rdata(0), dataModule.io.rdata(0).data) // dataModule.io.rdata.read(deqPtr) 996 io.vecmmioStout.bits.debug.isMMIO := true.B 997 io.vecmmioStout.bits.debug.isNC := false.B 998 io.vecmmioStout.bits.debug.paddr := DontCare 999 io.vecmmioStout.bits.debug.isPerfCnt := false.B 1000 io.vecmmioStout.bits.debug.vaddr := DontCare 1001 // Remove MMIO inst from store queue after MMIO request is being sent 1002 // That inst will be traced by uncache state machine 1003 when (io.vecmmioStout.fire) { 1004 allocated(deqPtr) := false.B 1005 } 1006 1007 /** 1008 * ROB commits store instructions (mark them as committed) 1009 * 1010 * (1) When store commits, mark it as committed. 1011 * (2) They will not be cancelled and can be sent to lower level. 1012 */ 1013 XSError(mmioState =/= s_idle && mmioState =/= s_wait && commitCount > 0.U, 1014 "should not commit instruction when MMIO has not been finished\n") 1015 1016 val commitVec = WireInit(VecInit(Seq.fill(CommitWidth)(false.B))) 1017 val needCancel = Wire(Vec(StoreQueueSize, Bool())) // Will be assigned later 1018 1019 if (backendParams.debugEn){ dontTouch(commitVec) } 1020 1021 // TODO: Deal with vector store mmio 1022 for (i <- 0 until CommitWidth) { 1023 // don't mark misalign store as committed 1024 when ( 1025 allocated(cmtPtrExt(i).value) && 1026 isNotAfter(uop(cmtPtrExt(i).value).robIdx, GatedRegNext(io.rob.pendingPtr)) && 1027 !needCancel(cmtPtrExt(i).value) && 1028 (!waitStoreS2(cmtPtrExt(i).value) || isVec(cmtPtrExt(i).value))) { 1029 if (i == 0){ 1030 // TODO: fixme for vector mmio 1031 when ((mmioState === s_idle) || (mmioState === s_wait && scommit > 0.U)){ 1032 when ((isVec(cmtPtrExt(i).value) && vecMbCommit(cmtPtrExt(i).value)) || !isVec(cmtPtrExt(i).value)) { 1033 committed(cmtPtrExt(0).value) := true.B 1034 commitVec(0) := true.B 1035 } 1036 } 1037 } else { 1038 when ((isVec(cmtPtrExt(i).value) && vecMbCommit(cmtPtrExt(i).value)) || !isVec(cmtPtrExt(i).value)) { 1039 committed(cmtPtrExt(i).value) := commitVec(i - 1) || committed(cmtPtrExt(i).value) 1040 commitVec(i) := commitVec(i - 1) 1041 } 1042 } 1043 } 1044 } 1045 1046 commitCount := PopCount(commitVec) 1047 cmtPtrExt := cmtPtrExt.map(_ + commitCount) 1048 1049 /** 1050 * committed stores will not be cancelled and can be sent to lower level. 1051 * 1052 * 1. Store NC: Read data to uncache 1053 * implement as above 1054 * 1055 * 2. Store Cache: Read data from data module 1056 * remove retired insts from sq, add retired store to sbuffer. 1057 * as store queue grows larger and larger, time needed to read data from data 1058 * module keeps growing higher. Now we give data read a whole cycle. 1059 */ 1060 1061 //TODO An unaligned command can only be sent out if the databuffer can enter more than two. 1062 //TODO For now, hardcode the number of ENQs for the databuffer. 1063 val canDeqMisaligned = dataBuffer.io.enq(0).ready && dataBuffer.io.enq(1).ready 1064 val firstWithMisalign = unaligned(rdataPtrExt(0).value) 1065 val firstWithCross16Byte = cross16Byte(rdataPtrExt(0).value) 1066 1067 val isCross4KPage = io.maControl.toStoreQueue.crossPageWithHit 1068 val isCross4KPageCanDeq = io.maControl.toStoreQueue.crossPageCanDeq 1069 // When encountering a cross page store, a request needs to be sent to storeMisalignBuffer for the high page table's paddr. 1070 io.maControl.toStoreMisalignBuffer.sqPtr := rdataPtrExt(0) 1071 io.maControl.toStoreMisalignBuffer.doDeq := isCross4KPage && isCross4KPageCanDeq && dataBuffer.io.enq(0).fire 1072 io.maControl.toStoreMisalignBuffer.uop := uop(rdataPtrExt(0).value) 1073 for (i <- 0 until EnsbufferWidth) { 1074 val ptr = rdataPtrExt(i).value 1075 val mmioStall = if(i == 0) mmio(rdataPtrExt(0).value) else (mmio(rdataPtrExt(i).value) || mmio(rdataPtrExt(i-1).value)) 1076 val ncStall = if(i == 0) nc(rdataPtrExt(0).value) else (nc(rdataPtrExt(i).value) || nc(rdataPtrExt(i-1).value)) 1077 val exceptionValid = if(i == 0) hasException(rdataPtrExt(0).value) else { 1078 hasException(rdataPtrExt(i).value) || (hasException(rdataPtrExt(i-1).value) && uop(rdataPtrExt(i).value).robIdx === uop(rdataPtrExt(i-1).value).robIdx) 1079 } 1080 val vecNotAllMask = dataModule.io.rdata(i).mask.orR 1081 // Vector instructions that prevent triggered exceptions from being written to the 'databuffer'. 1082 val vecHasExceptionFlagValid = vecExceptionFlag.valid && isVec(ptr) && vecExceptionFlag.bits.robIdx === uop(ptr).robIdx 1083 1084 // Only the first interface can write unaligned directives. 1085 // Simplified design, even if the two ports have exceptions, but still only one unaligned dequeue. 1086 val assert_flag = WireInit(false.B) 1087 when(firstWithMisalign && firstWithCross16Byte) { 1088 dataBuffer.io.enq(0).valid := canDeqMisaligned && allocated(rdataPtrExt(0).value) && committed(rdataPtrExt(0).value) && 1089 ((!isVec(rdataPtrExt(0).value) && allvalid(rdataPtrExt(0).value) || vecMbCommit(rdataPtrExt(0).value)) && 1090 (!isCross4KPage || isCross4KPageCanDeq) || hasException(rdataPtrExt(0).value)) && !ncStall 1091 1092 dataBuffer.io.enq(1).valid := canDeqMisaligned && allocated(rdataPtrExt(0).value) && committed(rdataPtrExt(0).value) && 1093 (!isVec(rdataPtrExt(0).value) && allvalid(rdataPtrExt(0).value) || vecMbCommit(rdataPtrExt(0).value)) && 1094 (!isCross4KPage || isCross4KPageCanDeq) && !hasException(rdataPtrExt(0).value) && !ncStall 1095 assert_flag := dataBuffer.io.enq(1).valid 1096 }.otherwise { 1097 if (i == 0) { 1098 dataBuffer.io.enq(i).valid := ( 1099 allocated(ptr) && committed(ptr) 1100 && ((!isVec(ptr) && (allvalid(ptr) || hasException(ptr))) || vecMbCommit(ptr)) 1101 && !mmioStall && !ncStall 1102 && (!unaligned(ptr) || !cross16Byte(ptr) && (allvalid(ptr) || hasException(ptr))) 1103 ) 1104 } 1105 else { 1106 dataBuffer.io.enq(i).valid := ( 1107 allocated(ptr) && committed(ptr) 1108 && ((!isVec(ptr) && (allvalid(ptr) || hasException(ptr))) || vecMbCommit(ptr)) 1109 && !mmioStall && !ncStall 1110 && (!unaligned(ptr) || !cross16Byte(ptr) && (allvalid(ptr) || hasException(ptr))) 1111 ) 1112 } 1113 } 1114 1115 val misalignAddrLow = vaddrModule.io.rdata(0)(2, 0) 1116 val cross16ByteAddrLow4bit = vaddrModule.io.rdata(0)(3, 0) 1117 val addrLow4bit = vaddrModule.io.rdata(i)(3, 0) 1118 1119 // For unaligned, we need to generate a base-aligned mask in storeunit and then do a shift split in StoreQueue. 1120 val Cross16ByteMask = Wire(UInt(32.W)) 1121 val Cross16ByteData = Wire(UInt(256.W)) 1122 Cross16ByteMask := dataModule.io.rdata(0).mask << cross16ByteAddrLow4bit 1123 Cross16ByteData := dataModule.io.rdata(0).data << (cross16ByteAddrLow4bit << 3) 1124 1125 val paddrLow = Cat(paddrModule.io.rdata(0)(paddrModule.io.rdata(0).getWidth - 1, 3), 0.U(3.W)) 1126 val paddrHigh = Cat(paddrModule.io.rdata(0)(paddrModule.io.rdata(0).getWidth - 1, 3), 0.U(3.W)) + 8.U 1127 1128 val vaddrLow = Cat(vaddrModule.io.rdata(0)(vaddrModule.io.rdata(0).getWidth - 1, 3), 0.U(3.W)) 1129 val vaddrHigh = Cat(vaddrModule.io.rdata(0)(vaddrModule.io.rdata(0).getWidth - 1, 3), 0.U(3.W)) + 8.U 1130 1131 val maskLow = Cross16ByteMask(15, 0) 1132 val maskHigh = Cross16ByteMask(31, 16) 1133 1134 val dataLow = Cross16ByteData(127, 0) 1135 val dataHigh = Cross16ByteData(255, 128) 1136 1137 val toSbufferVecValid = (!isVec(ptr) || (vecMbCommit(ptr) && allvalid(ptr) && vecNotAllMask)) && !exceptionValid && !vecHasExceptionFlagValid 1138 when(canDeqMisaligned && firstWithMisalign && firstWithCross16Byte) { 1139 when(isCross4KPage && isCross4KPageCanDeq) { 1140 if (i == 0) { 1141 dataBuffer.io.enq(i).bits.addr := paddrLow 1142 dataBuffer.io.enq(i).bits.vaddr := vaddrLow 1143 dataBuffer.io.enq(i).bits.data := dataLow 1144 dataBuffer.io.enq(i).bits.mask := maskLow 1145 dataBuffer.io.enq(i).bits.wline := false.B 1146 dataBuffer.io.enq(i).bits.sqPtr := rdataPtrExt(0) 1147 dataBuffer.io.enq(i).bits.prefetch := false.B 1148 dataBuffer.io.enq(i).bits.sqNeedDeq := true.B 1149 dataBuffer.io.enq(i).bits.vecValid := toSbufferVecValid 1150 } 1151 else { 1152 dataBuffer.io.enq(i).bits.addr := io.maControl.toStoreQueue.paddr 1153 dataBuffer.io.enq(i).bits.vaddr := vaddrHigh 1154 dataBuffer.io.enq(i).bits.data := dataHigh 1155 dataBuffer.io.enq(i).bits.mask := maskHigh 1156 dataBuffer.io.enq(i).bits.wline := false.B 1157 dataBuffer.io.enq(i).bits.sqPtr := rdataPtrExt(0) 1158 dataBuffer.io.enq(i).bits.prefetch := false.B 1159 dataBuffer.io.enq(i).bits.sqNeedDeq := false.B 1160 dataBuffer.io.enq(i).bits.vecValid := dataBuffer.io.enq(0).bits.vecValid 1161 } 1162 } .otherwise { 1163 if (i == 0) { 1164 dataBuffer.io.enq(i).bits.addr := paddrLow 1165 dataBuffer.io.enq(i).bits.vaddr := vaddrLow 1166 dataBuffer.io.enq(i).bits.data := dataLow 1167 dataBuffer.io.enq(i).bits.mask := maskLow 1168 dataBuffer.io.enq(i).bits.wline := false.B 1169 dataBuffer.io.enq(i).bits.sqPtr := rdataPtrExt(0) 1170 dataBuffer.io.enq(i).bits.prefetch := false.B 1171 dataBuffer.io.enq(i).bits.sqNeedDeq := true.B 1172 dataBuffer.io.enq(i).bits.vecValid := toSbufferVecValid 1173 } 1174 else { 1175 dataBuffer.io.enq(i).bits.addr := paddrHigh 1176 dataBuffer.io.enq(i).bits.vaddr := vaddrHigh 1177 dataBuffer.io.enq(i).bits.data := dataHigh 1178 dataBuffer.io.enq(i).bits.mask := maskHigh 1179 dataBuffer.io.enq(i).bits.wline := false.B 1180 dataBuffer.io.enq(i).bits.sqPtr := rdataPtrExt(0) 1181 dataBuffer.io.enq(i).bits.prefetch := false.B 1182 dataBuffer.io.enq(i).bits.sqNeedDeq := false.B 1183 dataBuffer.io.enq(i).bits.vecValid := dataBuffer.io.enq(0).bits.vecValid 1184 } 1185 } 1186 1187 1188 }.elsewhen(!cross16Byte(ptr) && unaligned(ptr)) { 1189 dataBuffer.io.enq(i).bits.addr := Cat(paddrModule.io.rdata(i)(PAddrBits - 1, 4), 0.U(4.W)) 1190 dataBuffer.io.enq(i).bits.vaddr := Cat(vaddrModule.io.rdata(i)(VAddrBits - 1, 4), 0.U(4.W)) 1191 dataBuffer.io.enq(i).bits.data := dataModule.io.rdata(i).data << (addrLow4bit << 3) 1192 dataBuffer.io.enq(i).bits.mask := dataModule.io.rdata(i).mask 1193 dataBuffer.io.enq(i).bits.wline := paddrModule.io.rlineflag(i) 1194 dataBuffer.io.enq(i).bits.sqPtr := rdataPtrExt(i) 1195 dataBuffer.io.enq(i).bits.prefetch := prefetch(ptr) 1196 dataBuffer.io.enq(i).bits.sqNeedDeq := true.B 1197 // when scalar has exception, will also not write into sbuffer 1198 dataBuffer.io.enq(i).bits.vecValid := toSbufferVecValid 1199 }.otherwise { 1200 dataBuffer.io.enq(i).bits.addr := paddrModule.io.rdata(i) 1201 dataBuffer.io.enq(i).bits.vaddr := vaddrModule.io.rdata(i) 1202 dataBuffer.io.enq(i).bits.data := dataModule.io.rdata(i).data 1203 dataBuffer.io.enq(i).bits.mask := dataModule.io.rdata(i).mask 1204 dataBuffer.io.enq(i).bits.wline := paddrModule.io.rlineflag(i) 1205 dataBuffer.io.enq(i).bits.sqPtr := rdataPtrExt(i) 1206 dataBuffer.io.enq(i).bits.prefetch := prefetch(ptr) 1207 dataBuffer.io.enq(i).bits.sqNeedDeq := true.B 1208 // when scalar has exception, will also not write into sbuffer 1209 dataBuffer.io.enq(i).bits.vecValid := toSbufferVecValid 1210 1211 } 1212 1213 // Note that store data/addr should both be valid after store's commit 1214 assert(!dataBuffer.io.enq(i).valid || allvalid(ptr) || hasException(ptr) || (allocated(ptr) && vecMbCommit(ptr)) || assert_flag) 1215 } 1216 1217 // Send data stored in sbufferReqBitsReg to sbuffer 1218 for (i <- 0 until EnsbufferWidth) { 1219 io.sbuffer(i).valid := dataBuffer.io.deq(i).valid 1220 dataBuffer.io.deq(i).ready := io.sbuffer(i).ready 1221 io.sbuffer(i).bits := DontCare 1222 io.sbuffer(i).bits.cmd := MemoryOpConstants.M_XWR 1223 io.sbuffer(i).bits.addr := dataBuffer.io.deq(i).bits.addr 1224 io.sbuffer(i).bits.vaddr := dataBuffer.io.deq(i).bits.vaddr 1225 io.sbuffer(i).bits.data := dataBuffer.io.deq(i).bits.data 1226 io.sbuffer(i).bits.mask := dataBuffer.io.deq(i).bits.mask 1227 io.sbuffer(i).bits.wline := dataBuffer.io.deq(i).bits.wline && dataBuffer.io.deq(i).bits.vecValid 1228 io.sbuffer(i).bits.prefetch := dataBuffer.io.deq(i).bits.prefetch 1229 io.sbuffer(i).bits.vecValid := dataBuffer.io.deq(i).bits.vecValid 1230 io.sbuffer(i).bits.sqNeedDeq := dataBuffer.io.deq(i).bits.sqNeedDeq 1231 // io.sbuffer(i).fire is RegNexted, as sbuffer data write takes 2 cycles. 1232 // Before data write finish, sbuffer is unable to provide store to load 1233 // forward data. As an workaround, deqPtrExt and allocated flag update 1234 // is delayed so that load can get the right data from store queue. 1235 val ptr = dataBuffer.io.deq(i).bits.sqPtr.value 1236 when (RegNext(io.sbuffer(i).fire && io.sbuffer(i).bits.sqNeedDeq)) { 1237 allocated(RegEnable(ptr, io.sbuffer(i).fire)) := false.B 1238 } 1239 XSDebug(RegNext(io.sbuffer(i).fire && io.sbuffer(i).bits.sqNeedDeq), "sbuffer "+i+" fire: ptr %d\n", ptr) 1240 } 1241 1242 // All vector instruction uop normally dequeue, but the Uop after the exception is raised does not write to the 'sbuffer'. 1243 // Flags are used to record whether there are any exceptions when the queue is displayed. 1244 // This is determined each time a write is made to the 'databuffer', prevent subsequent uop of the same instruction from writing to the 'dataBuffer'. 1245 val vecCommitHasException = (0 until EnsbufferWidth).map{ i => 1246 val ptr = rdataPtrExt(i).value 1247 val mmioStall = if(i == 0) mmio(rdataPtrExt(0).value) else (mmio(rdataPtrExt(i).value) || mmio(rdataPtrExt(i-1).value)) 1248 val ncStall = if(i == 0) nc(rdataPtrExt(0).value) else (nc(rdataPtrExt(i).value) || nc(rdataPtrExt(i-1).value)) 1249 val exceptionVliad = isVec(ptr) && hasException(ptr) && dataBuffer.io.enq(i).fire 1250 (exceptionVliad, uop(ptr), vecLastFlow(ptr)) 1251 } 1252 1253 val vecCommitHasExceptionValid = vecCommitHasException.map(_._1) 1254 val vecCommitHasExceptionUop = vecCommitHasException.map(_._2) 1255 val vecCommitHasExceptionLastFlow = vecCommitHasException.map(_._3) 1256 val vecCommitHasExceptionValidOR = vecCommitHasExceptionValid.reduce(_ || _) 1257 // Just select the last Uop tah has an exception. 1258 val vecCommitHasExceptionSelectUop = ParallelPosteriorityMux(vecCommitHasExceptionValid, vecCommitHasExceptionUop) 1259 // If the last flow with an exception is the LastFlow of this instruction, the flag is not set. 1260 // compare robidx to select the last flow 1261 require(EnsbufferWidth == 2, "The vector store exception handle process only support EnsbufferWidth == 2 yet.") 1262 val robidxEQ = dataBuffer.io.enq(0).fire && dataBuffer.io.enq(1).fire && 1263 uop(rdataPtrExt(0).value).robIdx === uop(rdataPtrExt(1).value).robIdx 1264 val robidxNE = dataBuffer.io.enq(0).fire && dataBuffer.io.enq(1).fire && ( 1265 uop(rdataPtrExt(0).value).robIdx =/= uop(rdataPtrExt(1).value).robIdx 1266 ) 1267 val onlyCommit0 = dataBuffer.io.enq(0).fire && !dataBuffer.io.enq(1).fire 1268 1269 val vecCommitLastFlow = 1270 // robidx equal => check if 1 is last flow 1271 robidxEQ && vecCommitHasExceptionLastFlow(1) || 1272 // robidx not equal => 0 must be the last flow, just check if 1 is last flow when 1 has exception 1273 robidxNE && (vecCommitHasExceptionValid(1) && vecCommitHasExceptionLastFlow(1) || !vecCommitHasExceptionValid(1)) || 1274 onlyCommit0 && vecCommitHasExceptionLastFlow(0) 1275 1276 1277 val vecExceptionFlagCancel = (0 until EnsbufferWidth).map{ i => 1278 val ptr = rdataPtrExt(i).value 1279 val vecLastFlowCommit = vecLastFlow(ptr) && (uop(ptr).robIdx === vecExceptionFlag.bits.robIdx) && dataBuffer.io.enq(i).fire 1280 vecLastFlowCommit 1281 }.reduce(_ || _) 1282 1283 // When a LastFlow with an exception instruction is commited, clear the flag. 1284 when(!vecExceptionFlag.valid && vecCommitHasExceptionValidOR && !vecCommitLastFlow) { 1285 vecExceptionFlag.valid := true.B 1286 vecExceptionFlag.bits := vecCommitHasExceptionSelectUop 1287 }.elsewhen(vecExceptionFlag.valid && vecExceptionFlagCancel) { 1288 vecExceptionFlag.valid := false.B 1289 vecExceptionFlag.bits := 0.U.asTypeOf(new DynInst) 1290 } 1291 1292 // A dumb defensive code. The flag should not be placed for a long period of time. 1293 // A relatively large timeout period, not have any special meaning. 1294 // If an assert appears and you confirm that it is not a Bug: Increase the timeout or remove the assert. 1295 TimeOutAssert(vecExceptionFlag.valid, 3000, "vecExceptionFlag timeout, Plase check for bugs or add timeouts.") 1296 1297 // Initialize when unenabled difftest. 1298 for (i <- 0 until EnsbufferWidth) { 1299 io.sbufferVecDifftestInfo(i) := DontCare 1300 } 1301 // Consistent with the logic above. 1302 // Only the vector store difftest required signal is separated from the rtl code. 1303 if (env.EnableDifftest) { 1304 for (i <- 0 until EnsbufferWidth) { 1305 val ptr = dataBuffer.io.enq(i).bits.sqPtr.value 1306 difftestBuffer.get.io.enq(i).valid := dataBuffer.io.enq(i).valid 1307 difftestBuffer.get.io.enq(i).bits := uop(ptr) 1308 } 1309 for (i <- 0 until EnsbufferWidth) { 1310 io.sbufferVecDifftestInfo(i).valid := difftestBuffer.get.io.deq(i).valid 1311 difftestBuffer.get.io.deq(i).ready := io.sbufferVecDifftestInfo(i).ready 1312 1313 io.sbufferVecDifftestInfo(i).bits := difftestBuffer.get.io.deq(i).bits 1314 } 1315 1316 // commit cbo.inval to difftest 1317 val cmoInvalEvent = DifftestModule(new DiffCMOInvalEvent) 1318 cmoInvalEvent.coreid := io.hartId 1319 cmoInvalEvent.valid := io.mmioStout.fire && deqCanDoCbo && LSUOpType.isCboInval(uop(deqPtr).fuOpType) 1320 cmoInvalEvent.addr := cboMmioAddr 1321 } 1322 1323 (1 until EnsbufferWidth).foreach(i => when(io.sbuffer(i).fire) { assert(io.sbuffer(i - 1).fire) }) 1324 if (coreParams.dcacheParametersOpt.isEmpty) { 1325 for (i <- 0 until EnsbufferWidth) { 1326 val ptr = deqPtrExt(i).value 1327 val ram = DifftestMem(64L * 1024 * 1024 * 1024, 8) 1328 val wen = allocated(ptr) && committed(ptr) && !mmio(ptr) 1329 val waddr = ((paddrModule.io.rdata(i) - "h80000000".U) >> 3).asUInt 1330 val wdata = Mux(paddrModule.io.rdata(i)(3), dataModule.io.rdata(i).data(127, 64), dataModule.io.rdata(i).data(63, 0)) 1331 val wmask = Mux(paddrModule.io.rdata(i)(3), dataModule.io.rdata(i).mask(15, 8), dataModule.io.rdata(i).mask(7, 0)) 1332 when (wen) { 1333 ram.write(waddr, wdata.asTypeOf(Vec(8, UInt(8.W))), wmask.asBools) 1334 } 1335 } 1336 } 1337 1338 // Read vaddr for mem exception 1339 io.exceptionAddr.vaddr := exceptionBuffer.io.exceptionAddr.vaddr 1340 io.exceptionAddr.vaNeedExt := exceptionBuffer.io.exceptionAddr.vaNeedExt 1341 io.exceptionAddr.isHyper := exceptionBuffer.io.exceptionAddr.isHyper 1342 io.exceptionAddr.gpaddr := exceptionBuffer.io.exceptionAddr.gpaddr 1343 io.exceptionAddr.vstart := exceptionBuffer.io.exceptionAddr.vstart 1344 io.exceptionAddr.vl := exceptionBuffer.io.exceptionAddr.vl 1345 io.exceptionAddr.isForVSnonLeafPTE := exceptionBuffer.io.exceptionAddr.isForVSnonLeafPTE 1346 1347 // vector commit or replay from 1348 val vecCommittmp = Wire(Vec(StoreQueueSize, Vec(VecStorePipelineWidth, Bool()))) 1349 val vecCommit = Wire(Vec(StoreQueueSize, Bool())) 1350 for (i <- 0 until StoreQueueSize) { 1351 val fbk = io.vecFeedback 1352 for (j <- 0 until VecStorePipelineWidth) { 1353 vecCommittmp(i)(j) := fbk(j).valid && (fbk(j).bits.isCommit || fbk(j).bits.isFlush) && 1354 uop(i).robIdx === fbk(j).bits.robidx && uop(i).uopIdx === fbk(j).bits.uopidx && allocated(i) 1355 } 1356 vecCommit(i) := vecCommittmp(i).reduce(_ || _) 1357 1358 when (vecCommit(i)) { 1359 vecMbCommit(i) := true.B 1360 } 1361 } 1362 1363 // For vector, when there is a store across pages with the same uop in storeMisalignBuffer, storequeue needs to mark this item as committed. 1364 // TODO FIXME Can vecMbCommit be removed? 1365 when(io.maControl.toStoreQueue.withSameUop && allvalid(rdataPtrExt(0).value)) { 1366 vecMbCommit(rdataPtrExt(0).value) := true.B 1367 } 1368 1369 // misprediction recovery / exception redirect 1370 // invalidate sq term using robIdx 1371 for (i <- 0 until StoreQueueSize) { 1372 needCancel(i) := uop(i).robIdx.needFlush(io.brqRedirect) && allocated(i) && !committed(i) && 1373 (!isVec(i) || !(uop(i).robIdx === io.brqRedirect.bits.robIdx)) 1374 when (needCancel(i)) { 1375 allocated(i) := false.B 1376 } 1377 } 1378 1379 /** 1380* update pointers 1381**/ 1382 val enqCancelValid = canEnqueue.zip(io.enq.req).map{case (v , x) => 1383 v && x.bits.robIdx.needFlush(io.brqRedirect) 1384 } 1385 val enqCancelNum = enqCancelValid.zip(io.enq.req).map{case (v, req) => 1386 Mux(v, req.bits.numLsElem, 0.U) 1387 } 1388 val lastEnqCancel = RegEnable(enqCancelNum.reduce(_ + _), io.brqRedirect.valid) // 1 cycle after redirect 1389 1390 val lastCycleCancelCount = PopCount(RegEnable(needCancel, io.brqRedirect.valid)) // 1 cycle after redirect 1391 val lastCycleRedirect = RegNext(io.brqRedirect.valid) // 1 cycle after redirect 1392 val enqNumber = validVStoreFlow.reduce(_ + _) 1393 1394 val lastlastCycleRedirect=RegNext(lastCycleRedirect)// 2 cycle after redirect 1395 val redirectCancelCount = RegEnable(lastCycleCancelCount + lastEnqCancel, 0.U, lastCycleRedirect) // 2 cycle after redirect 1396 1397 when (lastlastCycleRedirect) { 1398 // we recover the pointers in 2 cycle after redirect for better timing 1399 enqPtrExt := VecInit(enqPtrExt.map(_ - redirectCancelCount)) 1400 }.otherwise { 1401 // lastCycleRedirect.valid or nornal case 1402 // when lastCycleRedirect.valid, enqNumber === 0.U, enqPtrExt will not change 1403 enqPtrExt := VecInit(enqPtrExt.map(_ + enqNumber)) 1404 } 1405 assert(!(lastCycleRedirect && enqNumber =/= 0.U)) 1406 1407 deqPtrExt := deqPtrExtNext 1408 rdataPtrExt := rdataPtrExtNext 1409 1410 // val dequeueCount = Mux(io.sbuffer(1).fire, 2.U, Mux(io.sbuffer(0).fire || io.mmioStout.fire, 1.U, 0.U)) 1411 1412 // If redirect at T0, sqCancelCnt is at T2 1413 io.sqCancelCnt := redirectCancelCount 1414 val ForceWriteUpper = Wire(UInt(log2Up(StoreQueueSize + 1).W)) 1415 ForceWriteUpper := Constantin.createRecord(s"ForceWriteUpper_${p(XSCoreParamsKey).HartId}", initValue = 60) 1416 val ForceWriteLower = Wire(UInt(log2Up(StoreQueueSize + 1).W)) 1417 ForceWriteLower := Constantin.createRecord(s"ForceWriteLower_${p(XSCoreParamsKey).HartId}", initValue = 55) 1418 1419 val valid_cnt = PopCount(allocated) 1420 io.force_write := RegNext(Mux(valid_cnt >= ForceWriteUpper, true.B, valid_cnt >= ForceWriteLower && io.force_write), init = false.B) 1421 1422 // io.sqempty will be used by sbuffer 1423 // We delay it for 1 cycle for better timing 1424 // When sbuffer need to check if it is empty, the pipeline is blocked, which means delay io.sqempty 1425 // for 1 cycle will also promise that sq is empty in that cycle 1426 io.sqEmpty := RegNext( 1427 enqPtrExt(0).value === deqPtrExt(0).value && 1428 enqPtrExt(0).flag === deqPtrExt(0).flag 1429 ) 1430 // perf counter 1431 QueuePerf(StoreQueueSize, validCount, !allowEnqueue) 1432 val vecValidVec = WireInit(VecInit((0 until StoreQueueSize).map(i => allocated(i) && isVec(i)))) 1433 QueuePerf(StoreQueueSize, PopCount(vecValidVec), !allowEnqueue) 1434 io.sqFull := !allowEnqueue 1435 XSPerfAccumulate("mmioCycle", mmioState =/= s_idle) // lq is busy dealing with uncache req 1436 XSPerfAccumulate("mmioCnt", mmioDoReq) 1437 XSPerfAccumulate("mmio_wb_success", io.mmioStout.fire || io.vecmmioStout.fire) 1438 XSPerfAccumulate("mmio_wb_blocked", (io.mmioStout.valid && !io.mmioStout.ready) || (io.vecmmioStout.valid && !io.vecmmioStout.ready)) 1439 XSPerfAccumulate("validEntryCnt", distanceBetween(enqPtrExt(0), deqPtrExt(0))) 1440 XSPerfAccumulate("cmtEntryCnt", distanceBetween(cmtPtrExt(0), deqPtrExt(0))) 1441 XSPerfAccumulate("nCmtEntryCnt", distanceBetween(enqPtrExt(0), cmtPtrExt(0))) 1442 1443 val perfValidCount = distanceBetween(enqPtrExt(0), deqPtrExt(0)) 1444 val perfEvents = Seq( 1445 ("mmioCycle ", mmioState =/= s_idle), 1446 ("mmioCnt ", mmioDoReq), 1447 ("mmio_wb_success", io.mmioStout.fire || io.vecmmioStout.fire), 1448 ("mmio_wb_blocked", (io.mmioStout.valid && !io.mmioStout.ready) || (io.vecmmioStout.valid && !io.vecmmioStout.ready)), 1449 ("stq_1_4_valid ", (perfValidCount < (StoreQueueSize.U/4.U))), 1450 ("stq_2_4_valid ", (perfValidCount > (StoreQueueSize.U/4.U)) & (perfValidCount <= (StoreQueueSize.U/2.U))), 1451 ("stq_3_4_valid ", (perfValidCount > (StoreQueueSize.U/2.U)) & (perfValidCount <= (StoreQueueSize.U*3.U/4.U))), 1452 ("stq_4_4_valid ", (perfValidCount > (StoreQueueSize.U*3.U/4.U))), 1453 ) 1454 generatePerfEvent() 1455 1456 // debug info 1457 XSDebug("enqPtrExt %d:%d deqPtrExt %d:%d\n", enqPtrExt(0).flag, enqPtr, deqPtrExt(0).flag, deqPtr) 1458 1459 def PrintFlag(flag: Bool, name: String): Unit = { 1460 XSDebug(false, flag, name) // when(flag) 1461 XSDebug(false, !flag, " ") // otherwirse 1462 } 1463 1464 for (i <- 0 until StoreQueueSize) { 1465 XSDebug(s"$i: pc %x va %x pa %x data %x ", 1466 uop(i).pc, 1467 debug_vaddr(i), 1468 debug_paddr(i), 1469 debug_data(i) 1470 ) 1471 PrintFlag(allocated(i), "a") 1472 PrintFlag(allocated(i) && addrvalid(i), "a") 1473 PrintFlag(allocated(i) && datavalid(i), "d") 1474 PrintFlag(allocated(i) && committed(i), "c") 1475 PrintFlag(allocated(i) && pending(i), "p") 1476 PrintFlag(allocated(i) && mmio(i), "m") 1477 XSDebug(false, true.B, "\n") 1478 } 1479 1480} 1481