xref: /XiangShan/src/main/scala/xiangshan/mem/lsqueue/StoreQueue.scala (revision 94aa21c6009c2f39c5c5dae9c87260c78887efcc)
1/***************************************************************************************
2* Copyright (c) 2024 Beijing Institute of Open Source Chip (BOSC)
3* Copyright (c) 2020-2024 Institute of Computing Technology, Chinese Academy of Sciences
4* Copyright (c) 2020-2021 Peng Cheng Laboratory
5*
6* XiangShan is licensed under Mulan PSL v2.
7* You can use this software according to the terms and conditions of the Mulan PSL v2.
8* You may obtain a copy of Mulan PSL v2 at:
9*          http://license.coscl.org.cn/MulanPSL2
10*
11* THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND,
12* EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT,
13* MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE.
14*
15* See the Mulan PSL v2 for more details.
16***************************************************************************************/
17
18package xiangshan.mem
19
20import chisel3._
21import chisel3.util._
22import difftest._
23import difftest.common.DifftestMem
24import org.chipsalliance.cde.config.Parameters
25import utility._
26import utils._
27import xiangshan._
28import xiangshan.cache._
29import xiangshan.cache.{DCacheLineIO, DCacheWordIO, MemoryOpConstants}
30import xiangshan.cache.{CMOReq, CMOResp}
31import xiangshan.backend._
32import xiangshan.backend.rob.{RobLsqIO, RobPtr}
33import xiangshan.backend.Bundles.{DynInst, MemExuOutput}
34import xiangshan.backend.decode.isa.bitfield.{Riscv32BitInst, XSInstBitFields}
35import xiangshan.backend.fu.FuConfig._
36import xiangshan.backend.fu.FuType
37import xiangshan.ExceptionNO._
38
39class SqPtr(implicit p: Parameters) extends CircularQueuePtr[SqPtr](
40  p => p(XSCoreParamsKey).StoreQueueSize
41){
42}
43
44object SqPtr {
45  def apply(f: Bool, v: UInt)(implicit p: Parameters): SqPtr = {
46    val ptr = Wire(new SqPtr)
47    ptr.flag := f
48    ptr.value := v
49    ptr
50  }
51}
52
53class SqEnqIO(implicit p: Parameters) extends MemBlockBundle {
54  val canAccept = Output(Bool())
55  val lqCanAccept = Input(Bool())
56  val needAlloc = Vec(LSQEnqWidth, Input(Bool()))
57  val req = Vec(LSQEnqWidth, Flipped(ValidIO(new DynInst)))
58  val resp = Vec(LSQEnqWidth, Output(new SqPtr))
59}
60
61class DataBufferEntry (implicit p: Parameters)  extends DCacheBundle {
62  val addr   = UInt(PAddrBits.W)
63  val vaddr  = UInt(VAddrBits.W)
64  val data   = UInt(VLEN.W)
65  val mask   = UInt((VLEN/8).W)
66  val wline = Bool()
67  val sqPtr  = new SqPtr
68  val prefetch = Bool()
69  val vecValid = Bool()
70  val sqNeedDeq = Bool()
71}
72
73class StoreExceptionBuffer(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper {
74  // The 1st StorePipelineWidth ports: sta exception generated at s1, except for af
75  // The 2nd StorePipelineWidth ports: sta af generated at s2
76  // The following VecStorePipelineWidth ports: vector st exception
77  // The last port: non-data error generated in SoC
78  val enqPortNum = StorePipelineWidth * 2 + VecStorePipelineWidth + 1
79
80  val io = IO(new Bundle() {
81    val redirect = Flipped(ValidIO(new Redirect))
82    val storeAddrIn = Vec(enqPortNum, Flipped(ValidIO(new LsPipelineBundle())))
83    val exceptionAddr = new ExceptionAddrIO
84  })
85
86  val req_valid = RegInit(false.B)
87  val req = Reg(new LsPipelineBundle())
88
89  // enqueue
90  // S1:
91  val s1_req = VecInit(io.storeAddrIn.map(_.bits))
92  val s1_valid = VecInit(io.storeAddrIn.map(x =>
93      x.valid && !x.bits.uop.robIdx.needFlush(io.redirect) && ExceptionNO.selectByFu(x.bits.uop.exceptionVec, StaCfg).asUInt.orR
94  ))
95
96  // S2: delay 1 cycle
97  val s2_req = (0 until enqPortNum).map(i =>
98    RegEnable(s1_req(i), s1_valid(i)))
99  val s2_valid = (0 until enqPortNum).map(i =>
100    RegNext(s1_valid(i)) && !s2_req(i).uop.robIdx.needFlush(io.redirect)
101  )
102
103  val s2_enqueue = Wire(Vec(enqPortNum, Bool()))
104  for (w <- 0 until enqPortNum) {
105    s2_enqueue(w) := s2_valid(w)
106  }
107
108  when (req_valid && req.uop.robIdx.needFlush(io.redirect)) {
109    req_valid := s2_enqueue.asUInt.orR
110  }.elsewhen (s2_enqueue.asUInt.orR) {
111    req_valid := true.B
112  }
113
114  def selectOldest[T <: LsPipelineBundle](valid: Seq[Bool], bits: Seq[T]): (Seq[Bool], Seq[T]) = {
115    assert(valid.length == bits.length)
116    if (valid.length == 0 || valid.length == 1) {
117      (valid, bits)
118    } else if (valid.length == 2) {
119      val res = Seq.fill(2)(Wire(Valid(chiselTypeOf(bits(0)))))
120      for (i <- res.indices) {
121        res(i).valid := valid(i)
122        res(i).bits := bits(i)
123      }
124      val oldest = Mux(valid(0) && valid(1),
125        Mux(isAfter(bits(0).uop.robIdx, bits(1).uop.robIdx) ||
126          (bits(0).uop.robIdx === bits(1).uop.robIdx && bits(0).uop.uopIdx > bits(1).uop.uopIdx), res(1), res(0)),
127        Mux(valid(0) && !valid(1), res(0), res(1)))
128      (Seq(oldest.valid), Seq(oldest.bits))
129    } else {
130      val left = selectOldest(valid.take(valid.length / 2), bits.take(bits.length / 2))
131      val right = selectOldest(valid.takeRight(valid.length - (valid.length / 2)), bits.takeRight(bits.length - (bits.length / 2)))
132      selectOldest(left._1 ++ right._1, left._2 ++ right._2)
133    }
134  }
135
136  val reqSel = selectOldest(s2_enqueue, s2_req)
137
138  when (req_valid) {
139    req := Mux(
140      reqSel._1(0) && (isAfter(req.uop.robIdx, reqSel._2(0).uop.robIdx) || (isNotBefore(req.uop.robIdx, reqSel._2(0).uop.robIdx) && req.uop.uopIdx > reqSel._2(0).uop.uopIdx)),
141      reqSel._2(0),
142      req)
143  } .elsewhen (s2_enqueue.asUInt.orR) {
144    req := reqSel._2(0)
145  }
146
147  io.exceptionAddr.vaddr     := req.fullva
148  io.exceptionAddr.vaNeedExt := req.vaNeedExt
149  io.exceptionAddr.isHyper   := req.isHyper
150  io.exceptionAddr.gpaddr    := req.gpaddr
151  io.exceptionAddr.vstart    := req.uop.vpu.vstart
152  io.exceptionAddr.vl        := req.uop.vpu.vl
153  io.exceptionAddr.isForVSnonLeafPTE := req.isForVSnonLeafPTE
154
155}
156
157// Store Queue
158class StoreQueue(implicit p: Parameters) extends XSModule
159  with HasDCacheParameters
160  with HasCircularQueuePtrHelper
161  with HasPerfEvents
162  with HasVLSUParameters {
163  val io = IO(new Bundle() {
164    val hartId = Input(UInt(hartIdLen.W))
165    val enq = new SqEnqIO
166    val brqRedirect = Flipped(ValidIO(new Redirect))
167    val vecFeedback = Vec(VecLoadPipelineWidth, Flipped(ValidIO(new FeedbackToLsqIO)))
168    val storeAddrIn = Vec(StorePipelineWidth, Flipped(Valid(new LsPipelineBundle))) // store addr, data is not included
169    val storeAddrInRe = Vec(StorePipelineWidth, Input(new LsPipelineBundle())) // store more mmio and exception
170    val storeDataIn = Vec(StorePipelineWidth, Flipped(Valid(new MemExuOutput(isVector = true)))) // store data, send to sq from rs
171    val storeMaskIn = Vec(StorePipelineWidth, Flipped(Valid(new StoreMaskBundle))) // store mask, send to sq from rs
172    val sbuffer = Vec(EnsbufferWidth, Decoupled(new DCacheWordReqWithVaddrAndPfFlag)) // write committed store to sbuffer
173    val sbufferVecDifftestInfo = Vec(EnsbufferWidth, Decoupled(new DynInst)) // The vector store difftest needs is, write committed store to sbuffer
174    val uncacheOutstanding = Input(Bool())
175    val cmoOpReq  = DecoupledIO(new CMOReq)
176    val cmoOpResp = Flipped(DecoupledIO(new CMOResp))
177    val mmioStout = DecoupledIO(new MemExuOutput) // writeback uncached store
178    val vecmmioStout = DecoupledIO(new MemExuOutput(isVector = true))
179    val forward = Vec(LoadPipelineWidth, Flipped(new PipeLoadForwardQueryIO))
180    // TODO: scommit is only for scalar store
181    val rob = Flipped(new RobLsqIO)
182    val uncache = new UncacheWordIO
183    // val refill = Flipped(Valid(new DCacheLineReq ))
184    val exceptionAddr = new ExceptionAddrIO
185    val flushSbuffer = new SbufferFlushBundle
186    val sqEmpty = Output(Bool())
187    val stAddrReadySqPtr = Output(new SqPtr)
188    val stAddrReadyVec = Output(Vec(StoreQueueSize, Bool()))
189    val stDataReadySqPtr = Output(new SqPtr)
190    val stDataReadyVec = Output(Vec(StoreQueueSize, Bool()))
191    val stIssuePtr = Output(new SqPtr)
192    val sqDeqPtr = Output(new SqPtr)
193    val sqFull = Output(Bool())
194    val sqCancelCnt = Output(UInt(log2Up(StoreQueueSize + 1).W))
195    val sqDeq = Output(UInt(log2Ceil(EnsbufferWidth + 1).W))
196    val force_write = Output(Bool())
197    val maControl   = Flipped(new StoreMaBufToSqControlIO)
198  })
199
200  println("StoreQueue: size:" + StoreQueueSize)
201
202  // data modules
203  val uop = Reg(Vec(StoreQueueSize, new DynInst))
204  // val data = Reg(Vec(StoreQueueSize, new LsqEntry))
205  val dataModule = Module(new SQDataModule(
206    numEntries = StoreQueueSize,
207    numRead = EnsbufferWidth,
208    numWrite = StorePipelineWidth,
209    numForward = LoadPipelineWidth
210  ))
211  dataModule.io := DontCare
212  val paddrModule = Module(new SQAddrModule(
213    dataWidth = PAddrBits,
214    numEntries = StoreQueueSize,
215    numRead = EnsbufferWidth,
216    numWrite = StorePipelineWidth,
217    numForward = LoadPipelineWidth
218  ))
219  paddrModule.io := DontCare
220  val vaddrModule = Module(new SQAddrModule(
221    dataWidth = VAddrBits,
222    numEntries = StoreQueueSize,
223    numRead = EnsbufferWidth, // sbuffer; badvaddr will be sent from exceptionBuffer
224    numWrite = StorePipelineWidth,
225    numForward = LoadPipelineWidth
226  ))
227  vaddrModule.io := DontCare
228  val dataBuffer = Module(new DatamoduleResultBuffer(new DataBufferEntry))
229  val difftestBuffer = if (env.EnableDifftest) Some(Module(new DatamoduleResultBuffer(new DynInst))) else None
230  val exceptionBuffer = Module(new StoreExceptionBuffer)
231  exceptionBuffer.io.redirect := io.brqRedirect
232  exceptionBuffer.io.exceptionAddr.isStore := DontCare
233  // vlsu exception!
234  for (i <- 0 until VecStorePipelineWidth) {
235    exceptionBuffer.io.storeAddrIn(StorePipelineWidth * 2 + i).valid               := io.vecFeedback(i).valid && io.vecFeedback(i).bits.feedback(VecFeedbacks.FLUSH) // have exception
236    exceptionBuffer.io.storeAddrIn(StorePipelineWidth * 2 + i).bits                := DontCare
237    exceptionBuffer.io.storeAddrIn(StorePipelineWidth * 2 + i).bits.fullva         := io.vecFeedback(i).bits.vaddr
238    exceptionBuffer.io.storeAddrIn(StorePipelineWidth * 2 + i).bits.vaNeedExt      := io.vecFeedback(i).bits.vaNeedExt
239    exceptionBuffer.io.storeAddrIn(StorePipelineWidth * 2 + i).bits.gpaddr         := io.vecFeedback(i).bits.gpaddr
240    exceptionBuffer.io.storeAddrIn(StorePipelineWidth * 2 + i).bits.uop.uopIdx     := io.vecFeedback(i).bits.uopidx
241    exceptionBuffer.io.storeAddrIn(StorePipelineWidth * 2 + i).bits.uop.robIdx     := io.vecFeedback(i).bits.robidx
242    exceptionBuffer.io.storeAddrIn(StorePipelineWidth * 2 + i).bits.uop.vpu.vstart := io.vecFeedback(i).bits.vstart
243    exceptionBuffer.io.storeAddrIn(StorePipelineWidth * 2 + i).bits.uop.vpu.vl     := io.vecFeedback(i).bits.vl
244    exceptionBuffer.io.storeAddrIn(StorePipelineWidth * 2 + i).bits.isForVSnonLeafPTE := io.vecFeedback(i).bits.isForVSnonLeafPTE
245    exceptionBuffer.io.storeAddrIn(StorePipelineWidth * 2 + i).bits.uop.exceptionVec  := io.vecFeedback(i).bits.exceptionVec
246  }
247
248
249  val debug_paddr = Reg(Vec(StoreQueueSize, UInt((PAddrBits).W)))
250  val debug_vaddr = Reg(Vec(StoreQueueSize, UInt((VAddrBits).W)))
251  val debug_data = Reg(Vec(StoreQueueSize, UInt((XLEN).W)))
252
253  // state & misc
254  val allocated = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // sq entry has been allocated
255  val addrvalid = RegInit(VecInit(List.fill(StoreQueueSize)(false.B)))
256  val datavalid = RegInit(VecInit(List.fill(StoreQueueSize)(false.B)))
257  val allvalid  = VecInit((0 until StoreQueueSize).map(i => addrvalid(i) && datavalid(i)))
258  val committed = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // inst has been committed by rob
259  val unaligned = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // unaligned store
260  val cross16Byte = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // unaligned cross 16Byte boundary
261  val pending = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // mmio pending: inst is an mmio inst, it will not be executed until it reachs the end of rob
262  val nc = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // nc: inst is a nc inst
263  val mmio = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // mmio: inst is an mmio inst
264  val atomic = RegInit(VecInit(List.fill(StoreQueueSize)(false.B)))
265  val prefetch = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // need prefetch when committing this store to sbuffer?
266  val isVec = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // vector store instruction
267  val vecLastFlow = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // last uop the last flow of vector store instruction
268  val vecMbCommit = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // vector store committed from merge buffer to rob
269  val hasException = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // store has exception, should deq but not write sbuffer
270  val waitStoreS2 = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // wait for mmio and exception result until store_s2
271  // val vec_robCommit = Reg(Vec(StoreQueueSize, Bool())) // vector store committed by rob
272  // val vec_secondInv = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // Vector unit-stride, second entry is invalid
273  val vecExceptionFlag = RegInit(0.U.asTypeOf(Valid(new DynInst)))
274
275  // ptr
276  val enqPtrExt = RegInit(VecInit((0 until io.enq.req.length).map(_.U.asTypeOf(new SqPtr))))
277  val rdataPtrExt = RegInit(VecInit((0 until EnsbufferWidth).map(_.U.asTypeOf(new SqPtr))))
278  val deqPtrExt = RegInit(VecInit((0 until EnsbufferWidth).map(_.U.asTypeOf(new SqPtr))))
279  val cmtPtrExt = RegInit(VecInit((0 until CommitWidth).map(_.U.asTypeOf(new SqPtr))))
280  val addrReadyPtrExt = RegInit(0.U.asTypeOf(new SqPtr))
281  val dataReadyPtrExt = RegInit(0.U.asTypeOf(new SqPtr))
282
283  val enqPtr = enqPtrExt(0).value
284  val deqPtr = deqPtrExt(0).value
285  val cmtPtr = cmtPtrExt(0).value
286
287  val validCount = distanceBetween(enqPtrExt(0), deqPtrExt(0))
288  val allowEnqueue = validCount <= (StoreQueueSize - LSQStEnqWidth).U
289
290  val deqMask = UIntToMask(deqPtr, StoreQueueSize)
291  val enqMask = UIntToMask(enqPtr, StoreQueueSize)
292
293  val commitCount = WireInit(0.U(log2Ceil(CommitWidth + 1).W))
294  val scommit = GatedRegNext(io.rob.scommit)
295  val mmioReq = Wire(chiselTypeOf(io.uncache.req))
296  val ncReq = Wire(chiselTypeOf(io.uncache.req))
297  val ncResp = Wire(chiselTypeOf(io.uncache.resp))
298  val ncDoReq = Wire(Bool())
299  val ncDoResp = Wire(Bool())
300  val ncReadNextTrigger = Mux(io.uncacheOutstanding, ncDoReq, ncDoResp)
301  // ncDoReq is double RegNexted, as ubuffer data write takes 3 cycles.
302  // TODO lyq: to eliminate coupling by passing signals through ubuffer
303  val ncDeqTrigger = Mux(io.uncacheOutstanding, RegNext(RegNext(ncDoReq)), ncDoResp)
304  val ncPtr = Mux(io.uncacheOutstanding, RegNext(RegNext(io.uncache.req.bits.id)), io.uncache.resp.bits.id)
305
306  // store can be committed by ROB
307  io.rob.mmio := DontCare
308  io.rob.uop := DontCare
309
310  // Read dataModule
311  assert(EnsbufferWidth <= 2)
312  // rdataPtrExtNext and rdataPtrExtNext+1 entry will be read from dataModule
313  val rdataPtrExtNext = Wire(Vec(EnsbufferWidth, new SqPtr))
314  rdataPtrExtNext := rdataPtrExt.map(i => i +
315    PopCount(dataBuffer.io.enq.map(x=> x.fire && x.bits.sqNeedDeq)) +
316    PopCount(ncReadNextTrigger || io.mmioStout.fire || io.vecmmioStout.fire)
317  )
318
319  // deqPtrExtNext traces which inst is about to leave store queue
320  //
321  // io.sbuffer(i).fire is RegNexted, as sbuffer data write takes 2 cycles.
322  // Before data write finish, sbuffer is unable to provide store to load
323  // forward data. As an workaround, deqPtrExt and allocated flag update
324  // is delayed so that load can get the right data from store queue.
325  //
326  // Modify deqPtrExtNext and io.sqDeq with care!
327  val deqPtrExtNext = Wire(Vec(EnsbufferWidth, new SqPtr))
328  // Only sqNeedDeq can move the ptr
329  deqPtrExtNext := deqPtrExt.map(i =>  i +
330    RegNext(PopCount(VecInit(io.sbuffer.map(x=> x.fire && x.bits.sqNeedDeq)))) +
331    PopCount(ncDeqTrigger || io.mmioStout.fire || io.vecmmioStout.fire)
332  )
333
334  io.sqDeq := RegNext(
335    RegNext(PopCount(VecInit(io.sbuffer.map(x=> x.fire && x.bits.sqNeedDeq)))) +
336    PopCount(ncDeqTrigger || io.mmioStout.fire || io.vecmmioStout.fire)
337  )
338
339  assert(!RegNext(RegNext(io.sbuffer(0).fire) && (io.mmioStout.fire || io.vecmmioStout.fire)))
340
341  for (i <- 0 until EnsbufferWidth) {
342    dataModule.io.raddr(i) := rdataPtrExtNext(i).value
343    paddrModule.io.raddr(i) := rdataPtrExtNext(i).value
344    vaddrModule.io.raddr(i) := rdataPtrExtNext(i).value
345  }
346
347  /**
348    * Enqueue at dispatch
349    *
350    * Currently, StoreQueue only allows enqueue when #emptyEntries > EnqWidth
351    * Dynamic enq based on numLsElem number
352    */
353  io.enq.canAccept := allowEnqueue
354  val canEnqueue = io.enq.req.map(_.valid)
355  val enqCancel = io.enq.req.map(_.bits.robIdx.needFlush(io.brqRedirect))
356  val vStoreFlow = io.enq.req.map(_.bits.numLsElem)
357  val validVStoreFlow = vStoreFlow.zipWithIndex.map{case (vLoadFlowNumItem, index) => Mux(!RegNext(io.brqRedirect.valid) && canEnqueue(index), vLoadFlowNumItem, 0.U)}
358  val validVStoreOffset = vStoreFlow.zip(io.enq.needAlloc).map{case (flow, needAllocItem) => Mux(needAllocItem, flow, 0.U)}
359  val validVStoreOffsetRShift = 0.U +: validVStoreOffset.take(vStoreFlow.length - 1)
360
361  val enqLowBound = io.enq.req.map(_.bits.sqIdx)
362  val enqUpBound  = io.enq.req.map(x => x.bits.sqIdx + x.bits.numLsElem)
363  val enqCrossLoop = enqLowBound.zip(enqUpBound).map{case (low, up) => low.flag =/= up.flag}
364
365  for(i <- 0 until StoreQueueSize) {
366    val entryCanEnqSeq = (0 until io.enq.req.length).map { j =>
367      val entryHitBound = Mux(
368        enqCrossLoop(j),
369        enqLowBound(j).value <= i.U || i.U < enqUpBound(j).value,
370        enqLowBound(j).value <= i.U && i.U < enqUpBound(j).value
371      )
372      canEnqueue(j) && !enqCancel(j) && entryHitBound
373    }
374
375    val entryCanEnq = entryCanEnqSeq.reduce(_ || _)
376    val selectBits = ParallelPriorityMux(entryCanEnqSeq, io.enq.req.map(_.bits))
377    val selectUpBound = ParallelPriorityMux(entryCanEnqSeq, enqUpBound)
378    when (entryCanEnq) {
379      uop(i) := selectBits
380      vecLastFlow(i) := Mux((i + 1).U === selectUpBound.value, selectBits.lastUop, false.B)
381      allocated(i) := true.B
382      datavalid(i) := false.B
383      addrvalid(i) := false.B
384      unaligned(i) := false.B
385      cross16Byte(i) := false.B
386      committed(i) := false.B
387      pending(i) := false.B
388      prefetch(i) := false.B
389      nc(i) := false.B
390      mmio(i) := false.B
391      isVec(i) :=  FuType.isVStore(selectBits.fuType)
392      vecMbCommit(i) := false.B
393      hasException(i) := false.B
394      waitStoreS2(i) := true.B
395    }
396  }
397
398  for (i <- 0 until io.enq.req.length) {
399    val sqIdx = enqPtrExt(0) + validVStoreOffsetRShift.take(i + 1).reduce(_ + _)
400    val index = io.enq.req(i).bits.sqIdx
401    XSError(canEnqueue(i) && !enqCancel(i) && (!io.enq.canAccept || !io.enq.lqCanAccept), s"must accept $i\n")
402    XSError(canEnqueue(i) && !enqCancel(i) && index.value =/= sqIdx.value, s"must be the same entry $i\n")
403    io.enq.resp(i) := sqIdx
404  }
405  XSDebug(p"(ready, valid): ${io.enq.canAccept}, ${Binary(Cat(io.enq.req.map(_.valid)))}\n")
406
407  /**
408    * Update addr/dataReadyPtr when issue from rs
409    */
410  // update issuePtr
411  val IssuePtrMoveStride = 4
412  require(IssuePtrMoveStride >= 2)
413
414  val addrReadyLookupVec = (0 until IssuePtrMoveStride).map(addrReadyPtrExt + _.U)
415  val addrReadyLookup = addrReadyLookupVec.map(ptr => allocated(ptr.value) &&
416   (mmio(ptr.value) || addrvalid(ptr.value) || vecMbCommit(ptr.value))
417    && ptr =/= enqPtrExt(0))
418  val nextAddrReadyPtr = addrReadyPtrExt + PriorityEncoder(VecInit(addrReadyLookup.map(!_) :+ true.B))
419  addrReadyPtrExt := nextAddrReadyPtr
420
421  val stAddrReadyVecReg = Wire(Vec(StoreQueueSize, Bool()))
422  (0 until StoreQueueSize).map(i => {
423    stAddrReadyVecReg(i) := allocated(i) && (mmio(i) || addrvalid(i) || (isVec(i) && vecMbCommit(i)))
424  })
425  io.stAddrReadyVec := GatedValidRegNext(stAddrReadyVecReg)
426
427  when (io.brqRedirect.valid) {
428    addrReadyPtrExt := Mux(
429      isAfter(cmtPtrExt(0), deqPtrExt(0)),
430      cmtPtrExt(0),
431      deqPtrExtNext(0) // for mmio insts, deqPtr may be ahead of cmtPtr
432    )
433  }
434
435  io.stAddrReadySqPtr := addrReadyPtrExt
436
437  // update
438  val dataReadyLookupVec = (0 until IssuePtrMoveStride).map(dataReadyPtrExt + _.U)
439  val dataReadyLookup = dataReadyLookupVec.map(ptr => allocated(ptr.value) &&
440   (mmio(ptr.value) || datavalid(ptr.value) || vecMbCommit(ptr.value))
441    && ptr =/= enqPtrExt(0))
442  val nextDataReadyPtr = dataReadyPtrExt + PriorityEncoder(VecInit(dataReadyLookup.map(!_) :+ true.B))
443  dataReadyPtrExt := nextDataReadyPtr
444
445  val stDataReadyVecReg = Wire(Vec(StoreQueueSize, Bool()))
446  (0 until StoreQueueSize).map(i => {
447    stDataReadyVecReg(i) := allocated(i) && (mmio(i) || datavalid(i) || (isVec(i) && vecMbCommit(i)))
448  })
449  io.stDataReadyVec := GatedValidRegNext(stDataReadyVecReg)
450
451  when (io.brqRedirect.valid) {
452    dataReadyPtrExt := Mux(
453      isAfter(cmtPtrExt(0), deqPtrExt(0)),
454      cmtPtrExt(0),
455      deqPtrExtNext(0) // for mmio insts, deqPtr may be ahead of cmtPtr
456    )
457  }
458
459  io.stDataReadySqPtr := dataReadyPtrExt
460  io.stIssuePtr := enqPtrExt(0)
461  io.sqDeqPtr := deqPtrExt(0)
462
463  /**
464    * Writeback store from store units
465    *
466    * Most store instructions writeback to regfile in the previous cycle.
467    * However,
468    *   (1) For an mmio instruction with exceptions, we need to mark it as addrvalid
469    * (in this way it will trigger an exception when it reaches ROB's head)
470    * instead of pending to avoid sending them to lower level.
471    *   (2) For an mmio instruction without exceptions, we mark it as pending.
472    * When the instruction reaches ROB's head, StoreQueue sends it to uncache channel.
473    * Upon receiving the response, StoreQueue writes back the instruction
474    * through arbiter with store units. It will later commit as normal.
475    */
476
477  // Write addr to sq
478  for (i <- 0 until StorePipelineWidth) {
479    paddrModule.io.wen(i) := false.B
480    vaddrModule.io.wen(i) := false.B
481    dataModule.io.mask.wen(i) := false.B
482    val stWbIndex = io.storeAddrIn(i).bits.uop.sqIdx.value
483    exceptionBuffer.io.storeAddrIn(i).valid := io.storeAddrIn(i).fire && !io.storeAddrIn(i).bits.miss && !io.storeAddrIn(i).bits.isvec
484    exceptionBuffer.io.storeAddrIn(i).bits := io.storeAddrIn(i).bits
485    // will re-enter exceptionbuffer at store_s2
486    exceptionBuffer.io.storeAddrIn(StorePipelineWidth + i).valid := false.B
487    exceptionBuffer.io.storeAddrIn(StorePipelineWidth + i).bits := 0.U.asTypeOf(new LsPipelineBundle)
488
489    when (io.storeAddrIn(i).fire && io.storeAddrIn(i).bits.updateAddrValid) {
490      val addr_valid = !io.storeAddrIn(i).bits.miss
491      addrvalid(stWbIndex) := addr_valid //!io.storeAddrIn(i).bits.mmio
492      nc(stWbIndex) := io.storeAddrIn(i).bits.nc
493
494    }
495    when (io.storeAddrIn(i).fire && !io.storeAddrIn(i).bits.isFrmMisAlignBuf) {
496      // pending(stWbIndex) := io.storeAddrIn(i).bits.mmio
497      unaligned(stWbIndex) := io.storeAddrIn(i).bits.isMisalign
498      cross16Byte(stWbIndex) := io.storeAddrIn(i).bits.isMisalign && !io.storeAddrIn(i).bits.misalignWith16Byte
499
500      paddrModule.io.waddr(i) := stWbIndex
501      paddrModule.io.wdata(i) := io.storeAddrIn(i).bits.paddr
502      paddrModule.io.wmask(i) := io.storeAddrIn(i).bits.mask
503      paddrModule.io.wlineflag(i) := io.storeAddrIn(i).bits.wlineflag
504      paddrModule.io.wen(i) := true.B
505
506      vaddrModule.io.waddr(i) := stWbIndex
507      vaddrModule.io.wdata(i) := io.storeAddrIn(i).bits.vaddr
508      vaddrModule.io.wmask(i) := io.storeAddrIn(i).bits.mask
509      vaddrModule.io.wlineflag(i) := io.storeAddrIn(i).bits.wlineflag
510      vaddrModule.io.wen(i) := true.B
511
512      debug_paddr(paddrModule.io.waddr(i)) := paddrModule.io.wdata(i)
513
514      // mmio(stWbIndex) := io.storeAddrIn(i).bits.mmio
515    }
516    when (io.storeAddrIn(i).fire) {
517      uop(stWbIndex) := io.storeAddrIn(i).bits.uop
518      uop(stWbIndex).debugInfo := io.storeAddrIn(i).bits.uop.debugInfo
519    }
520    XSInfo(io.storeAddrIn(i).fire && !io.storeAddrIn(i).bits.isFrmMisAlignBuf,
521      "store addr write to sq idx %d pc 0x%x miss:%d vaddr %x paddr %x mmio %x isvec %x\n",
522      io.storeAddrIn(i).bits.uop.sqIdx.value,
523      io.storeAddrIn(i).bits.uop.pc,
524      io.storeAddrIn(i).bits.miss,
525      io.storeAddrIn(i).bits.vaddr,
526      io.storeAddrIn(i).bits.paddr,
527      io.storeAddrIn(i).bits.mmio,
528      io.storeAddrIn(i).bits.isvec
529    )
530
531    // re-replinish mmio, for pma/pmp will get mmio one cycle later
532    val storeAddrInFireReg = RegNext(io.storeAddrIn(i).fire && !io.storeAddrIn(i).bits.miss) && io.storeAddrInRe(i).updateAddrValid
533    //val stWbIndexReg = RegNext(stWbIndex)
534    val stWbIndexReg = RegEnable(stWbIndex, io.storeAddrIn(i).fire)
535    when (storeAddrInFireReg) {
536      pending(stWbIndexReg) := io.storeAddrInRe(i).mmio
537      mmio(stWbIndexReg) := io.storeAddrInRe(i).mmio
538      atomic(stWbIndexReg) := io.storeAddrInRe(i).atomic
539      hasException(stWbIndexReg) := io.storeAddrInRe(i).hasException
540      waitStoreS2(stWbIndexReg) := false.B
541    }
542    // dcache miss info (one cycle later than storeIn)
543    // if dcache report a miss in sta pipeline, this store will trigger a prefetch when committing to sbuffer (if EnableAtCommitMissTrigger)
544    when (storeAddrInFireReg) {
545      prefetch(stWbIndexReg) := io.storeAddrInRe(i).miss
546    }
547    // enter exceptionbuffer again
548    when (storeAddrInFireReg) {
549      exceptionBuffer.io.storeAddrIn(StorePipelineWidth + i).valid := io.storeAddrInRe(i).hasException && !io.storeAddrInRe(i).isvec
550      exceptionBuffer.io.storeAddrIn(StorePipelineWidth + i).bits := io.storeAddrInRe(i)
551      exceptionBuffer.io.storeAddrIn(StorePipelineWidth + i).bits.uop.exceptionVec(storeAccessFault) := io.storeAddrInRe(i).af
552    }
553
554    when(vaddrModule.io.wen(i)){
555      debug_vaddr(vaddrModule.io.waddr(i)) := vaddrModule.io.wdata(i)
556    }
557  }
558
559  // Write data to sq
560  // Now store data pipeline is actually 2 stages
561  for (i <- 0 until StorePipelineWidth) {
562    dataModule.io.data.wen(i) := false.B
563    val stWbIndex = io.storeDataIn(i).bits.uop.sqIdx.value
564    val isVec     = FuType.isVStore(io.storeDataIn(i).bits.uop.fuType)
565    // sq data write takes 2 cycles:
566    // sq data write s0
567    when (io.storeDataIn(i).fire) {
568      // send data write req to data module
569      dataModule.io.data.waddr(i) := stWbIndex
570      dataModule.io.data.wdata(i) := Mux(io.storeDataIn(i).bits.uop.fuOpType === LSUOpType.cbo_zero,
571        0.U,
572        Mux(isVec,
573          io.storeDataIn(i).bits.data,
574          genVWdata(io.storeDataIn(i).bits.data, io.storeDataIn(i).bits.uop.fuOpType(2,0)))
575      )
576      dataModule.io.data.wen(i) := true.B
577
578      debug_data(dataModule.io.data.waddr(i)) := dataModule.io.data.wdata(i)
579    }
580    XSInfo(io.storeDataIn(i).fire,
581      "store data write to sq idx %d pc 0x%x data %x -> %x\n",
582      io.storeDataIn(i).bits.uop.sqIdx.value,
583      io.storeDataIn(i).bits.uop.pc,
584      io.storeDataIn(i).bits.data,
585      dataModule.io.data.wdata(i)
586    )
587    // sq data write s1
588    val lastStWbIndex = RegEnable(stWbIndex, io.storeDataIn(i).fire)
589    when (
590      RegNext(io.storeDataIn(i).fire) && allocated(lastStWbIndex)
591      // && !RegNext(io.storeDataIn(i).bits.uop).robIdx.needFlush(io.brqRedirect)
592    ) {
593      datavalid(lastStWbIndex) := true.B
594    }
595  }
596
597  // Write mask to sq
598  for (i <- 0 until StorePipelineWidth) {
599    // sq mask write s0
600    when (io.storeMaskIn(i).fire) {
601      // send data write req to data module
602      dataModule.io.mask.waddr(i) := io.storeMaskIn(i).bits.sqIdx.value
603      dataModule.io.mask.wdata(i) := io.storeMaskIn(i).bits.mask
604      dataModule.io.mask.wen(i) := true.B
605    }
606  }
607
608  /**
609    * load forward query
610    *
611    * Check store queue for instructions that is older than the load.
612    * The response will be valid at the next cycle after req.
613    */
614  // check over all lq entries and forward data from the first matched store
615  for (i <- 0 until LoadPipelineWidth) {
616    // Compare deqPtr (deqPtr) and forward.sqIdx, we have two cases:
617    // (1) if they have the same flag, we need to check range(tail, sqIdx)
618    // (2) if they have different flags, we need to check range(tail, VirtualLoadQueueSize) and range(0, sqIdx)
619    // Forward1: Mux(same_flag, range(tail, sqIdx), range(tail, VirtualLoadQueueSize))
620    // Forward2: Mux(same_flag, 0.U,                   range(0, sqIdx)    )
621    // i.e. forward1 is the target entries with the same flag bits and forward2 otherwise
622    val differentFlag = deqPtrExt(0).flag =/= io.forward(i).sqIdx.flag
623    val forwardMask = io.forward(i).sqIdxMask
624    // all addrvalid terms need to be checked
625    // Real Vaild: all scalar stores, and vector store with (!inactive && !secondInvalid)
626    val addrRealValidVec = WireInit(VecInit((0 until StoreQueueSize).map(j => addrvalid(j) && allocated(j))))
627    // vector store will consider all inactive || secondInvalid flows as valid
628    val addrValidVec = WireInit(VecInit((0 until StoreQueueSize).map(j => addrvalid(j) && allocated(j))))
629    val dataValidVec = WireInit(VecInit((0 until StoreQueueSize).map(j => datavalid(j))))
630    val allValidVec  = WireInit(VecInit((0 until StoreQueueSize).map(j => addrvalid(j) && datavalid(j) && allocated(j))))
631
632    val lfstEnable = Constantin.createRecord("LFSTEnable", LFSTEnable)
633    val storeSetHitVec = Mux(lfstEnable,
634      WireInit(VecInit((0 until StoreQueueSize).map(j => io.forward(i).uop.loadWaitBit && uop(j).robIdx === io.forward(i).uop.waitForRobIdx))),
635      WireInit(VecInit((0 until StoreQueueSize).map(j => uop(j).storeSetHit && uop(j).ssid === io.forward(i).uop.ssid)))
636    )
637
638    val forwardMask1 = Mux(differentFlag, ~deqMask, deqMask ^ forwardMask)
639    val forwardMask2 = Mux(differentFlag, forwardMask, 0.U(StoreQueueSize.W))
640    val canForward1 = forwardMask1 & allValidVec.asUInt
641    val canForward2 = forwardMask2 & allValidVec.asUInt
642    val needForward = Mux(differentFlag, ~deqMask | forwardMask, deqMask ^ forwardMask)
643
644    XSDebug(p"$i f1 ${Binary(canForward1)} f2 ${Binary(canForward2)} " +
645      p"sqIdx ${io.forward(i).sqIdx} pa ${Hexadecimal(io.forward(i).paddr)}\n"
646    )
647
648    // do real fwd query (cam lookup in load_s1)
649    dataModule.io.needForward(i)(0) := canForward1 & vaddrModule.io.forwardMmask(i).asUInt
650    dataModule.io.needForward(i)(1) := canForward2 & vaddrModule.io.forwardMmask(i).asUInt
651
652    vaddrModule.io.forwardMdata(i) := io.forward(i).vaddr
653    vaddrModule.io.forwardDataMask(i) := io.forward(i).mask
654    paddrModule.io.forwardMdata(i) := io.forward(i).paddr
655    paddrModule.io.forwardDataMask(i) := io.forward(i).mask
656
657    // vaddr cam result does not equal to paddr cam result
658    // replay needed
659    // val vpmaskNotEqual = ((paddrModule.io.forwardMmask(i).asUInt ^ vaddrModule.io.forwardMmask(i).asUInt) & needForward) =/= 0.U
660    // val vaddrMatchFailed = vpmaskNotEqual && io.forward(i).valid
661    val vpmaskNotEqual = (
662      (RegEnable(paddrModule.io.forwardMmask(i).asUInt, io.forward(i).valid) ^ RegEnable(vaddrModule.io.forwardMmask(i).asUInt, io.forward(i).valid)) &
663      RegNext(needForward) &
664      GatedRegNext(addrRealValidVec.asUInt)
665    ) =/= 0.U
666    val vaddrMatchFailed = vpmaskNotEqual && RegNext(io.forward(i).valid)
667    XSInfo(vaddrMatchFailed,
668      "vaddrMatchFailed: pc %x pmask %x vmask %x\n",
669      RegEnable(io.forward(i).uop.pc, io.forward(i).valid),
670      RegEnable(needForward & paddrModule.io.forwardMmask(i).asUInt, io.forward(i).valid),
671      RegEnable(needForward & vaddrModule.io.forwardMmask(i).asUInt, io.forward(i).valid)
672    );
673    XSPerfAccumulate("vaddr_match_failed", vpmaskNotEqual)
674    XSPerfAccumulate("vaddr_match_really_failed", vaddrMatchFailed)
675
676    // Fast forward mask will be generated immediately (load_s1)
677    io.forward(i).forwardMaskFast := dataModule.io.forwardMaskFast(i)
678
679    // Forward result will be generated 1 cycle later (load_s2)
680    io.forward(i).forwardMask := dataModule.io.forwardMask(i)
681    io.forward(i).forwardData := dataModule.io.forwardData(i)
682
683    //TODO If the previous store appears out of alignment, then simply FF, this is a very unreasonable way to do it.
684    //TODO But for the time being, this is the way to ensure correctness. Such a suitable opportunity to support unaligned forward.
685    // If addr match, data not ready, mark it as dataInvalid
686    // load_s1: generate dataInvalid in load_s1 to set fastUop
687    val dataInvalidMask1 = ((addrValidVec.asUInt & ~dataValidVec.asUInt & vaddrModule.io.forwardMmask(i).asUInt) | unaligned.asUInt & allocated.asUInt) & forwardMask1.asUInt
688    val dataInvalidMask2 = ((addrValidVec.asUInt & ~dataValidVec.asUInt & vaddrModule.io.forwardMmask(i).asUInt) | unaligned.asUInt & allocated.asUInt) & forwardMask2.asUInt
689    val dataInvalidMask = dataInvalidMask1 | dataInvalidMask2
690    io.forward(i).dataInvalidFast := dataInvalidMask.orR
691
692    // make chisel happy
693    val dataInvalidMask1Reg = Wire(UInt(StoreQueueSize.W))
694    dataInvalidMask1Reg := RegNext(dataInvalidMask1)
695    // make chisel happy
696    val dataInvalidMask2Reg = Wire(UInt(StoreQueueSize.W))
697    dataInvalidMask2Reg := RegNext(dataInvalidMask2)
698    val dataInvalidMaskReg = dataInvalidMask1Reg | dataInvalidMask2Reg
699
700    // If SSID match, address not ready, mark it as addrInvalid
701    // load_s2: generate addrInvalid
702    val addrInvalidMask1 = (~addrValidVec.asUInt & storeSetHitVec.asUInt & forwardMask1.asUInt)
703    val addrInvalidMask2 = (~addrValidVec.asUInt & storeSetHitVec.asUInt & forwardMask2.asUInt)
704    // make chisel happy
705    val addrInvalidMask1Reg = Wire(UInt(StoreQueueSize.W))
706    addrInvalidMask1Reg := RegNext(addrInvalidMask1)
707    // make chisel happy
708    val addrInvalidMask2Reg = Wire(UInt(StoreQueueSize.W))
709    addrInvalidMask2Reg := RegNext(addrInvalidMask2)
710    val addrInvalidMaskReg = addrInvalidMask1Reg | addrInvalidMask2Reg
711
712    // load_s2
713    io.forward(i).dataInvalid := RegNext(io.forward(i).dataInvalidFast)
714    // check if vaddr forward mismatched
715    io.forward(i).matchInvalid := vaddrMatchFailed
716
717    // data invalid sq index
718    // check whether false fail
719    // check flag
720    val s2_differentFlag = RegNext(differentFlag)
721    val s2_enqPtrExt = RegNext(enqPtrExt(0))
722    val s2_deqPtrExt = RegNext(deqPtrExt(0))
723
724    // addr invalid sq index
725    // make chisel happy
726    val addrInvalidMaskRegWire = Wire(UInt(StoreQueueSize.W))
727    addrInvalidMaskRegWire := addrInvalidMaskReg
728    val addrInvalidFlag = addrInvalidMaskRegWire.orR
729    val hasInvalidAddr = (~addrValidVec.asUInt & needForward).orR
730
731    val addrInvalidSqIdx1 = OHToUInt(Reverse(PriorityEncoderOH(Reverse(addrInvalidMask1Reg))))
732    val addrInvalidSqIdx2 = OHToUInt(Reverse(PriorityEncoderOH(Reverse(addrInvalidMask2Reg))))
733    val addrInvalidSqIdx = Mux(addrInvalidMask2Reg.orR, addrInvalidSqIdx2, addrInvalidSqIdx1)
734
735    // store-set content management
736    //                +-----------------------+
737    //                | Search a SSID for the |
738    //                |    load operation     |
739    //                +-----------------------+
740    //                           |
741    //                           V
742    //                 +-------------------+
743    //                 | load wait strict? |
744    //                 +-------------------+
745    //                           |
746    //                           V
747    //               +----------------------+
748    //            Set|                      |Clean
749    //               V                      V
750    //  +------------------------+   +------------------------------+
751    //  | Waiting for all older  |   | Wait until the corresponding |
752    //  |   stores operations    |   | older store operations       |
753    //  +------------------------+   +------------------------------+
754
755
756
757    when (RegEnable(io.forward(i).uop.loadWaitStrict, io.forward(i).valid)) {
758      io.forward(i).addrInvalidSqIdx := RegEnable((io.forward(i).uop.sqIdx - 1.U), io.forward(i).valid)
759    } .elsewhen (addrInvalidFlag) {
760      io.forward(i).addrInvalidSqIdx.flag := Mux(!s2_differentFlag || addrInvalidSqIdx >= s2_deqPtrExt.value, s2_deqPtrExt.flag, s2_enqPtrExt.flag)
761      io.forward(i).addrInvalidSqIdx.value := addrInvalidSqIdx
762    } .otherwise {
763      // may be store inst has been written to sbuffer already.
764      io.forward(i).addrInvalidSqIdx := RegEnable(io.forward(i).uop.sqIdx, io.forward(i).valid)
765    }
766    io.forward(i).addrInvalid := Mux(RegEnable(io.forward(i).uop.loadWaitStrict, io.forward(i).valid), RegNext(hasInvalidAddr), addrInvalidFlag)
767
768    // data invalid sq index
769    // make chisel happy
770    val dataInvalidMaskRegWire = Wire(UInt(StoreQueueSize.W))
771    dataInvalidMaskRegWire := dataInvalidMaskReg
772    val dataInvalidFlag = dataInvalidMaskRegWire.orR
773
774    val dataInvalidSqIdx1 = OHToUInt(Reverse(PriorityEncoderOH(Reverse(dataInvalidMask1Reg))))
775    val dataInvalidSqIdx2 = OHToUInt(Reverse(PriorityEncoderOH(Reverse(dataInvalidMask2Reg))))
776    val dataInvalidSqIdx = Mux(dataInvalidMask2Reg.orR, dataInvalidSqIdx2, dataInvalidSqIdx1)
777
778    when (dataInvalidFlag) {
779      io.forward(i).dataInvalidSqIdx.flag := Mux(!s2_differentFlag || dataInvalidSqIdx >= s2_deqPtrExt.value, s2_deqPtrExt.flag, s2_enqPtrExt.flag)
780      io.forward(i).dataInvalidSqIdx.value := dataInvalidSqIdx
781    } .otherwise {
782      // may be store inst has been written to sbuffer already.
783      io.forward(i).dataInvalidSqIdx := RegEnable(io.forward(i).uop.sqIdx, io.forward(i).valid)
784    }
785  }
786
787  /**
788    * Memory mapped IO / other uncached operations / CMO
789    *
790    * States:
791    * (1) writeback from store units: mark as pending
792    * (2) when they reach ROB's head, they can be sent to uncache channel
793    * (3) response from uncache channel: mark as datavalidmask.wen
794    * (4) writeback to ROB (and other units): mark as writebacked
795    * (5) ROB commits the instruction: same as normal instructions
796    */
797  //(2) when they reach ROB's head, they can be sent to uncache channel
798  // TODO: CAN NOT deal with vector mmio now!
799  val s_idle :: s_req :: s_resp :: s_wb :: s_wait :: Nil = Enum(5)
800  val mmioState = RegInit(s_idle)
801  val uncacheUop = Reg(new DynInst)
802  val cboFlushedSb = RegInit(false.B)
803  val cmoOpCode = uncacheUop.fuOpType(1, 0)
804  val mmioDoReq = io.uncache.req.fire && !io.uncache.req.bits.nc
805  val cboMmioPAddr = Reg(UInt(PAddrBits.W))
806  switch(mmioState) {
807    is(s_idle) {
808      when(RegNext(io.rob.pendingst && uop(deqPtr).robIdx === io.rob.pendingPtr && pending(deqPtr) && allocated(deqPtr) && datavalid(deqPtr) && addrvalid(deqPtr) && !hasException(deqPtr))) {
809        mmioState := s_req
810        uncacheUop := uop(deqPtr)
811        uncacheUop.exceptionVec := 0.U.asTypeOf(ExceptionVec())
812        uncacheUop.trigger := 0.U.asTypeOf(TriggerAction())
813        cboFlushedSb := false.B
814        cboMmioPAddr := paddrModule.io.rdata(0)
815      }
816    }
817    is(s_req) {
818      when (mmioDoReq) {
819        mmioState := s_resp
820      }
821    }
822    is(s_resp) {
823      when(io.uncache.resp.fire && !io.uncache.resp.bits.nc) {
824        mmioState := s_wb
825
826        when (io.uncache.resp.bits.nderr) {
827          uncacheUop.exceptionVec(storeAccessFault) := true.B
828        }
829      }
830    }
831    is(s_wb) {
832      when (io.mmioStout.fire || io.vecmmioStout.fire) {
833        when (uncacheUop.exceptionVec(storeAccessFault)) {
834          mmioState := s_idle
835        }.otherwise {
836          mmioState := s_wait
837        }
838      }
839    }
840    is(s_wait) {
841      // A MMIO store can always move cmtPtrExt as it must be ROB head
842      when(scommit > 0.U) {
843        mmioState := s_idle // ready for next mmio
844      }
845    }
846  }
847
848  mmioReq.valid := mmioState === s_req
849  mmioReq.bits := DontCare
850  mmioReq.bits.cmd  := MemoryOpConstants.M_XWR
851  mmioReq.bits.addr := paddrModule.io.rdata(0) // data(deqPtr) -> rdata(0)
852  mmioReq.bits.vaddr:= vaddrModule.io.rdata(0)
853  mmioReq.bits.data := shiftDataToLow(paddrModule.io.rdata(0), dataModule.io.rdata(0).data)
854  mmioReq.bits.mask := shiftMaskToLow(paddrModule.io.rdata(0), dataModule.io.rdata(0).mask)
855  mmioReq.bits.atomic := atomic(GatedRegNext(rdataPtrExtNext(0)).value)
856  mmioReq.bits.nc := false.B
857  mmioReq.bits.id := rdataPtrExt(0).value
858
859  /**
860    * NC Store
861    * (1) req: when it has been commited, it can be sent to lower level.
862    * (2) resp: because SQ data forward is required, it can only be deq when ncResp is received
863    */
864  // TODO: CAN NOT deal with vector nc now!
865  val nc_idle :: nc_req :: nc_resp :: Nil = Enum(3)
866  val ncState = RegInit(nc_idle)
867  val rptr0 = rdataPtrExt(0).value
868  switch(ncState){
869    is(nc_idle) {
870      when(nc(rptr0) && allocated(rptr0) && committed(rptr0) && !mmio(rptr0) && !isVec(rptr0)) {
871        ncState := nc_req
872      }
873    }
874    is(nc_req) {
875      when(ncDoReq) {
876        when(io.uncacheOutstanding) {
877          ncState := nc_idle
878        }.otherwise{
879          ncState := nc_resp
880        }
881      }
882    }
883    is(nc_resp) {
884      when(ncResp.fire) {
885        ncState := nc_idle
886      }
887    }
888  }
889
890  ncDoReq := io.uncache.req.fire && io.uncache.req.bits.nc
891  ncDoResp := ncResp.fire
892
893  ncReq.valid := ncState === nc_req
894  ncReq.bits := DontCare
895  ncReq.bits.cmd  := MemoryOpConstants.M_XWR
896  ncReq.bits.addr := paddrModule.io.rdata(0)
897  ncReq.bits.vaddr:= vaddrModule.io.rdata(0)
898  ncReq.bits.data := shiftDataToLow(paddrModule.io.rdata(0), dataModule.io.rdata(0).data)
899  ncReq.bits.mask := shiftMaskToLow(paddrModule.io.rdata(0), dataModule.io.rdata(0).mask)
900  ncReq.bits.atomic := atomic(GatedRegNext(rdataPtrExtNext(0)).value)
901  ncReq.bits.nc := true.B
902  ncReq.bits.id := rptr0
903
904  ncResp.ready := io.uncache.resp.ready
905  ncResp.valid := io.uncache.resp.fire && io.uncache.resp.bits.nc
906  ncResp.bits <> io.uncache.resp.bits
907  when (ncDeqTrigger) {
908    allocated(ncPtr) := false.B
909    XSDebug("nc fire: ptr %d\n", ncPtr)
910  }
911
912  mmioReq.ready := io.uncache.req.ready
913  ncReq.ready := io.uncache.req.ready && !mmioReq.valid
914  io.uncache.req.valid := mmioReq.valid || ncReq.valid
915  io.uncache.req.bits := Mux(mmioReq.valid, mmioReq.bits, ncReq.bits)
916
917  // CBO op type check can be delayed for 1 cycle,
918  // as uncache op will not start in s_idle
919  val cboMmioAddr = get_block_addr(cboMmioPAddr)
920  val deqCanDoCbo = GatedRegNext(LSUOpType.isCbo(uop(deqPtr).fuOpType) && allocated(deqPtr) && addrvalid(deqPtr))
921  when (deqCanDoCbo) {
922    // disable uncache channel
923    io.uncache.req.valid := false.B
924
925    when (io.cmoOpReq.fire) {
926      mmioState := s_resp
927    }
928
929    when (mmioState === s_resp) {
930      when (io.cmoOpResp.fire) {
931        mmioState := s_wb
932      }
933    }
934  }
935
936  io.cmoOpReq.valid := deqCanDoCbo && cboFlushedSb && (mmioState === s_req)
937  io.cmoOpReq.bits.opcode  := cmoOpCode
938  io.cmoOpReq.bits.address := cboMmioAddr
939
940  io.cmoOpResp.ready := deqCanDoCbo && (mmioState === s_resp)
941
942  io.flushSbuffer.valid := deqCanDoCbo && !cboFlushedSb && (mmioState === s_req) && !io.flushSbuffer.empty
943
944  when(deqCanDoCbo && !cboFlushedSb && (mmioState === s_req) && io.flushSbuffer.empty) {
945    cboFlushedSb := true.B
946  }
947
948  when(mmioDoReq){
949    // mmio store should not be committed until uncache req is sent
950    pending(deqPtr) := false.B
951  }
952  XSDebug(
953    mmioDoReq,
954    p"uncache req: pc ${Hexadecimal(uop(deqPtr).pc)} " +
955    p"addr ${Hexadecimal(io.uncache.req.bits.addr)} " +
956    p"data ${Hexadecimal(io.uncache.req.bits.data)} " +
957    p"op ${Hexadecimal(io.uncache.req.bits.cmd)} " +
958    p"mask ${Hexadecimal(io.uncache.req.bits.mask)}\n"
959  )
960
961  // (3) response from uncache channel: mark as datavalid
962  io.uncache.resp.ready := true.B
963
964  // (4) scalar store: writeback to ROB (and other units): mark as writebacked
965  io.mmioStout.valid := mmioState === s_wb && !isVec(deqPtr)
966  io.mmioStout.bits.uop := uncacheUop
967  io.mmioStout.bits.uop.exceptionVec := ExceptionNO.selectByFu(uncacheUop.exceptionVec, StaCfg)
968  io.mmioStout.bits.uop.sqIdx := deqPtrExt(0)
969  io.mmioStout.bits.uop.flushPipe := deqCanDoCbo // flush Pipeline to keep order in CMO
970  io.mmioStout.bits.data := shiftDataToLow(paddrModule.io.rdata(0), dataModule.io.rdata(0).data) // dataModule.io.rdata.read(deqPtr)
971  io.mmioStout.bits.isFromLoadUnit := DontCare
972  io.mmioStout.bits.debug.isMMIO := true.B
973  io.mmioStout.bits.debug.isNC := false.B
974  io.mmioStout.bits.debug.paddr := DontCare
975  io.mmioStout.bits.debug.isPerfCnt := false.B
976  io.mmioStout.bits.debug.vaddr := DontCare
977  // Remove MMIO inst from store queue after MMIO request is being sent
978  // That inst will be traced by uncache state machine
979  when (io.mmioStout.fire) {
980    allocated(deqPtr) := false.B
981  }
982
983  exceptionBuffer.io.storeAddrIn.last.valid := io.mmioStout.fire
984  exceptionBuffer.io.storeAddrIn.last.bits := DontCare
985  exceptionBuffer.io.storeAddrIn.last.bits.fullva := vaddrModule.io.rdata.head
986  exceptionBuffer.io.storeAddrIn.last.bits.vaNeedExt := true.B
987  exceptionBuffer.io.storeAddrIn.last.bits.uop := uncacheUop
988
989  // (4) or vector store:
990  // TODO: implement it!
991  io.vecmmioStout := DontCare
992  io.vecmmioStout.valid := false.B //mmioState === s_wb && isVec(deqPtr)
993  io.vecmmioStout.bits.uop := uop(deqPtr)
994  io.vecmmioStout.bits.uop.sqIdx := deqPtrExt(0)
995  io.vecmmioStout.bits.data := shiftDataToLow(paddrModule.io.rdata(0), dataModule.io.rdata(0).data) // dataModule.io.rdata.read(deqPtr)
996  io.vecmmioStout.bits.debug.isMMIO := true.B
997  io.vecmmioStout.bits.debug.isNC   := false.B
998  io.vecmmioStout.bits.debug.paddr := DontCare
999  io.vecmmioStout.bits.debug.isPerfCnt := false.B
1000  io.vecmmioStout.bits.debug.vaddr := DontCare
1001  // Remove MMIO inst from store queue after MMIO request is being sent
1002  // That inst will be traced by uncache state machine
1003  when (io.vecmmioStout.fire) {
1004    allocated(deqPtr) := false.B
1005  }
1006
1007  /**
1008    * ROB commits store instructions (mark them as committed)
1009    *
1010    * (1) When store commits, mark it as committed.
1011    * (2) They will not be cancelled and can be sent to lower level.
1012    */
1013  XSError(mmioState =/= s_idle && mmioState =/= s_wait && commitCount > 0.U,
1014   "should not commit instruction when MMIO has not been finished\n")
1015
1016  val commitVec = WireInit(VecInit(Seq.fill(CommitWidth)(false.B)))
1017  val needCancel = Wire(Vec(StoreQueueSize, Bool())) // Will be assigned later
1018
1019  if (backendParams.debugEn){ dontTouch(commitVec) }
1020
1021  // TODO: Deal with vector store mmio
1022  for (i <- 0 until CommitWidth) {
1023    // don't mark misalign store as committed
1024    when (
1025      allocated(cmtPtrExt(i).value) &&
1026      isNotAfter(uop(cmtPtrExt(i).value).robIdx, GatedRegNext(io.rob.pendingPtr)) &&
1027      !needCancel(cmtPtrExt(i).value) &&
1028      (!waitStoreS2(cmtPtrExt(i).value) || isVec(cmtPtrExt(i).value))) {
1029      if (i == 0){
1030        // TODO: fixme for vector mmio
1031        when ((mmioState === s_idle) || (mmioState === s_wait && scommit > 0.U)){
1032          when ((isVec(cmtPtrExt(i).value) && vecMbCommit(cmtPtrExt(i).value)) || !isVec(cmtPtrExt(i).value)) {
1033            committed(cmtPtrExt(0).value) := true.B
1034            commitVec(0) := true.B
1035          }
1036        }
1037      } else {
1038        when ((isVec(cmtPtrExt(i).value) && vecMbCommit(cmtPtrExt(i).value)) || !isVec(cmtPtrExt(i).value)) {
1039          committed(cmtPtrExt(i).value) := commitVec(i - 1) || committed(cmtPtrExt(i).value)
1040          commitVec(i) := commitVec(i - 1)
1041        }
1042      }
1043    }
1044  }
1045
1046  commitCount := PopCount(commitVec)
1047  cmtPtrExt := cmtPtrExt.map(_ + commitCount)
1048
1049  /**
1050   * committed stores will not be cancelled and can be sent to lower level.
1051   *
1052   * 1. Store NC: Read data to uncache
1053   *    implement as above
1054   *
1055   * 2. Store Cache: Read data from data module
1056   *    remove retired insts from sq, add retired store to sbuffer.
1057   *    as store queue grows larger and larger, time needed to read data from data
1058   *    module keeps growing higher. Now we give data read a whole cycle.
1059   */
1060
1061  //TODO An unaligned command can only be sent out if the databuffer can enter more than two.
1062  //TODO For now, hardcode the number of ENQs for the databuffer.
1063  val canDeqMisaligned = dataBuffer.io.enq(0).ready && dataBuffer.io.enq(1).ready
1064  val firstWithMisalign = unaligned(rdataPtrExt(0).value)
1065  val firstWithCross16Byte = cross16Byte(rdataPtrExt(0).value)
1066
1067  val isCross4KPage = io.maControl.toStoreQueue.crossPageWithHit
1068  val isCross4KPageCanDeq = io.maControl.toStoreQueue.crossPageCanDeq
1069  // When encountering a cross page store, a request needs to be sent to storeMisalignBuffer for the high page table's paddr.
1070  io.maControl.toStoreMisalignBuffer.sqPtr := rdataPtrExt(0)
1071  io.maControl.toStoreMisalignBuffer.doDeq := isCross4KPage && isCross4KPageCanDeq && dataBuffer.io.enq(0).fire
1072  io.maControl.toStoreMisalignBuffer.uop := uop(rdataPtrExt(0).value)
1073  for (i <- 0 until EnsbufferWidth) {
1074    val ptr = rdataPtrExt(i).value
1075    val mmioStall = if(i == 0) mmio(rdataPtrExt(0).value) else (mmio(rdataPtrExt(i).value) || mmio(rdataPtrExt(i-1).value))
1076    val ncStall = if(i == 0) nc(rdataPtrExt(0).value) else (nc(rdataPtrExt(i).value) || nc(rdataPtrExt(i-1).value))
1077    val exceptionValid = if(i == 0) hasException(rdataPtrExt(0).value) else {
1078      hasException(rdataPtrExt(i).value) || (hasException(rdataPtrExt(i-1).value) && uop(rdataPtrExt(i).value).robIdx === uop(rdataPtrExt(i-1).value).robIdx)
1079    }
1080    val vecNotAllMask = dataModule.io.rdata(i).mask.orR
1081    // Vector instructions that prevent triggered exceptions from being written to the 'databuffer'.
1082    val vecHasExceptionFlagValid = vecExceptionFlag.valid && isVec(ptr) && vecExceptionFlag.bits.robIdx === uop(ptr).robIdx
1083
1084    // Only the first interface can write unaligned directives.
1085    // Simplified design, even if the two ports have exceptions, but still only one unaligned dequeue.
1086    val assert_flag = WireInit(false.B)
1087    when(firstWithMisalign && firstWithCross16Byte) {
1088      dataBuffer.io.enq(0).valid := canDeqMisaligned && allocated(rdataPtrExt(0).value) && committed(rdataPtrExt(0).value) &&
1089        ((!isVec(rdataPtrExt(0).value) && allvalid(rdataPtrExt(0).value) || vecMbCommit(rdataPtrExt(0).value)) &&
1090        (!isCross4KPage || isCross4KPageCanDeq) || hasException(rdataPtrExt(0).value)) && !ncStall
1091
1092      dataBuffer.io.enq(1).valid := canDeqMisaligned && allocated(rdataPtrExt(0).value) && committed(rdataPtrExt(0).value) &&
1093        (!isVec(rdataPtrExt(0).value) && allvalid(rdataPtrExt(0).value) || vecMbCommit(rdataPtrExt(0).value)) &&
1094        (!isCross4KPage || isCross4KPageCanDeq) && !hasException(rdataPtrExt(0).value) && !ncStall
1095      assert_flag := dataBuffer.io.enq(1).valid
1096    }.otherwise {
1097      if (i == 0) {
1098        dataBuffer.io.enq(i).valid := (
1099          allocated(ptr) && committed(ptr)
1100            && ((!isVec(ptr) && (allvalid(ptr) || hasException(ptr))) || vecMbCommit(ptr))
1101            && !mmioStall && !ncStall
1102            && (!unaligned(ptr) || !cross16Byte(ptr) && (allvalid(ptr) || hasException(ptr)))
1103          )
1104      }
1105      else {
1106        dataBuffer.io.enq(i).valid := (
1107          allocated(ptr) && committed(ptr)
1108            && ((!isVec(ptr) && (allvalid(ptr) || hasException(ptr))) || vecMbCommit(ptr))
1109            && !mmioStall && !ncStall
1110            && (!unaligned(ptr) || !cross16Byte(ptr) && (allvalid(ptr) || hasException(ptr)))
1111          )
1112      }
1113    }
1114
1115    val misalignAddrLow = vaddrModule.io.rdata(0)(2, 0)
1116    val cross16ByteAddrLow4bit = vaddrModule.io.rdata(0)(3, 0)
1117    val addrLow4bit = vaddrModule.io.rdata(i)(3, 0)
1118
1119    // For unaligned, we need to generate a base-aligned mask in storeunit and then do a shift split in StoreQueue.
1120    val Cross16ByteMask = Wire(UInt(32.W))
1121    val Cross16ByteData = Wire(UInt(256.W))
1122    Cross16ByteMask := dataModule.io.rdata(0).mask << cross16ByteAddrLow4bit
1123    Cross16ByteData := dataModule.io.rdata(0).data << (cross16ByteAddrLow4bit << 3)
1124
1125    val paddrLow  = Cat(paddrModule.io.rdata(0)(paddrModule.io.rdata(0).getWidth - 1, 3), 0.U(3.W))
1126    val paddrHigh = Cat(paddrModule.io.rdata(0)(paddrModule.io.rdata(0).getWidth - 1, 3), 0.U(3.W)) + 8.U
1127
1128    val vaddrLow  = Cat(vaddrModule.io.rdata(0)(vaddrModule.io.rdata(0).getWidth - 1, 3), 0.U(3.W))
1129    val vaddrHigh = Cat(vaddrModule.io.rdata(0)(vaddrModule.io.rdata(0).getWidth - 1, 3), 0.U(3.W)) + 8.U
1130
1131    val maskLow   = Cross16ByteMask(15, 0)
1132    val maskHigh  = Cross16ByteMask(31, 16)
1133
1134    val dataLow   = Cross16ByteData(127, 0)
1135    val dataHigh  = Cross16ByteData(255, 128)
1136
1137    val toSbufferVecValid = (!isVec(ptr) || (vecMbCommit(ptr) && allvalid(ptr) && vecNotAllMask)) && !exceptionValid && !vecHasExceptionFlagValid
1138    when(canDeqMisaligned && firstWithMisalign && firstWithCross16Byte) {
1139      when(isCross4KPage && isCross4KPageCanDeq) {
1140        if (i == 0) {
1141          dataBuffer.io.enq(i).bits.addr      := paddrLow
1142          dataBuffer.io.enq(i).bits.vaddr     := vaddrLow
1143          dataBuffer.io.enq(i).bits.data      := dataLow
1144          dataBuffer.io.enq(i).bits.mask      := maskLow
1145          dataBuffer.io.enq(i).bits.wline     := false.B
1146          dataBuffer.io.enq(i).bits.sqPtr     := rdataPtrExt(0)
1147          dataBuffer.io.enq(i).bits.prefetch  := false.B
1148          dataBuffer.io.enq(i).bits.sqNeedDeq := true.B
1149          dataBuffer.io.enq(i).bits.vecValid  := toSbufferVecValid
1150        }
1151        else {
1152          dataBuffer.io.enq(i).bits.addr      := io.maControl.toStoreQueue.paddr
1153          dataBuffer.io.enq(i).bits.vaddr     := vaddrHigh
1154          dataBuffer.io.enq(i).bits.data      := dataHigh
1155          dataBuffer.io.enq(i).bits.mask      := maskHigh
1156          dataBuffer.io.enq(i).bits.wline     := false.B
1157          dataBuffer.io.enq(i).bits.sqPtr     := rdataPtrExt(0)
1158          dataBuffer.io.enq(i).bits.prefetch  := false.B
1159          dataBuffer.io.enq(i).bits.sqNeedDeq := false.B
1160          dataBuffer.io.enq(i).bits.vecValid  := dataBuffer.io.enq(0).bits.vecValid
1161        }
1162      } .otherwise {
1163        if (i == 0) {
1164          dataBuffer.io.enq(i).bits.addr      := paddrLow
1165          dataBuffer.io.enq(i).bits.vaddr     := vaddrLow
1166          dataBuffer.io.enq(i).bits.data      := dataLow
1167          dataBuffer.io.enq(i).bits.mask      := maskLow
1168          dataBuffer.io.enq(i).bits.wline     := false.B
1169          dataBuffer.io.enq(i).bits.sqPtr     := rdataPtrExt(0)
1170          dataBuffer.io.enq(i).bits.prefetch  := false.B
1171          dataBuffer.io.enq(i).bits.sqNeedDeq  := true.B
1172          dataBuffer.io.enq(i).bits.vecValid  := toSbufferVecValid
1173        }
1174        else {
1175          dataBuffer.io.enq(i).bits.addr      := paddrHigh
1176          dataBuffer.io.enq(i).bits.vaddr     := vaddrHigh
1177          dataBuffer.io.enq(i).bits.data      := dataHigh
1178          dataBuffer.io.enq(i).bits.mask      := maskHigh
1179          dataBuffer.io.enq(i).bits.wline     := false.B
1180          dataBuffer.io.enq(i).bits.sqPtr     := rdataPtrExt(0)
1181          dataBuffer.io.enq(i).bits.prefetch  := false.B
1182          dataBuffer.io.enq(i).bits.sqNeedDeq  := false.B
1183          dataBuffer.io.enq(i).bits.vecValid  := dataBuffer.io.enq(0).bits.vecValid
1184        }
1185      }
1186
1187
1188    }.elsewhen(!cross16Byte(ptr) && unaligned(ptr)) {
1189      dataBuffer.io.enq(i).bits.addr     := Cat(paddrModule.io.rdata(i)(PAddrBits - 1, 4), 0.U(4.W))
1190      dataBuffer.io.enq(i).bits.vaddr    := Cat(vaddrModule.io.rdata(i)(VAddrBits - 1, 4), 0.U(4.W))
1191      dataBuffer.io.enq(i).bits.data     := dataModule.io.rdata(i).data << (addrLow4bit << 3)
1192      dataBuffer.io.enq(i).bits.mask     := dataModule.io.rdata(i).mask
1193      dataBuffer.io.enq(i).bits.wline    := paddrModule.io.rlineflag(i)
1194      dataBuffer.io.enq(i).bits.sqPtr    := rdataPtrExt(i)
1195      dataBuffer.io.enq(i).bits.prefetch := prefetch(ptr)
1196      dataBuffer.io.enq(i).bits.sqNeedDeq := true.B
1197      // when scalar has exception, will also not write into sbuffer
1198      dataBuffer.io.enq(i).bits.vecValid := toSbufferVecValid
1199    }.otherwise {
1200      dataBuffer.io.enq(i).bits.addr     := paddrModule.io.rdata(i)
1201      dataBuffer.io.enq(i).bits.vaddr    := vaddrModule.io.rdata(i)
1202      dataBuffer.io.enq(i).bits.data     := dataModule.io.rdata(i).data
1203      dataBuffer.io.enq(i).bits.mask     := dataModule.io.rdata(i).mask
1204      dataBuffer.io.enq(i).bits.wline    := paddrModule.io.rlineflag(i)
1205      dataBuffer.io.enq(i).bits.sqPtr    := rdataPtrExt(i)
1206      dataBuffer.io.enq(i).bits.prefetch := prefetch(ptr)
1207      dataBuffer.io.enq(i).bits.sqNeedDeq := true.B
1208      // when scalar has exception, will also not write into sbuffer
1209      dataBuffer.io.enq(i).bits.vecValid := toSbufferVecValid
1210
1211    }
1212
1213    // Note that store data/addr should both be valid after store's commit
1214    assert(!dataBuffer.io.enq(i).valid || allvalid(ptr) || hasException(ptr) || (allocated(ptr) && vecMbCommit(ptr)) || assert_flag)
1215  }
1216
1217  // Send data stored in sbufferReqBitsReg to sbuffer
1218  for (i <- 0 until EnsbufferWidth) {
1219    io.sbuffer(i).valid := dataBuffer.io.deq(i).valid
1220    dataBuffer.io.deq(i).ready := io.sbuffer(i).ready
1221    io.sbuffer(i).bits := DontCare
1222    io.sbuffer(i).bits.cmd   := MemoryOpConstants.M_XWR
1223    io.sbuffer(i).bits.addr  := dataBuffer.io.deq(i).bits.addr
1224    io.sbuffer(i).bits.vaddr := dataBuffer.io.deq(i).bits.vaddr
1225    io.sbuffer(i).bits.data  := dataBuffer.io.deq(i).bits.data
1226    io.sbuffer(i).bits.mask  := dataBuffer.io.deq(i).bits.mask
1227    io.sbuffer(i).bits.wline := dataBuffer.io.deq(i).bits.wline && dataBuffer.io.deq(i).bits.vecValid
1228    io.sbuffer(i).bits.prefetch := dataBuffer.io.deq(i).bits.prefetch
1229    io.sbuffer(i).bits.vecValid := dataBuffer.io.deq(i).bits.vecValid
1230    io.sbuffer(i).bits.sqNeedDeq := dataBuffer.io.deq(i).bits.sqNeedDeq
1231    // io.sbuffer(i).fire is RegNexted, as sbuffer data write takes 2 cycles.
1232    // Before data write finish, sbuffer is unable to provide store to load
1233    // forward data. As an workaround, deqPtrExt and allocated flag update
1234    // is delayed so that load can get the right data from store queue.
1235    val ptr = dataBuffer.io.deq(i).bits.sqPtr.value
1236    when (RegNext(io.sbuffer(i).fire && io.sbuffer(i).bits.sqNeedDeq)) {
1237      allocated(RegEnable(ptr, io.sbuffer(i).fire)) := false.B
1238    }
1239    XSDebug(RegNext(io.sbuffer(i).fire && io.sbuffer(i).bits.sqNeedDeq), "sbuffer "+i+" fire: ptr %d\n", ptr)
1240  }
1241
1242  // All vector instruction uop normally dequeue, but the Uop after the exception is raised does not write to the 'sbuffer'.
1243  // Flags are used to record whether there are any exceptions when the queue is displayed.
1244  // This is determined each time a write is made to the 'databuffer', prevent subsequent uop of the same instruction from writing to the 'dataBuffer'.
1245  val vecCommitHasException = (0 until EnsbufferWidth).map{ i =>
1246    val ptr = rdataPtrExt(i).value
1247    val mmioStall = if(i == 0) mmio(rdataPtrExt(0).value) else (mmio(rdataPtrExt(i).value) || mmio(rdataPtrExt(i-1).value))
1248    val ncStall = if(i == 0) nc(rdataPtrExt(0).value) else (nc(rdataPtrExt(i).value) || nc(rdataPtrExt(i-1).value))
1249    val exceptionVliad      = isVec(ptr) && hasException(ptr) && dataBuffer.io.enq(i).fire
1250    (exceptionVliad, uop(ptr), vecLastFlow(ptr))
1251  }
1252
1253  val vecCommitHasExceptionValid      = vecCommitHasException.map(_._1)
1254  val vecCommitHasExceptionUop        = vecCommitHasException.map(_._2)
1255  val vecCommitHasExceptionLastFlow   = vecCommitHasException.map(_._3)
1256  val vecCommitHasExceptionValidOR    = vecCommitHasExceptionValid.reduce(_ || _)
1257  // Just select the last Uop tah has an exception.
1258  val vecCommitHasExceptionSelectUop  = ParallelPosteriorityMux(vecCommitHasExceptionValid, vecCommitHasExceptionUop)
1259  // If the last flow with an exception is the LastFlow of this instruction, the flag is not set.
1260  // compare robidx to select the last flow
1261  require(EnsbufferWidth == 2, "The vector store exception handle process only support EnsbufferWidth == 2 yet.")
1262  val robidxEQ = dataBuffer.io.enq(0).fire && dataBuffer.io.enq(1).fire &&
1263    uop(rdataPtrExt(0).value).robIdx === uop(rdataPtrExt(1).value).robIdx
1264  val robidxNE = dataBuffer.io.enq(0).fire && dataBuffer.io.enq(1).fire && (
1265    uop(rdataPtrExt(0).value).robIdx =/= uop(rdataPtrExt(1).value).robIdx
1266  )
1267  val onlyCommit0 = dataBuffer.io.enq(0).fire && !dataBuffer.io.enq(1).fire
1268
1269  val vecCommitLastFlow =
1270    // robidx equal => check if 1 is last flow
1271    robidxEQ && vecCommitHasExceptionLastFlow(1) ||
1272    // robidx not equal => 0 must be the last flow, just check if 1 is last flow when 1 has exception
1273    robidxNE && (vecCommitHasExceptionValid(1) && vecCommitHasExceptionLastFlow(1) || !vecCommitHasExceptionValid(1)) ||
1274    onlyCommit0 && vecCommitHasExceptionLastFlow(0)
1275
1276
1277  val vecExceptionFlagCancel  = (0 until EnsbufferWidth).map{ i =>
1278    val ptr = rdataPtrExt(i).value
1279    val vecLastFlowCommit = vecLastFlow(ptr) && (uop(ptr).robIdx === vecExceptionFlag.bits.robIdx) && dataBuffer.io.enq(i).fire
1280    vecLastFlowCommit
1281  }.reduce(_ || _)
1282
1283  // When a LastFlow with an exception instruction is commited, clear the flag.
1284  when(!vecExceptionFlag.valid && vecCommitHasExceptionValidOR && !vecCommitLastFlow) {
1285    vecExceptionFlag.valid  := true.B
1286    vecExceptionFlag.bits   := vecCommitHasExceptionSelectUop
1287  }.elsewhen(vecExceptionFlag.valid && vecExceptionFlagCancel) {
1288    vecExceptionFlag.valid  := false.B
1289    vecExceptionFlag.bits   := 0.U.asTypeOf(new DynInst)
1290  }
1291
1292  // A dumb defensive code. The flag should not be placed for a long period of time.
1293  // A relatively large timeout period, not have any special meaning.
1294  // If an assert appears and you confirm that it is not a Bug: Increase the timeout or remove the assert.
1295  TimeOutAssert(vecExceptionFlag.valid, 3000, "vecExceptionFlag timeout, Plase check for bugs or add timeouts.")
1296
1297  // Initialize when unenabled difftest.
1298  for (i <- 0 until EnsbufferWidth) {
1299    io.sbufferVecDifftestInfo(i) := DontCare
1300  }
1301  // Consistent with the logic above.
1302  // Only the vector store difftest required signal is separated from the rtl code.
1303  if (env.EnableDifftest) {
1304    for (i <- 0 until EnsbufferWidth) {
1305      val ptr = dataBuffer.io.enq(i).bits.sqPtr.value
1306      difftestBuffer.get.io.enq(i).valid := dataBuffer.io.enq(i).valid
1307      difftestBuffer.get.io.enq(i).bits := uop(ptr)
1308    }
1309    for (i <- 0 until EnsbufferWidth) {
1310      io.sbufferVecDifftestInfo(i).valid := difftestBuffer.get.io.deq(i).valid
1311      difftestBuffer.get.io.deq(i).ready := io.sbufferVecDifftestInfo(i).ready
1312
1313      io.sbufferVecDifftestInfo(i).bits := difftestBuffer.get.io.deq(i).bits
1314    }
1315
1316    // commit cbo.inval to difftest
1317    val cmoInvalEvent = DifftestModule(new DiffCMOInvalEvent)
1318    cmoInvalEvent.coreid := io.hartId
1319    cmoInvalEvent.valid  := io.mmioStout.fire && deqCanDoCbo && LSUOpType.isCboInval(uop(deqPtr).fuOpType)
1320    cmoInvalEvent.addr   := cboMmioAddr
1321  }
1322
1323  (1 until EnsbufferWidth).foreach(i => when(io.sbuffer(i).fire) { assert(io.sbuffer(i - 1).fire) })
1324  if (coreParams.dcacheParametersOpt.isEmpty) {
1325    for (i <- 0 until EnsbufferWidth) {
1326      val ptr = deqPtrExt(i).value
1327      val ram = DifftestMem(64L * 1024 * 1024 * 1024, 8)
1328      val wen = allocated(ptr) && committed(ptr) && !mmio(ptr)
1329      val waddr = ((paddrModule.io.rdata(i) - "h80000000".U) >> 3).asUInt
1330      val wdata = Mux(paddrModule.io.rdata(i)(3), dataModule.io.rdata(i).data(127, 64), dataModule.io.rdata(i).data(63, 0))
1331      val wmask = Mux(paddrModule.io.rdata(i)(3), dataModule.io.rdata(i).mask(15, 8), dataModule.io.rdata(i).mask(7, 0))
1332      when (wen) {
1333        ram.write(waddr, wdata.asTypeOf(Vec(8, UInt(8.W))), wmask.asBools)
1334      }
1335    }
1336  }
1337
1338  // Read vaddr for mem exception
1339  io.exceptionAddr.vaddr     := exceptionBuffer.io.exceptionAddr.vaddr
1340  io.exceptionAddr.vaNeedExt := exceptionBuffer.io.exceptionAddr.vaNeedExt
1341  io.exceptionAddr.isHyper   := exceptionBuffer.io.exceptionAddr.isHyper
1342  io.exceptionAddr.gpaddr    := exceptionBuffer.io.exceptionAddr.gpaddr
1343  io.exceptionAddr.vstart    := exceptionBuffer.io.exceptionAddr.vstart
1344  io.exceptionAddr.vl        := exceptionBuffer.io.exceptionAddr.vl
1345  io.exceptionAddr.isForVSnonLeafPTE := exceptionBuffer.io.exceptionAddr.isForVSnonLeafPTE
1346
1347  // vector commit or replay from
1348  val vecCommittmp = Wire(Vec(StoreQueueSize, Vec(VecStorePipelineWidth, Bool())))
1349  val vecCommit = Wire(Vec(StoreQueueSize, Bool()))
1350  for (i <- 0 until StoreQueueSize) {
1351    val fbk = io.vecFeedback
1352    for (j <- 0 until VecStorePipelineWidth) {
1353      vecCommittmp(i)(j) := fbk(j).valid && (fbk(j).bits.isCommit || fbk(j).bits.isFlush) &&
1354        uop(i).robIdx === fbk(j).bits.robidx && uop(i).uopIdx === fbk(j).bits.uopidx && allocated(i)
1355    }
1356    vecCommit(i) := vecCommittmp(i).reduce(_ || _)
1357
1358    when (vecCommit(i)) {
1359      vecMbCommit(i) := true.B
1360    }
1361  }
1362
1363  // For vector, when there is a store across pages with the same uop in storeMisalignBuffer, storequeue needs to mark this item as committed.
1364  // TODO FIXME Can vecMbCommit be removed?
1365  when(io.maControl.toStoreQueue.withSameUop && allvalid(rdataPtrExt(0).value)) {
1366    vecMbCommit(rdataPtrExt(0).value) := true.B
1367  }
1368
1369  // misprediction recovery / exception redirect
1370  // invalidate sq term using robIdx
1371  for (i <- 0 until StoreQueueSize) {
1372    needCancel(i) := uop(i).robIdx.needFlush(io.brqRedirect) && allocated(i) && !committed(i) &&
1373      (!isVec(i) || !(uop(i).robIdx === io.brqRedirect.bits.robIdx))
1374    when (needCancel(i)) {
1375      allocated(i) := false.B
1376    }
1377  }
1378
1379 /**
1380* update pointers
1381**/
1382  val enqCancelValid = canEnqueue.zip(io.enq.req).map{case (v , x) =>
1383    v && x.bits.robIdx.needFlush(io.brqRedirect)
1384  }
1385  val enqCancelNum = enqCancelValid.zip(io.enq.req).map{case (v, req) =>
1386    Mux(v, req.bits.numLsElem, 0.U)
1387  }
1388  val lastEnqCancel = RegEnable(enqCancelNum.reduce(_ + _), io.brqRedirect.valid) // 1 cycle after redirect
1389
1390  val lastCycleCancelCount = PopCount(RegEnable(needCancel, io.brqRedirect.valid)) // 1 cycle after redirect
1391  val lastCycleRedirect = RegNext(io.brqRedirect.valid) // 1 cycle after redirect
1392  val enqNumber = validVStoreFlow.reduce(_ + _)
1393
1394  val lastlastCycleRedirect=RegNext(lastCycleRedirect)// 2 cycle after redirect
1395  val redirectCancelCount = RegEnable(lastCycleCancelCount + lastEnqCancel, 0.U, lastCycleRedirect) // 2 cycle after redirect
1396
1397  when (lastlastCycleRedirect) {
1398    // we recover the pointers in 2 cycle after redirect for better timing
1399    enqPtrExt := VecInit(enqPtrExt.map(_ - redirectCancelCount))
1400  }.otherwise {
1401    // lastCycleRedirect.valid or nornal case
1402    // when lastCycleRedirect.valid, enqNumber === 0.U, enqPtrExt will not change
1403    enqPtrExt := VecInit(enqPtrExt.map(_ + enqNumber))
1404  }
1405  assert(!(lastCycleRedirect && enqNumber =/= 0.U))
1406
1407  deqPtrExt := deqPtrExtNext
1408  rdataPtrExt := rdataPtrExtNext
1409
1410  // val dequeueCount = Mux(io.sbuffer(1).fire, 2.U, Mux(io.sbuffer(0).fire || io.mmioStout.fire, 1.U, 0.U))
1411
1412  // If redirect at T0, sqCancelCnt is at T2
1413  io.sqCancelCnt := redirectCancelCount
1414  val ForceWriteUpper = Wire(UInt(log2Up(StoreQueueSize + 1).W))
1415  ForceWriteUpper := Constantin.createRecord(s"ForceWriteUpper_${p(XSCoreParamsKey).HartId}", initValue = 60)
1416  val ForceWriteLower = Wire(UInt(log2Up(StoreQueueSize + 1).W))
1417  ForceWriteLower := Constantin.createRecord(s"ForceWriteLower_${p(XSCoreParamsKey).HartId}", initValue = 55)
1418
1419  val valid_cnt = PopCount(allocated)
1420  io.force_write := RegNext(Mux(valid_cnt >= ForceWriteUpper, true.B, valid_cnt >= ForceWriteLower && io.force_write), init = false.B)
1421
1422  // io.sqempty will be used by sbuffer
1423  // We delay it for 1 cycle for better timing
1424  // When sbuffer need to check if it is empty, the pipeline is blocked, which means delay io.sqempty
1425  // for 1 cycle will also promise that sq is empty in that cycle
1426  io.sqEmpty := RegNext(
1427    enqPtrExt(0).value === deqPtrExt(0).value &&
1428    enqPtrExt(0).flag === deqPtrExt(0).flag
1429  )
1430  // perf counter
1431  QueuePerf(StoreQueueSize, validCount, !allowEnqueue)
1432  val vecValidVec = WireInit(VecInit((0 until StoreQueueSize).map(i => allocated(i) && isVec(i))))
1433  QueuePerf(StoreQueueSize, PopCount(vecValidVec), !allowEnqueue)
1434  io.sqFull := !allowEnqueue
1435  XSPerfAccumulate("mmioCycle", mmioState =/= s_idle) // lq is busy dealing with uncache req
1436  XSPerfAccumulate("mmioCnt", mmioDoReq)
1437  XSPerfAccumulate("mmio_wb_success", io.mmioStout.fire || io.vecmmioStout.fire)
1438  XSPerfAccumulate("mmio_wb_blocked", (io.mmioStout.valid && !io.mmioStout.ready) || (io.vecmmioStout.valid && !io.vecmmioStout.ready))
1439  XSPerfAccumulate("validEntryCnt", distanceBetween(enqPtrExt(0), deqPtrExt(0)))
1440  XSPerfAccumulate("cmtEntryCnt", distanceBetween(cmtPtrExt(0), deqPtrExt(0)))
1441  XSPerfAccumulate("nCmtEntryCnt", distanceBetween(enqPtrExt(0), cmtPtrExt(0)))
1442
1443  val perfValidCount = distanceBetween(enqPtrExt(0), deqPtrExt(0))
1444  val perfEvents = Seq(
1445    ("mmioCycle      ", mmioState =/= s_idle),
1446    ("mmioCnt        ", mmioDoReq),
1447    ("mmio_wb_success", io.mmioStout.fire || io.vecmmioStout.fire),
1448    ("mmio_wb_blocked", (io.mmioStout.valid && !io.mmioStout.ready) || (io.vecmmioStout.valid && !io.vecmmioStout.ready)),
1449    ("stq_1_4_valid  ", (perfValidCount < (StoreQueueSize.U/4.U))),
1450    ("stq_2_4_valid  ", (perfValidCount > (StoreQueueSize.U/4.U)) & (perfValidCount <= (StoreQueueSize.U/2.U))),
1451    ("stq_3_4_valid  ", (perfValidCount > (StoreQueueSize.U/2.U)) & (perfValidCount <= (StoreQueueSize.U*3.U/4.U))),
1452    ("stq_4_4_valid  ", (perfValidCount > (StoreQueueSize.U*3.U/4.U))),
1453  )
1454  generatePerfEvent()
1455
1456  // debug info
1457  XSDebug("enqPtrExt %d:%d deqPtrExt %d:%d\n", enqPtrExt(0).flag, enqPtr, deqPtrExt(0).flag, deqPtr)
1458
1459  def PrintFlag(flag: Bool, name: String): Unit = {
1460    XSDebug(false, flag, name) // when(flag)
1461    XSDebug(false, !flag, " ") // otherwirse
1462  }
1463
1464  for (i <- 0 until StoreQueueSize) {
1465    XSDebug(s"$i: pc %x va %x pa %x data %x ",
1466      uop(i).pc,
1467      debug_vaddr(i),
1468      debug_paddr(i),
1469      debug_data(i)
1470    )
1471    PrintFlag(allocated(i), "a")
1472    PrintFlag(allocated(i) && addrvalid(i), "a")
1473    PrintFlag(allocated(i) && datavalid(i), "d")
1474    PrintFlag(allocated(i) && committed(i), "c")
1475    PrintFlag(allocated(i) && pending(i), "p")
1476    PrintFlag(allocated(i) && mmio(i), "m")
1477    XSDebug(false, true.B, "\n")
1478  }
1479
1480}
1481