xref: /XiangShan/src/main/scala/xiangshan/mem/lsqueue/StoreQueue.scala (revision 9477429f7dc92dfd72de3908b8e953de2886a01d)
1/***************************************************************************************
2* Copyright (c) 2020-2021 Institute of Computing Technology, Chinese Academy of Sciences
3* Copyright (c) 2020-2021 Peng Cheng Laboratory
4*
5* XiangShan is licensed under Mulan PSL v2.
6* You can use this software according to the terms and conditions of the Mulan PSL v2.
7* You may obtain a copy of Mulan PSL v2 at:
8*          http://license.coscl.org.cn/MulanPSL2
9*
10* THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND,
11* EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT,
12* MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE.
13*
14* See the Mulan PSL v2 for more details.
15***************************************************************************************/
16
17package xiangshan.mem
18
19import chisel3._
20import chisel3.util._
21import difftest._
22import difftest.common.DifftestMem
23import org.chipsalliance.cde.config.Parameters
24import utility._
25import utils._
26import xiangshan._
27import xiangshan.cache._
28import xiangshan.cache.{DCacheLineIO, DCacheWordIO, MemoryOpConstants}
29import xiangshan.backend._
30import xiangshan.backend.rob.{RobLsqIO, RobPtr}
31import xiangshan.backend.Bundles.{DynInst, MemExuOutput}
32import xiangshan.backend.decode.isa.bitfield.{Riscv32BitInst, XSInstBitFields}
33
34class SqPtr(implicit p: Parameters) extends CircularQueuePtr[SqPtr](
35  p => p(XSCoreParamsKey).StoreQueueSize
36){
37}
38
39object SqPtr {
40  def apply(f: Bool, v: UInt)(implicit p: Parameters): SqPtr = {
41    val ptr = Wire(new SqPtr)
42    ptr.flag := f
43    ptr.value := v
44    ptr
45  }
46}
47
48class SqEnqIO(implicit p: Parameters) extends MemBlockBundle {
49  val canAccept = Output(Bool())
50  val lqCanAccept = Input(Bool())
51  val needAlloc = Vec(LSQEnqWidth, Input(Bool()))
52  val req = Vec(LSQEnqWidth, Flipped(ValidIO(new DynInst)))
53  val resp = Vec(LSQEnqWidth, Output(new SqPtr))
54}
55
56class DataBufferEntry (implicit p: Parameters)  extends DCacheBundle {
57  val addr   = UInt(PAddrBits.W)
58  val vaddr  = UInt(VAddrBits.W)
59  val data   = UInt(VLEN.W)
60  val mask   = UInt((VLEN/8).W)
61  val wline = Bool()
62  val sqPtr  = new SqPtr
63  val prefetch = Bool()
64}
65
66// Store Queue
67class StoreQueue(implicit p: Parameters) extends XSModule
68  with HasDCacheParameters with HasCircularQueuePtrHelper with HasPerfEvents {
69  val io = IO(new Bundle() {
70    val hartId = Input(UInt(8.W))
71    val enq = new SqEnqIO
72    val brqRedirect = Flipped(ValidIO(new Redirect))
73    val storeAddrIn = Vec(StorePipelineWidth, Flipped(Valid(new LsPipelineBundle))) // store addr, data is not included
74    val vecStoreAddrIn = Vec(StorePipelineWidth, Flipped(Valid(new LsPipelineBundle))) // vec store addr, data is not include , from vsFlowQueue
75    val storeAddrInRe = Vec(StorePipelineWidth, Input(new LsPipelineBundle())) // store more mmio and exception
76    val storeDataIn = Vec(StorePipelineWidth, Flipped(Valid(new MemExuOutput))) // store data, send to sq from rs
77    val storeMaskIn = Vec(StorePipelineWidth, Flipped(Valid(new StoreMaskBundle))) // store mask, send to sq from rs
78    val sbuffer = Vec(EnsbufferWidth, Decoupled(new DCacheWordReqWithVaddrAndPfFlag)) // write committed store to sbuffer
79    val uncacheOutstanding = Input(Bool())
80    val mmioStout = DecoupledIO(new MemExuOutput) // writeback uncached store
81    val forward = Vec(LoadPipelineWidth, Flipped(new PipeLoadForwardQueryIO))
82    val rob = Flipped(new RobLsqIO)
83    val uncache = new UncacheWordIO
84    // val refill = Flipped(Valid(new DCacheLineReq ))
85    val exceptionAddr = new ExceptionAddrIO
86    val sqEmpty = Output(Bool())
87    val stAddrReadySqPtr = Output(new SqPtr)
88    val stAddrReadyVec = Output(Vec(StoreQueueSize, Bool()))
89    val stDataReadySqPtr = Output(new SqPtr)
90    val stDataReadyVec = Output(Vec(StoreQueueSize, Bool()))
91    val stIssuePtr = Output(new SqPtr)
92    val sqDeqPtr = Output(new SqPtr)
93    val sqFull = Output(Bool())
94    val sqCancelCnt = Output(UInt(log2Up(StoreQueueSize + 1).W))
95    val sqDeq = Output(UInt(log2Ceil(EnsbufferWidth + 1).W))
96    val force_write = Output(Bool())
97    val vecStoreRetire = Flipped(ValidIO(new SqPtr))
98  })
99
100  println("StoreQueue: size:" + StoreQueueSize)
101
102  // data modules
103  val uop = Reg(Vec(StoreQueueSize, new DynInst))
104  // val data = Reg(Vec(StoreQueueSize, new LsqEntry))
105  val dataModule = Module(new SQDataModule(
106    numEntries = StoreQueueSize,
107    numRead = EnsbufferWidth,
108    numWrite = StorePipelineWidth,
109    numForward = LoadPipelineWidth
110  ))
111  dataModule.io := DontCare
112  val paddrModule = Module(new SQAddrModule(
113    dataWidth = PAddrBits,
114    numEntries = StoreQueueSize,
115    numRead = EnsbufferWidth,
116    numWrite = StorePipelineWidth,
117    numForward = LoadPipelineWidth
118  ))
119  paddrModule.io := DontCare
120  val vaddrModule = Module(new SQAddrModule(
121    dataWidth = VAddrBits,
122    numEntries = StoreQueueSize,
123    numRead = EnsbufferWidth + 1, // sbuffer + badvaddr 1 (TODO)
124    numWrite = StorePipelineWidth,
125    numForward = LoadPipelineWidth
126  ))
127  vaddrModule.io := DontCare
128  val dataBuffer = Module(new DatamoduleResultBuffer(new DataBufferEntry))
129  val debug_paddr = Reg(Vec(StoreQueueSize, UInt((PAddrBits).W)))
130  val debug_vaddr = Reg(Vec(StoreQueueSize, UInt((VAddrBits).W)))
131  val debug_data = Reg(Vec(StoreQueueSize, UInt((XLEN).W)))
132
133  // state & misc
134  val allocated = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // sq entry has been allocated
135  val addrvalid = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // non-mmio addr is valid
136  val datavalid = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // non-mmio data is valid
137  val allvalid  = VecInit((0 until StoreQueueSize).map(i => addrvalid(i) && datavalid(i))) // non-mmio data & addr is valid
138  val committed = Reg(Vec(StoreQueueSize, Bool())) // inst has been committed by rob
139  val pending = Reg(Vec(StoreQueueSize, Bool())) // mmio pending: inst is an mmio inst, it will not be executed until it reachs the end of rob
140  val mmio = Reg(Vec(StoreQueueSize, Bool())) // mmio: inst is an mmio inst
141  val atomic = Reg(Vec(StoreQueueSize, Bool()))
142  val prefetch = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // need prefetch when committing this store to sbuffer?
143  val vec = Reg(Vec(StoreQueueSize, Bool()))
144  val vecAddrvalid = Reg(Vec(StoreQueueSize, Bool())) // TODO
145
146  // ptr
147  val enqPtrExt = RegInit(VecInit((0 until io.enq.req.length).map(_.U.asTypeOf(new SqPtr))))
148  val rdataPtrExt = RegInit(VecInit((0 until EnsbufferWidth).map(_.U.asTypeOf(new SqPtr))))
149  val deqPtrExt = RegInit(VecInit((0 until EnsbufferWidth).map(_.U.asTypeOf(new SqPtr))))
150  val cmtPtrExt = RegInit(VecInit((0 until CommitWidth).map(_.U.asTypeOf(new SqPtr))))
151  val addrReadyPtrExt = RegInit(0.U.asTypeOf(new SqPtr))
152  val dataReadyPtrExt = RegInit(0.U.asTypeOf(new SqPtr))
153  val validCounter = RegInit(0.U(log2Ceil(VirtualLoadQueueSize + 1).W))
154
155  val enqPtr = enqPtrExt(0).value
156  val deqPtr = deqPtrExt(0).value
157  val cmtPtr = cmtPtrExt(0).value
158
159  val validCount = distanceBetween(enqPtrExt(0), deqPtrExt(0))
160  val allowEnqueue = validCount <= (StoreQueueSize - LSQStEnqWidth).U
161
162  val deqMask = UIntToMask(deqPtr, StoreQueueSize)
163  val enqMask = UIntToMask(enqPtr, StoreQueueSize)
164
165  val commitCount = RegNext(io.rob.scommit)
166
167  // store can be committed by ROB
168  io.rob.mmio := DontCare
169  io.rob.uop := DontCare
170
171  // Read dataModule
172  assert(EnsbufferWidth <= 2)
173  // rdataPtrExtNext and rdataPtrExtNext+1 entry will be read from dataModule
174  val rdataPtrExtNext = WireInit(Mux(dataBuffer.io.enq(1).fire,
175    VecInit(rdataPtrExt.map(_ + 2.U)),
176    Mux(dataBuffer.io.enq(0).fire || io.mmioStout.fire || io.vecStoreRetire.valid,
177      VecInit(rdataPtrExt.map(_ + 1.U)),
178      rdataPtrExt
179    )
180  ))
181
182  // deqPtrExtNext traces which inst is about to leave store queue
183  //
184  // io.sbuffer(i).fire is RegNexted, as sbuffer data write takes 2 cycles.
185  // Before data write finish, sbuffer is unable to provide store to load
186  // forward data. As an workaround, deqPtrExt and allocated flag update
187  // is delayed so that load can get the right data from store queue.
188  //
189  // Modify deqPtrExtNext and io.sqDeq with care!
190  val deqPtrExtNext = Mux(RegNext(io.sbuffer(1).fire),
191    VecInit(deqPtrExt.map(_ + 2.U)),
192    Mux(RegNext(io.sbuffer(0).fire) || io.mmioStout.fire || io.vecStoreRetire.valid,
193      VecInit(deqPtrExt.map(_ + 1.U)),
194      deqPtrExt
195    )
196  )
197  io.sqDeq := RegNext(Mux(RegNext(io.sbuffer(1).fire), 2.U,
198    Mux(RegNext(io.sbuffer(0).fire) || io.mmioStout.fire || io.vecStoreRetire.valid, 1.U, 0.U)
199  ))
200  assert(!RegNext(RegNext(io.sbuffer(0).fire) && io.mmioStout.fire))
201
202  for (i <- 0 until EnsbufferWidth) {
203    dataModule.io.raddr(i) := rdataPtrExtNext(i).value
204    paddrModule.io.raddr(i) := rdataPtrExtNext(i).value
205    vaddrModule.io.raddr(i) := rdataPtrExtNext(i).value
206  }
207
208  // no inst will be committed 1 cycle before tval update
209  vaddrModule.io.raddr(EnsbufferWidth) := (cmtPtrExt(0) + commitCount).value
210
211  /**
212    * Enqueue at dispatch
213    *
214    * Currently, StoreQueue only allows enqueue when #emptyEntries > EnqWidth
215    */
216  io.enq.canAccept := allowEnqueue
217  val canEnqueue = io.enq.req.map(_.valid)
218  val enqCancel = io.enq.req.map(_.bits.robIdx.needFlush(io.brqRedirect))
219  for (i <- 0 until io.enq.req.length) {
220    val offset = if (i == 0) 0.U else PopCount(io.enq.needAlloc.take(i))
221    val sqIdx = enqPtrExt(offset)
222    val index = io.enq.req(i).bits.sqIdx.value
223    val enqInstr = io.enq.req(i).bits.instr.asTypeOf(new XSInstBitFields)
224    when (canEnqueue(i) && !enqCancel(i)) {
225      uop(index) := io.enq.req(i).bits
226      // NOTE: the index will be used when replay
227      uop(index).sqIdx := sqIdx
228      allocated(index) := true.B
229      datavalid(index) := false.B
230      addrvalid(index) := false.B
231      committed(index) := false.B
232      pending(index) := false.B
233      prefetch(index) := false.B
234      mmio(index) := false.B
235      vec(index) := enqInstr.isVecStore // check vector store by the encoding of inst
236      vecAddrvalid(index) := false.B//TODO
237
238      XSError(!io.enq.canAccept || !io.enq.lqCanAccept, s"must accept $i\n")
239      XSError(index =/= sqIdx.value, s"must be the same entry $i\n")
240    }
241    io.enq.resp(i) := sqIdx
242  }
243  XSDebug(p"(ready, valid): ${io.enq.canAccept}, ${Binary(Cat(io.enq.req.map(_.valid)))}\n")
244
245  /**
246    * Update addr/dataReadyPtr when issue from rs
247    */
248  // update issuePtr
249  val IssuePtrMoveStride = 4
250  require(IssuePtrMoveStride >= 2)
251
252  val addrReadyLookupVec = (0 until IssuePtrMoveStride).map(addrReadyPtrExt + _.U)
253  val addrReadyLookup = addrReadyLookupVec.map(ptr => allocated(ptr.value) && (mmio(ptr.value) || addrvalid(ptr.value) || (vec(ptr.value) && vecAddrvalid(ptr.value))) && ptr =/= enqPtrExt(0))
254  val nextAddrReadyPtr = addrReadyPtrExt + PriorityEncoder(VecInit(addrReadyLookup.map(!_) :+ true.B))
255  addrReadyPtrExt := nextAddrReadyPtr
256
257  (0 until StoreQueueSize).map(i => {
258    io.stAddrReadyVec(i) := RegNext(allocated(i) && (mmio(i) || addrvalid(i)))
259  })
260
261  when (io.brqRedirect.valid) {
262    addrReadyPtrExt := Mux(
263      isAfter(cmtPtrExt(0), deqPtrExt(0)),
264      cmtPtrExt(0),
265      deqPtrExtNext(0) // for mmio insts, deqPtr may be ahead of cmtPtr
266    )
267  }
268
269  io.stAddrReadySqPtr := addrReadyPtrExt
270
271  // update
272  val dataReadyLookupVec = (0 until IssuePtrMoveStride).map(dataReadyPtrExt + _.U)
273  val dataReadyLookup = dataReadyLookupVec.map(ptr => allocated(ptr.value) && (mmio(ptr.value) || datavalid(ptr.value) || vec(ptr.value)) && ptr =/= enqPtrExt(0)) // TODO : flag of vector store data valid not add yet
274  val nextDataReadyPtr = dataReadyPtrExt + PriorityEncoder(VecInit(dataReadyLookup.map(!_) :+ true.B))
275  dataReadyPtrExt := nextDataReadyPtr
276
277  (0 until StoreQueueSize).map(i => {
278    io.stDataReadyVec(i) := RegNext(allocated(i) && (mmio(i) || datavalid(i)))
279  })
280
281  when (io.brqRedirect.valid) {
282    dataReadyPtrExt := Mux(
283      isAfter(cmtPtrExt(0), deqPtrExt(0)),
284      cmtPtrExt(0),
285      deqPtrExtNext(0) // for mmio insts, deqPtr may be ahead of cmtPtr
286    )
287  }
288
289  io.stDataReadySqPtr := dataReadyPtrExt
290  io.stIssuePtr := enqPtrExt(0)
291  io.sqDeqPtr := deqPtrExt(0)
292
293  /**
294    * Writeback store from store units
295    *
296    * Most store instructions writeback to regfile in the previous cycle.
297    * However,
298    *   (1) For an mmio instruction with exceptions, we need to mark it as addrvalid
299    * (in this way it will trigger an exception when it reaches ROB's head)
300    * instead of pending to avoid sending them to lower level.
301    *   (2) For an mmio instruction without exceptions, we mark it as pending.
302    * When the instruction reaches ROB's head, StoreQueue sends it to uncache channel.
303    * Upon receiving the response, StoreQueue writes back the instruction
304    * through arbiter with store units. It will later commit as normal.
305    */
306
307  // Write addr to sq
308  for (i <- 0 until StorePipelineWidth) {
309    paddrModule.io.wen(i) := false.B
310    vaddrModule.io.wen(i) := false.B
311    dataModule.io.mask.wen(i) := false.B
312    val stWbIndex = io.storeAddrIn(i).bits.uop.sqIdx.value
313    when (io.storeAddrIn(i).fire) {
314      val addr_valid = !io.storeAddrIn(i).bits.miss
315      addrvalid(stWbIndex) := addr_valid //!io.storeAddrIn(i).bits.mmio
316      // pending(stWbIndex) := io.storeAddrIn(i).bits.mmio
317
318      paddrModule.io.waddr(i) := stWbIndex
319      paddrModule.io.wdata(i) := io.storeAddrIn(i).bits.paddr
320      paddrModule.io.wmask(i) := io.storeAddrIn(i).bits.mask
321      paddrModule.io.wlineflag(i) := io.storeAddrIn(i).bits.wlineflag
322      paddrModule.io.wen(i) := true.B
323
324      vaddrModule.io.waddr(i) := stWbIndex
325      vaddrModule.io.wdata(i) := io.storeAddrIn(i).bits.vaddr
326      vaddrModule.io.wmask(i) := io.storeAddrIn(i).bits.mask
327      vaddrModule.io.wlineflag(i) := io.storeAddrIn(i).bits.wlineflag
328      vaddrModule.io.wen(i) := true.B
329
330      debug_paddr(paddrModule.io.waddr(i)) := paddrModule.io.wdata(i)
331
332      // mmio(stWbIndex) := io.storeAddrIn(i).bits.mmio
333
334      uop(stWbIndex) := io.storeAddrIn(i).bits.uop
335      uop(stWbIndex).debugInfo := io.storeAddrIn(i).bits.uop.debugInfo
336      XSInfo("store addr write to sq idx %d pc 0x%x miss:%d vaddr %x paddr %x mmio %x\n",
337        io.storeAddrIn(i).bits.uop.sqIdx.value,
338        io.storeAddrIn(i).bits.uop.pc,
339        io.storeAddrIn(i).bits.miss,
340        io.storeAddrIn(i).bits.vaddr,
341        io.storeAddrIn(i).bits.paddr,
342        io.storeAddrIn(i).bits.mmio
343      )
344    }
345
346    // re-replinish mmio, for pma/pmp will get mmio one cycle later
347    val storeAddrInFireReg = RegNext(io.storeAddrIn(i).fire && !io.storeAddrIn(i).bits.miss)
348    val stWbIndexReg = RegNext(stWbIndex)
349    when (storeAddrInFireReg) {
350      pending(stWbIndexReg) := io.storeAddrInRe(i).mmio
351      mmio(stWbIndexReg) := io.storeAddrInRe(i).mmio
352      atomic(stWbIndexReg) := io.storeAddrInRe(i).atomic
353    }
354    // dcache miss info (one cycle later than storeIn)
355    // if dcache report a miss in sta pipeline, this store will trigger a prefetch when committing to sbuffer (if EnableAtCommitMissTrigger)
356    when (storeAddrInFireReg) {
357      prefetch(stWbIndexReg) := io.storeAddrInRe(i).miss
358    }
359
360    when(vaddrModule.io.wen(i)){
361      debug_vaddr(vaddrModule.io.waddr(i)) := vaddrModule.io.wdata(i)
362    }
363    // TODO :  When lastElem issue to stu or inactivative issue in vsFlowQueue, set vector store addr ready
364    val vecStWbIndex = io.vecStoreAddrIn(i).bits.uop.sqIdx.value
365    when(io.vecStoreAddrIn(i).fire){
366      vecAddrvalid(vecStWbIndex) := true.B
367    }
368  }
369
370  // Write data to sq
371  // Now store data pipeline is actually 2 stages
372  for (i <- 0 until StorePipelineWidth) {
373    dataModule.io.data.wen(i) := false.B
374    val stWbIndex = io.storeDataIn(i).bits.uop.sqIdx.value
375    // sq data write takes 2 cycles:
376    // sq data write s0
377    when (io.storeDataIn(i).fire) {
378      // send data write req to data module
379      dataModule.io.data.waddr(i) := stWbIndex
380      dataModule.io.data.wdata(i) := Mux(io.storeDataIn(i).bits.uop.fuOpType === LSUOpType.cbo_zero,
381        0.U,
382        genWdata(io.storeDataIn(i).bits.data, io.storeDataIn(i).bits.uop.fuOpType(1,0))
383      )
384      dataModule.io.data.wen(i) := true.B
385
386      debug_data(dataModule.io.data.waddr(i)) := dataModule.io.data.wdata(i)
387
388      XSInfo("store data write to sq idx %d pc 0x%x data %x -> %x\n",
389        io.storeDataIn(i).bits.uop.sqIdx.value,
390        io.storeDataIn(i).bits.uop.pc,
391        io.storeDataIn(i).bits.data,
392        dataModule.io.data.wdata(i)
393      )
394    }
395    // sq data write s1
396    when (
397      RegNext(io.storeDataIn(i).fire)
398      // && !RegNext(io.storeDataIn(i).bits.uop).robIdx.needFlush(io.brqRedirect)
399    ) {
400      datavalid(RegNext(stWbIndex)) := true.B
401    }
402  }
403
404  // Write mask to sq
405  for (i <- 0 until StorePipelineWidth) {
406    // sq mask write s0
407    when (io.storeMaskIn(i).fire) {
408      // send data write req to data module
409      dataModule.io.mask.waddr(i) := io.storeMaskIn(i).bits.sqIdx.value
410      dataModule.io.mask.wdata(i) := io.storeMaskIn(i).bits.mask
411      dataModule.io.mask.wen(i) := true.B
412    }
413  }
414
415  /**
416    * load forward query
417    *
418    * Check store queue for instructions that is older than the load.
419    * The response will be valid at the next cycle after req.
420    */
421  // check over all lq entries and forward data from the first matched store
422  for (i <- 0 until LoadPipelineWidth) {
423    // Compare deqPtr (deqPtr) and forward.sqIdx, we have two cases:
424    // (1) if they have the same flag, we need to check range(tail, sqIdx)
425    // (2) if they have different flags, we need to check range(tail, VirtualLoadQueueSize) and range(0, sqIdx)
426    // Forward1: Mux(same_flag, range(tail, sqIdx), range(tail, VirtualLoadQueueSize))
427    // Forward2: Mux(same_flag, 0.U,                   range(0, sqIdx)    )
428    // i.e. forward1 is the target entries with the same flag bits and forward2 otherwise
429    val differentFlag = deqPtrExt(0).flag =/= io.forward(i).sqIdx.flag
430    val forwardMask = io.forward(i).sqIdxMask
431    // all addrvalid terms need to be checked
432    val addrValidVec = WireInit(VecInit((0 until StoreQueueSize).map(j => addrvalid(j) && allocated(j))))
433    val dataValidVec = WireInit(VecInit((0 until StoreQueueSize).map(j => datavalid(j))))
434    val allValidVec  = WireInit(VecInit((0 until StoreQueueSize).map(j => addrvalid(j) && datavalid(j) && allocated(j))))
435
436    val lfstEnable = Constantin.createRecord("LFSTEnable", LFSTEnable.B).orR
437    val storeSetHitVec = Mux(lfstEnable,
438      WireInit(VecInit((0 until StoreQueueSize).map(j => io.forward(i).uop.loadWaitBit && uop(j).robIdx === io.forward(i).uop.waitForRobIdx))),
439      WireInit(VecInit((0 until StoreQueueSize).map(j => uop(j).storeSetHit && uop(j).ssid === io.forward(i).uop.ssid)))
440    )
441
442    val forwardMask1 = Mux(differentFlag, ~deqMask, deqMask ^ forwardMask)
443    val forwardMask2 = Mux(differentFlag, forwardMask, 0.U(StoreQueueSize.W))
444    val canForward1 = forwardMask1 & allValidVec.asUInt
445    val canForward2 = forwardMask2 & allValidVec.asUInt
446    val needForward = Mux(differentFlag, ~deqMask | forwardMask, deqMask ^ forwardMask)
447
448    XSDebug(p"$i f1 ${Binary(canForward1)} f2 ${Binary(canForward2)} " +
449      p"sqIdx ${io.forward(i).sqIdx} pa ${Hexadecimal(io.forward(i).paddr)}\n"
450    )
451
452    // do real fwd query (cam lookup in load_s1)
453    dataModule.io.needForward(i)(0) := canForward1 & vaddrModule.io.forwardMmask(i).asUInt
454    dataModule.io.needForward(i)(1) := canForward2 & vaddrModule.io.forwardMmask(i).asUInt
455
456    vaddrModule.io.forwardMdata(i) := io.forward(i).vaddr
457    vaddrModule.io.forwardDataMask(i) := io.forward(i).mask
458    paddrModule.io.forwardMdata(i) := io.forward(i).paddr
459    paddrModule.io.forwardDataMask(i) := io.forward(i).mask
460
461
462    // vaddr cam result does not equal to paddr cam result
463    // replay needed
464    // val vpmaskNotEqual = ((paddrModule.io.forwardMmask(i).asUInt ^ vaddrModule.io.forwardMmask(i).asUInt) & needForward) =/= 0.U
465    // val vaddrMatchFailed = vpmaskNotEqual && io.forward(i).valid
466    val vpmaskNotEqual = (
467      (RegNext(paddrModule.io.forwardMmask(i).asUInt) ^ RegNext(vaddrModule.io.forwardMmask(i).asUInt)) &
468      RegNext(needForward) &
469      RegNext(addrValidVec.asUInt)
470    ) =/= 0.U
471    val vaddrMatchFailed = vpmaskNotEqual && RegNext(io.forward(i).valid)
472    when (vaddrMatchFailed) {
473      XSInfo("vaddrMatchFailed: pc %x pmask %x vmask %x\n",
474        RegNext(io.forward(i).uop.pc),
475        RegNext(needForward & paddrModule.io.forwardMmask(i).asUInt),
476        RegNext(needForward & vaddrModule.io.forwardMmask(i).asUInt)
477      );
478    }
479    XSPerfAccumulate("vaddr_match_failed", vpmaskNotEqual)
480    XSPerfAccumulate("vaddr_match_really_failed", vaddrMatchFailed)
481
482    // Fast forward mask will be generated immediately (load_s1)
483    io.forward(i).forwardMaskFast := dataModule.io.forwardMaskFast(i)
484
485    // Forward result will be generated 1 cycle later (load_s2)
486    io.forward(i).forwardMask := dataModule.io.forwardMask(i)
487    io.forward(i).forwardData := dataModule.io.forwardData(i)
488    // If addr match, data not ready, mark it as dataInvalid
489    // load_s1: generate dataInvalid in load_s1 to set fastUop
490    val dataInvalidMask1 = (addrValidVec.asUInt & ~dataValidVec.asUInt & vaddrModule.io.forwardMmask(i).asUInt & forwardMask1.asUInt)
491    val dataInvalidMask2 = (addrValidVec.asUInt & ~dataValidVec.asUInt & vaddrModule.io.forwardMmask(i).asUInt & forwardMask2.asUInt)
492    val dataInvalidMask = dataInvalidMask1 | dataInvalidMask2
493    io.forward(i).dataInvalidFast := dataInvalidMask.orR
494
495    // make chisel happy
496    val dataInvalidMask1Reg = Wire(UInt(StoreQueueSize.W))
497    dataInvalidMask1Reg := RegNext(dataInvalidMask1)
498    // make chisel happy
499    val dataInvalidMask2Reg = Wire(UInt(StoreQueueSize.W))
500    dataInvalidMask2Reg := RegNext(dataInvalidMask2)
501    val dataInvalidMaskReg = dataInvalidMask1Reg | dataInvalidMask2Reg
502
503    // If SSID match, address not ready, mark it as addrInvalid
504    // load_s2: generate addrInvalid
505    val addrInvalidMask1 = (~addrValidVec.asUInt & storeSetHitVec.asUInt & forwardMask1.asUInt)
506    val addrInvalidMask2 = (~addrValidVec.asUInt & storeSetHitVec.asUInt & forwardMask2.asUInt)
507    // make chisel happy
508    val addrInvalidMask1Reg = Wire(UInt(StoreQueueSize.W))
509    addrInvalidMask1Reg := RegNext(addrInvalidMask1)
510    // make chisel happy
511    val addrInvalidMask2Reg = Wire(UInt(StoreQueueSize.W))
512    addrInvalidMask2Reg := RegNext(addrInvalidMask2)
513    val addrInvalidMaskReg = addrInvalidMask1Reg | addrInvalidMask2Reg
514
515    // load_s2
516    io.forward(i).dataInvalid := RegNext(io.forward(i).dataInvalidFast)
517    // check if vaddr forward mismatched
518    io.forward(i).matchInvalid := vaddrMatchFailed
519
520    // data invalid sq index
521    // check whether false fail
522    // check flag
523    val s2_differentFlag = RegNext(differentFlag)
524    val s2_enqPtrExt = RegNext(enqPtrExt(0))
525    val s2_deqPtrExt = RegNext(deqPtrExt(0))
526
527    // addr invalid sq index
528    // make chisel happy
529    val addrInvalidMaskRegWire = Wire(UInt(StoreQueueSize.W))
530    addrInvalidMaskRegWire := addrInvalidMaskReg
531    val addrInvalidFlag = addrInvalidMaskRegWire.orR
532    val hasInvalidAddr = (~addrValidVec.asUInt & needForward).orR
533
534    val addrInvalidSqIdx1 = OHToUInt(Reverse(PriorityEncoderOH(Reverse(addrInvalidMask1Reg))))
535    val addrInvalidSqIdx2 = OHToUInt(Reverse(PriorityEncoderOH(Reverse(addrInvalidMask2Reg))))
536    val addrInvalidSqIdx = Mux(addrInvalidMask2Reg.orR, addrInvalidSqIdx2, addrInvalidSqIdx1)
537
538    // store-set content management
539    //                +-----------------------+
540    //                | Search a SSID for the |
541    //                |    load operation     |
542    //                +-----------------------+
543    //                           |
544    //                           V
545    //                 +-------------------+
546    //                 | load wait strict? |
547    //                 +-------------------+
548    //                           |
549    //                           V
550    //               +----------------------+
551    //            Set|                      |Clean
552    //               V                      V
553    //  +------------------------+   +------------------------------+
554    //  | Waiting for all older  |   | Wait until the corresponding |
555    //  |   stores operations    |   | older store operations       |
556    //  +------------------------+   +------------------------------+
557
558
559
560    when (RegNext(io.forward(i).uop.loadWaitStrict)) {
561      io.forward(i).addrInvalidSqIdx := RegNext(io.forward(i).uop.sqIdx - 1.U)
562    } .elsewhen (addrInvalidFlag) {
563      io.forward(i).addrInvalidSqIdx.flag := Mux(!s2_differentFlag || addrInvalidSqIdx >= s2_deqPtrExt.value, s2_deqPtrExt.flag, s2_enqPtrExt.flag)
564      io.forward(i).addrInvalidSqIdx.value := addrInvalidSqIdx
565    } .otherwise {
566      // may be store inst has been written to sbuffer already.
567      io.forward(i).addrInvalidSqIdx := RegNext(io.forward(i).uop.sqIdx)
568    }
569    io.forward(i).addrInvalid := Mux(RegNext(io.forward(i).uop.loadWaitStrict), RegNext(hasInvalidAddr), addrInvalidFlag)
570
571    // data invalid sq index
572    // make chisel happy
573    val dataInvalidMaskRegWire = Wire(UInt(StoreQueueSize.W))
574    dataInvalidMaskRegWire := dataInvalidMaskReg
575    val dataInvalidFlag = dataInvalidMaskRegWire.orR
576
577    val dataInvalidSqIdx1 = OHToUInt(Reverse(PriorityEncoderOH(Reverse(dataInvalidMask1Reg))))
578    val dataInvalidSqIdx2 = OHToUInt(Reverse(PriorityEncoderOH(Reverse(dataInvalidMask2Reg))))
579    val dataInvalidSqIdx = Mux(dataInvalidMask2Reg.orR, dataInvalidSqIdx2, dataInvalidSqIdx1)
580
581    when (dataInvalidFlag) {
582      io.forward(i).dataInvalidSqIdx.flag := Mux(!s2_differentFlag || dataInvalidSqIdx >= s2_deqPtrExt.value, s2_deqPtrExt.flag, s2_enqPtrExt.flag)
583      io.forward(i).dataInvalidSqIdx.value := dataInvalidSqIdx
584    } .otherwise {
585      // may be store inst has been written to sbuffer already.
586      io.forward(i).dataInvalidSqIdx := RegNext(io.forward(i).uop.sqIdx)
587    }
588  }
589
590  /**
591    * Memory mapped IO / other uncached operations
592    *
593    * States:
594    * (1) writeback from store units: mark as pending
595    * (2) when they reach ROB's head, they can be sent to uncache channel
596    * (3) response from uncache channel: mark as datavalidmask.wen
597    * (4) writeback to ROB (and other units): mark as writebacked
598    * (5) ROB commits the instruction: same as normal instructions
599    */
600  //(2) when they reach ROB's head, they can be sent to uncache channel
601  val s_idle :: s_req :: s_resp :: s_wb :: s_wait :: Nil = Enum(5)
602  val uncacheState = RegInit(s_idle)
603  switch(uncacheState) {
604    is(s_idle) {
605      when(RegNext(io.rob.pendingst && pending(deqPtr) && allocated(deqPtr) && datavalid(deqPtr) && addrvalid(deqPtr))) {
606        uncacheState := s_req
607      }
608    }
609    is(s_req) {
610      when (io.uncache.req.fire) {
611        when (io.uncacheOutstanding) {
612          uncacheState := s_wb
613        } .otherwise {
614          uncacheState := s_resp
615        }
616      }
617    }
618    is(s_resp) {
619      when(io.uncache.resp.fire) {
620        uncacheState := s_wb
621      }
622    }
623    is(s_wb) {
624      when (io.mmioStout.fire) {
625        uncacheState := s_wait
626      }
627    }
628    is(s_wait) {
629      when(commitCount > 0.U) {
630        uncacheState := s_idle // ready for next mmio
631      }
632    }
633  }
634  io.uncache.req.valid := uncacheState === s_req
635
636  io.uncache.req.bits := DontCare
637  io.uncache.req.bits.cmd  := MemoryOpConstants.M_XWR
638  io.uncache.req.bits.addr := paddrModule.io.rdata(0) // data(deqPtr) -> rdata(0)
639  io.uncache.req.bits.data := shiftDataToLow(paddrModule.io.rdata(0), dataModule.io.rdata(0).data)
640  io.uncache.req.bits.mask := shiftMaskToLow(paddrModule.io.rdata(0), dataModule.io.rdata(0).mask)
641
642  // CBO op type check can be delayed for 1 cycle,
643  // as uncache op will not start in s_idle
644  val cbo_mmio_addr = paddrModule.io.rdata(0) >> 2 << 2 // clear lowest 2 bits for op
645  val cbo_mmio_op = 0.U //TODO
646  val cbo_mmio_data = cbo_mmio_addr | cbo_mmio_op
647  when(RegNext(LSUOpType.isCbo(uop(deqPtr).fuOpType))){
648    io.uncache.req.bits.addr := DontCare // TODO
649    io.uncache.req.bits.data := paddrModule.io.rdata(0)
650    io.uncache.req.bits.mask := DontCare // TODO
651  }
652
653  io.uncache.req.bits.atomic := atomic(RegNext(rdataPtrExtNext(0)).value)
654
655  when(io.uncache.req.fire){
656    // mmio store should not be committed until uncache req is sent
657    pending(deqPtr) := false.B
658
659    XSDebug(
660      p"uncache req: pc ${Hexadecimal(uop(deqPtr).pc)} " +
661      p"addr ${Hexadecimal(io.uncache.req.bits.addr)} " +
662      p"data ${Hexadecimal(io.uncache.req.bits.data)} " +
663      p"op ${Hexadecimal(io.uncache.req.bits.cmd)} " +
664      p"mask ${Hexadecimal(io.uncache.req.bits.mask)}\n"
665    )
666  }
667
668  // (3) response from uncache channel: mark as datavalid
669  io.uncache.resp.ready := true.B
670
671  // (4) writeback to ROB (and other units): mark as writebacked
672  io.mmioStout.valid := uncacheState === s_wb
673  io.mmioStout.bits.uop := uop(deqPtr)
674  io.mmioStout.bits.uop.sqIdx := deqPtrExt(0)
675  io.mmioStout.bits.data := shiftDataToLow(paddrModule.io.rdata(0), dataModule.io.rdata(0).data) // dataModule.io.rdata.read(deqPtr)
676  io.mmioStout.bits.debug.isMMIO := true.B
677  io.mmioStout.bits.debug.paddr := DontCare
678  io.mmioStout.bits.debug.isPerfCnt := false.B
679  io.mmioStout.bits.debug.vaddr := DontCare
680  // Remove MMIO inst from store queue after MMIO request is being sent
681  // That inst will be traced by uncache state machine
682  when (io.mmioStout.fire) {
683    allocated(deqPtr) := false.B
684  }
685
686  /**
687    * ROB commits store instructions (mark them as committed)
688    *
689    * (1) When store commits, mark it as committed.
690    * (2) They will not be cancelled and can be sent to lower level.
691    */
692  XSError(uncacheState =/= s_idle && uncacheState =/= s_wait && commitCount > 0.U,
693   "should not commit instruction when MMIO has not been finished\n")
694  for (i <- 0 until CommitWidth) {
695    when (commitCount > i.U) { // MMIO inst is not in progress
696      if(i == 0){
697        // MMIO inst should not update committed flag
698        // Note that commit count has been delayed for 1 cycle
699        when(uncacheState === s_idle){
700          committed(cmtPtrExt(0).value) := true.B
701        }
702      } else {
703        committed(cmtPtrExt(i).value) := true.B
704      }
705    }
706  }
707  cmtPtrExt := cmtPtrExt.map(_ + commitCount)
708
709  // committed stores will not be cancelled and can be sent to lower level.
710  // remove retired insts from sq, add retired store to sbuffer
711
712  // Read data from data module
713  // As store queue grows larger and larger, time needed to read data from data
714  // module keeps growing higher. Now we give data read a whole cycle.
715
716  // Vector stores are written to sbuffer by vector store flow queue rather than sq
717  XSError(io.vecStoreRetire.valid && !vec(rdataPtrExt(0).value), "Vector store flow queue is trying to retire a scalar store")
718  XSError(io.vecStoreRetire.valid && !allocated(rdataPtrExt(0).value), "Vector store flow queue is trying to retire an invalid entry")
719  XSError(io.vecStoreRetire.valid && vec(rdataPtrExt(0).value) && !vecAddrvalid(rdataPtrExt(0).value), "Vector store is trying to retire without write last element!")
720  when (io.vecStoreRetire.valid) {
721    assert(io.vecStoreRetire.bits === rdataPtrExt(0))
722    vec(rdataPtrExt(0).value) := false.B
723    vecAddrvalid(rdataPtrExt(0).value) := false.B
724    allocated(rdataPtrExt(0).value) := false.B
725  }
726
727  val mmioStall = mmio(rdataPtrExt(0).value)
728  val vecStall = vec(rdataPtrExt(0).value)
729  for (i <- 0 until EnsbufferWidth) {
730    val ptr = rdataPtrExt(i).value
731    dataBuffer.io.enq(i).valid := allocated(ptr) && committed(ptr) && !mmioStall && !vecStall
732    // Note that store data/addr should both be valid after store's commit
733    assert(!dataBuffer.io.enq(i).valid || allvalid(ptr))
734    dataBuffer.io.enq(i).bits.addr     := paddrModule.io.rdata(i)
735    dataBuffer.io.enq(i).bits.vaddr    := vaddrModule.io.rdata(i)
736    dataBuffer.io.enq(i).bits.data     := dataModule.io.rdata(i).data
737    dataBuffer.io.enq(i).bits.mask     := dataModule.io.rdata(i).mask
738    dataBuffer.io.enq(i).bits.wline    := paddrModule.io.rlineflag(i)
739    dataBuffer.io.enq(i).bits.sqPtr    := rdataPtrExt(i)
740    dataBuffer.io.enq(i).bits.prefetch := prefetch(ptr)
741  }
742
743  // Send data stored in sbufferReqBitsReg to sbuffer
744  for (i <- 0 until EnsbufferWidth) {
745    io.sbuffer(i).valid := dataBuffer.io.deq(i).valid
746    dataBuffer.io.deq(i).ready := io.sbuffer(i).ready
747    // Write line request should have all 1 mask
748    assert(!(io.sbuffer(i).valid && io.sbuffer(i).bits.wline && !io.sbuffer(i).bits.mask.andR))
749    io.sbuffer(i).bits := DontCare
750    io.sbuffer(i).bits.cmd   := MemoryOpConstants.M_XWR
751    io.sbuffer(i).bits.addr  := dataBuffer.io.deq(i).bits.addr
752    io.sbuffer(i).bits.vaddr := dataBuffer.io.deq(i).bits.vaddr
753    io.sbuffer(i).bits.data  := dataBuffer.io.deq(i).bits.data
754    io.sbuffer(i).bits.mask  := dataBuffer.io.deq(i).bits.mask
755    io.sbuffer(i).bits.wline := dataBuffer.io.deq(i).bits.wline
756    io.sbuffer(i).bits.prefetch := dataBuffer.io.deq(i).bits.prefetch
757
758    // io.sbuffer(i).fire is RegNexted, as sbuffer data write takes 2 cycles.
759    // Before data write finish, sbuffer is unable to provide store to load
760    // forward data. As an workaround, deqPtrExt and allocated flag update
761    // is delayed so that load can get the right data from store queue.
762    val ptr = dataBuffer.io.deq(i).bits.sqPtr.value
763    when (RegNext(io.sbuffer(i).fire)) {
764      allocated(RegEnable(ptr, io.sbuffer(i).fire)) := false.B
765      XSDebug("sbuffer "+i+" fire: ptr %d\n", ptr)
766    }
767  }
768  (1 until EnsbufferWidth).foreach(i => when(io.sbuffer(i).fire) { assert(io.sbuffer(i - 1).fire) })
769  if (coreParams.dcacheParametersOpt.isEmpty) {
770    for (i <- 0 until EnsbufferWidth) {
771      val ptr = deqPtrExt(i).value
772      val ram = DifftestMem(64L * 1024 * 1024 * 1024, 8)
773      val wen = allocated(ptr) && committed(ptr) && !mmio(ptr)
774      val waddr = ((paddrModule.io.rdata(i) - "h80000000".U) >> 3).asUInt
775      val wdata = Mux(paddrModule.io.rdata(i)(3), dataModule.io.rdata(i).data(127, 64), dataModule.io.rdata(i).data(63, 0))
776      val wmask = Mux(paddrModule.io.rdata(i)(3), dataModule.io.rdata(i).mask(15, 8), dataModule.io.rdata(i).mask(7, 0))
777      when (wen) {
778        ram.write(waddr, wdata.asTypeOf(Vec(8, UInt(8.W))), wmask.asBools)
779      }
780    }
781  }
782
783  // Read vaddr for mem exception
784  io.exceptionAddr.vaddr := vaddrModule.io.rdata(EnsbufferWidth)
785
786  // misprediction recovery / exception redirect
787  // invalidate sq term using robIdx
788  val needCancel = Wire(Vec(StoreQueueSize, Bool()))
789  for (i <- 0 until StoreQueueSize) {
790    needCancel(i) := uop(i).robIdx.needFlush(io.brqRedirect) && allocated(i) && !committed(i)
791    when (needCancel(i)) {
792      allocated(i) := false.B
793    }
794  }
795
796 /**
797* update pointers
798**/
799  val lastEnqCancel = PopCount(RegNext(VecInit(canEnqueue.zip(enqCancel).map(x => x._1 && x._2)))) // 1 cycle after redirect
800  val lastCycleCancelCount = PopCount(RegNext(needCancel)) // 1 cycle after redirect
801  val lastCycleRedirect = RegNext(io.brqRedirect.valid) // 1 cycle after redirect
802  val enqNumber = Mux(!lastCycleRedirect&&io.enq.canAccept && io.enq.lqCanAccept, PopCount(io.enq.req.map(_.valid)), 0.U) // 1 cycle after redirect
803
804  val lastlastCycleRedirect=RegNext(lastCycleRedirect)// 2 cycle after redirect
805  val redirectCancelCount = RegEnable(lastCycleCancelCount + lastEnqCancel, lastCycleRedirect) // 2 cycle after redirect
806
807  when (lastlastCycleRedirect) {
808    // we recover the pointers in 2 cycle after redirect for better timing
809    enqPtrExt := VecInit(enqPtrExt.map(_ - redirectCancelCount))
810  }.otherwise {
811    // lastCycleRedirect.valid or nornal case
812    // when lastCycleRedirect.valid, enqNumber === 0.U, enqPtrExt will not change
813    enqPtrExt := VecInit(enqPtrExt.map(_ + enqNumber))
814  }
815  assert(!(lastCycleRedirect && enqNumber =/= 0.U))
816
817  deqPtrExt := deqPtrExtNext
818  rdataPtrExt := rdataPtrExtNext
819
820  // val dequeueCount = Mux(io.sbuffer(1).fire, 2.U, Mux(io.sbuffer(0).fire || io.mmioStout.fire, 1.U, 0.U))
821
822  // If redirect at T0, sqCancelCnt is at T2
823  io.sqCancelCnt := redirectCancelCount
824  val ForceWriteUpper = Wire(UInt(log2Up(StoreQueueSize + 1).W))
825  ForceWriteUpper := Constantin.createRecord("ForceWriteUpper_"+p(XSCoreParamsKey).HartId.toString(), initValue = 60.U)
826  val ForceWriteLower = Wire(UInt(log2Up(StoreQueueSize + 1).W))
827  ForceWriteLower := Constantin.createRecord("ForceWriteLower_"+p(XSCoreParamsKey).HartId.toString(), initValue = 55.U)
828
829  val valid_cnt = PopCount(allocated)
830  io.force_write := RegNext(Mux(valid_cnt >= ForceWriteUpper, true.B, valid_cnt >= ForceWriteLower && io.force_write), init = false.B)
831
832  // io.sqempty will be used by sbuffer
833  // We delay it for 1 cycle for better timing
834  // When sbuffer need to check if it is empty, the pipeline is blocked, which means delay io.sqempty
835  // for 1 cycle will also promise that sq is empty in that cycle
836  io.sqEmpty := RegNext(
837    enqPtrExt(0).value === deqPtrExt(0).value &&
838    enqPtrExt(0).flag === deqPtrExt(0).flag
839  )
840  // perf counter
841  QueuePerf(StoreQueueSize, validCount, !allowEnqueue)
842  io.sqFull := !allowEnqueue
843  XSPerfAccumulate("mmioCycle", uncacheState =/= s_idle) // lq is busy dealing with uncache req
844  XSPerfAccumulate("mmioCnt", io.uncache.req.fire)
845  XSPerfAccumulate("mmio_wb_success", io.mmioStout.fire)
846  XSPerfAccumulate("mmio_wb_blocked", io.mmioStout.valid && !io.mmioStout.ready)
847  XSPerfAccumulate("validEntryCnt", distanceBetween(enqPtrExt(0), deqPtrExt(0)))
848  XSPerfAccumulate("cmtEntryCnt", distanceBetween(cmtPtrExt(0), deqPtrExt(0)))
849  XSPerfAccumulate("nCmtEntryCnt", distanceBetween(enqPtrExt(0), cmtPtrExt(0)))
850
851  val perfValidCount = distanceBetween(enqPtrExt(0), deqPtrExt(0))
852  val perfEvents = Seq(
853    ("mmioCycle      ", uncacheState =/= s_idle),
854    ("mmioCnt        ", io.uncache.req.fire),
855    ("mmio_wb_success", io.mmioStout.fire),
856    ("mmio_wb_blocked", io.mmioStout.valid && !io.mmioStout.ready),
857    ("stq_1_4_valid  ", (perfValidCount < (StoreQueueSize.U/4.U))),
858    ("stq_2_4_valid  ", (perfValidCount > (StoreQueueSize.U/4.U)) & (perfValidCount <= (StoreQueueSize.U/2.U))),
859    ("stq_3_4_valid  ", (perfValidCount > (StoreQueueSize.U/2.U)) & (perfValidCount <= (StoreQueueSize.U*3.U/4.U))),
860    ("stq_4_4_valid  ", (perfValidCount > (StoreQueueSize.U*3.U/4.U))),
861  )
862  generatePerfEvent()
863
864  // debug info
865  XSDebug("enqPtrExt %d:%d deqPtrExt %d:%d\n", enqPtrExt(0).flag, enqPtr, deqPtrExt(0).flag, deqPtr)
866
867  def PrintFlag(flag: Bool, name: String): Unit = {
868    when(flag) {
869      XSDebug(false, true.B, name)
870    }.otherwise {
871      XSDebug(false, true.B, " ")
872    }
873  }
874
875  for (i <- 0 until StoreQueueSize) {
876    XSDebug(i + ": pc %x va %x pa %x data %x ",
877      uop(i).pc,
878      debug_vaddr(i),
879      debug_paddr(i),
880      debug_data(i)
881    )
882    PrintFlag(allocated(i), "a")
883    PrintFlag(allocated(i) && addrvalid(i), "a")
884    PrintFlag(allocated(i) && datavalid(i), "d")
885    PrintFlag(allocated(i) && committed(i), "c")
886    PrintFlag(allocated(i) && pending(i), "p")
887    PrintFlag(allocated(i) && mmio(i), "m")
888    XSDebug(false, true.B, "\n")
889  }
890
891}
892