1/*************************************************************************************** 2* Copyright (c) 2020-2021 Institute of Computing Technology, Chinese Academy of Sciences 3* Copyright (c) 2020-2021 Peng Cheng Laboratory 4* 5* XiangShan is licensed under Mulan PSL v2. 6* You can use this software according to the terms and conditions of the Mulan PSL v2. 7* You may obtain a copy of Mulan PSL v2 at: 8* http://license.coscl.org.cn/MulanPSL2 9* 10* THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND, 11* EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT, 12* MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE. 13* 14* See the Mulan PSL v2 for more details. 15***************************************************************************************/ 16 17package xiangshan.mem 18 19import chisel3._ 20import chisel3.util._ 21import difftest._ 22import difftest.common.DifftestMem 23import org.chipsalliance.cde.config.Parameters 24import utility._ 25import utils._ 26import xiangshan._ 27import xiangshan.cache._ 28import xiangshan.cache.{DCacheLineIO, DCacheWordIO, MemoryOpConstants} 29import xiangshan.backend._ 30import xiangshan.backend.rob.{RobLsqIO, RobPtr} 31import xiangshan.backend.Bundles.{DynInst, MemExuOutput} 32import xiangshan.backend.decode.isa.bitfield.{Riscv32BitInst, XSInstBitFields} 33 34class SqPtr(implicit p: Parameters) extends CircularQueuePtr[SqPtr]( 35 p => p(XSCoreParamsKey).StoreQueueSize 36){ 37} 38 39object SqPtr { 40 def apply(f: Bool, v: UInt)(implicit p: Parameters): SqPtr = { 41 val ptr = Wire(new SqPtr) 42 ptr.flag := f 43 ptr.value := v 44 ptr 45 } 46} 47 48class SqEnqIO(implicit p: Parameters) extends MemBlockBundle { 49 val canAccept = Output(Bool()) 50 val lqCanAccept = Input(Bool()) 51 val needAlloc = Vec(LSQEnqWidth, Input(Bool())) 52 val req = Vec(LSQEnqWidth, Flipped(ValidIO(new DynInst))) 53 val resp = Vec(LSQEnqWidth, Output(new SqPtr)) 54} 55 56class DataBufferEntry (implicit p: Parameters) extends DCacheBundle { 57 val addr = UInt(PAddrBits.W) 58 val vaddr = UInt(VAddrBits.W) 59 val data = UInt(VLEN.W) 60 val mask = UInt((VLEN/8).W) 61 val wline = Bool() 62 val sqPtr = new SqPtr 63 val prefetch = Bool() 64} 65 66// Store Queue 67class StoreQueue(implicit p: Parameters) extends XSModule 68 with HasDCacheParameters with HasCircularQueuePtrHelper with HasPerfEvents { 69 val io = IO(new Bundle() { 70 val hartId = Input(UInt(8.W)) 71 val enq = new SqEnqIO 72 val brqRedirect = Flipped(ValidIO(new Redirect)) 73 val storeAddrIn = Vec(StorePipelineWidth, Flipped(Valid(new LsPipelineBundle))) // store addr, data is not included 74 val vecStoreAddrIn = Vec(StorePipelineWidth, Flipped(Valid(new LsPipelineBundle))) // vec store addr, data is not include , from vsFlowQueue 75 val storeAddrInRe = Vec(StorePipelineWidth, Input(new LsPipelineBundle())) // store more mmio and exception 76 val storeDataIn = Vec(StorePipelineWidth, Flipped(Valid(new MemExuOutput))) // store data, send to sq from rs 77 val storeMaskIn = Vec(StorePipelineWidth, Flipped(Valid(new StoreMaskBundle))) // store mask, send to sq from rs 78 val sbuffer = Vec(EnsbufferWidth, Decoupled(new DCacheWordReqWithVaddrAndPfFlag)) // write committed store to sbuffer 79 val uncacheOutstanding = Input(Bool()) 80 val mmioStout = DecoupledIO(new MemExuOutput) // writeback uncached store 81 val forward = Vec(LoadPipelineWidth, Flipped(new PipeLoadForwardQueryIO)) 82 val rob = Flipped(new RobLsqIO) 83 val uncache = new UncacheWordIO 84 // val refill = Flipped(Valid(new DCacheLineReq )) 85 val exceptionAddr = new ExceptionAddrIO 86 val sqEmpty = Output(Bool()) 87 val stAddrReadySqPtr = Output(new SqPtr) 88 val stAddrReadyVec = Output(Vec(StoreQueueSize, Bool())) 89 val stDataReadySqPtr = Output(new SqPtr) 90 val stDataReadyVec = Output(Vec(StoreQueueSize, Bool())) 91 val stIssuePtr = Output(new SqPtr) 92 val sqDeqPtr = Output(new SqPtr) 93 val sqFull = Output(Bool()) 94 val sqCancelCnt = Output(UInt(log2Up(StoreQueueSize + 1).W)) 95 val sqDeq = Output(UInt(log2Ceil(EnsbufferWidth + 1).W)) 96 val force_write = Output(Bool()) 97 val vecStoreRetire = Flipped(ValidIO(new SqPtr)) 98 }) 99 100 println("StoreQueue: size:" + StoreQueueSize) 101 102 // data modules 103 val uop = Reg(Vec(StoreQueueSize, new DynInst)) 104 // val data = Reg(Vec(StoreQueueSize, new LsqEntry)) 105 val dataModule = Module(new SQDataModule( 106 numEntries = StoreQueueSize, 107 numRead = EnsbufferWidth, 108 numWrite = StorePipelineWidth, 109 numForward = LoadPipelineWidth 110 )) 111 dataModule.io := DontCare 112 val paddrModule = Module(new SQAddrModule( 113 dataWidth = PAddrBits, 114 numEntries = StoreQueueSize, 115 numRead = EnsbufferWidth, 116 numWrite = StorePipelineWidth, 117 numForward = LoadPipelineWidth 118 )) 119 paddrModule.io := DontCare 120 val vaddrModule = Module(new SQAddrModule( 121 dataWidth = VAddrBits, 122 numEntries = StoreQueueSize, 123 numRead = EnsbufferWidth + 1, // sbuffer + badvaddr 1 (TODO) 124 numWrite = StorePipelineWidth, 125 numForward = LoadPipelineWidth 126 )) 127 vaddrModule.io := DontCare 128 val dataBuffer = Module(new DatamoduleResultBuffer(new DataBufferEntry)) 129 val debug_paddr = Reg(Vec(StoreQueueSize, UInt((PAddrBits).W))) 130 val debug_vaddr = Reg(Vec(StoreQueueSize, UInt((VAddrBits).W))) 131 val debug_data = Reg(Vec(StoreQueueSize, UInt((XLEN).W))) 132 133 // state & misc 134 val allocated = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // sq entry has been allocated 135 val addrvalid = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // non-mmio addr is valid 136 val datavalid = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // non-mmio data is valid 137 val allvalid = VecInit((0 until StoreQueueSize).map(i => addrvalid(i) && datavalid(i))) // non-mmio data & addr is valid 138 val committed = Reg(Vec(StoreQueueSize, Bool())) // inst has been committed by rob 139 val pending = Reg(Vec(StoreQueueSize, Bool())) // mmio pending: inst is an mmio inst, it will not be executed until it reachs the end of rob 140 val mmio = Reg(Vec(StoreQueueSize, Bool())) // mmio: inst is an mmio inst 141 val atomic = Reg(Vec(StoreQueueSize, Bool())) 142 val prefetch = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // need prefetch when committing this store to sbuffer? 143 val vec = Reg(Vec(StoreQueueSize, Bool())) 144 val vecAddrvalid = Reg(Vec(StoreQueueSize, Bool())) // TODO 145 146 // ptr 147 val enqPtrExt = RegInit(VecInit((0 until io.enq.req.length).map(_.U.asTypeOf(new SqPtr)))) 148 val rdataPtrExt = RegInit(VecInit((0 until EnsbufferWidth).map(_.U.asTypeOf(new SqPtr)))) 149 val deqPtrExt = RegInit(VecInit((0 until EnsbufferWidth).map(_.U.asTypeOf(new SqPtr)))) 150 val cmtPtrExt = RegInit(VecInit((0 until CommitWidth).map(_.U.asTypeOf(new SqPtr)))) 151 val addrReadyPtrExt = RegInit(0.U.asTypeOf(new SqPtr)) 152 val dataReadyPtrExt = RegInit(0.U.asTypeOf(new SqPtr)) 153 val validCounter = RegInit(0.U(log2Ceil(VirtualLoadQueueSize + 1).W)) 154 155 val enqPtr = enqPtrExt(0).value 156 val deqPtr = deqPtrExt(0).value 157 val cmtPtr = cmtPtrExt(0).value 158 159 val validCount = distanceBetween(enqPtrExt(0), deqPtrExt(0)) 160 val allowEnqueue = validCount <= (StoreQueueSize - LSQStEnqWidth).U 161 162 val deqMask = UIntToMask(deqPtr, StoreQueueSize) 163 val enqMask = UIntToMask(enqPtr, StoreQueueSize) 164 165 val commitCount = RegNext(io.rob.scommit) 166 167 // store can be committed by ROB 168 io.rob.mmio := DontCare 169 io.rob.uop := DontCare 170 171 // Read dataModule 172 assert(EnsbufferWidth <= 2) 173 // rdataPtrExtNext and rdataPtrExtNext+1 entry will be read from dataModule 174 val rdataPtrExtNext = WireInit(Mux(dataBuffer.io.enq(1).fire, 175 VecInit(rdataPtrExt.map(_ + 2.U)), 176 Mux(dataBuffer.io.enq(0).fire || io.mmioStout.fire || io.vecStoreRetire.valid, 177 VecInit(rdataPtrExt.map(_ + 1.U)), 178 rdataPtrExt 179 ) 180 )) 181 182 // deqPtrExtNext traces which inst is about to leave store queue 183 // 184 // io.sbuffer(i).fire is RegNexted, as sbuffer data write takes 2 cycles. 185 // Before data write finish, sbuffer is unable to provide store to load 186 // forward data. As an workaround, deqPtrExt and allocated flag update 187 // is delayed so that load can get the right data from store queue. 188 // 189 // Modify deqPtrExtNext and io.sqDeq with care! 190 val deqPtrExtNext = Mux(RegNext(io.sbuffer(1).fire), 191 VecInit(deqPtrExt.map(_ + 2.U)), 192 Mux(RegNext(io.sbuffer(0).fire) || io.mmioStout.fire || io.vecStoreRetire.valid, 193 VecInit(deqPtrExt.map(_ + 1.U)), 194 deqPtrExt 195 ) 196 ) 197 io.sqDeq := RegNext(Mux(RegNext(io.sbuffer(1).fire), 2.U, 198 Mux(RegNext(io.sbuffer(0).fire) || io.mmioStout.fire || io.vecStoreRetire.valid, 1.U, 0.U) 199 )) 200 assert(!RegNext(RegNext(io.sbuffer(0).fire) && io.mmioStout.fire)) 201 202 for (i <- 0 until EnsbufferWidth) { 203 dataModule.io.raddr(i) := rdataPtrExtNext(i).value 204 paddrModule.io.raddr(i) := rdataPtrExtNext(i).value 205 vaddrModule.io.raddr(i) := rdataPtrExtNext(i).value 206 } 207 208 // no inst will be committed 1 cycle before tval update 209 vaddrModule.io.raddr(EnsbufferWidth) := (cmtPtrExt(0) + commitCount).value 210 211 /** 212 * Enqueue at dispatch 213 * 214 * Currently, StoreQueue only allows enqueue when #emptyEntries > EnqWidth 215 */ 216 io.enq.canAccept := allowEnqueue 217 val canEnqueue = io.enq.req.map(_.valid) 218 val enqCancel = io.enq.req.map(_.bits.robIdx.needFlush(io.brqRedirect)) 219 for (i <- 0 until io.enq.req.length) { 220 val offset = if (i == 0) 0.U else PopCount(io.enq.needAlloc.take(i)) 221 val sqIdx = enqPtrExt(offset) 222 val index = io.enq.req(i).bits.sqIdx.value 223 val enqInstr = io.enq.req(i).bits.instr.asTypeOf(new XSInstBitFields) 224 when (canEnqueue(i) && !enqCancel(i)) { 225 uop(index) := io.enq.req(i).bits 226 // NOTE: the index will be used when replay 227 uop(index).sqIdx := sqIdx 228 allocated(index) := true.B 229 datavalid(index) := false.B 230 addrvalid(index) := false.B 231 committed(index) := false.B 232 pending(index) := false.B 233 prefetch(index) := false.B 234 mmio(index) := false.B 235 vec(index) := enqInstr.isVecStore // check vector store by the encoding of inst 236 vecAddrvalid(index) := false.B//TODO 237 238 XSError(!io.enq.canAccept || !io.enq.lqCanAccept, s"must accept $i\n") 239 XSError(index =/= sqIdx.value, s"must be the same entry $i\n") 240 } 241 io.enq.resp(i) := sqIdx 242 } 243 XSDebug(p"(ready, valid): ${io.enq.canAccept}, ${Binary(Cat(io.enq.req.map(_.valid)))}\n") 244 245 /** 246 * Update addr/dataReadyPtr when issue from rs 247 */ 248 // update issuePtr 249 val IssuePtrMoveStride = 4 250 require(IssuePtrMoveStride >= 2) 251 252 val addrReadyLookupVec = (0 until IssuePtrMoveStride).map(addrReadyPtrExt + _.U) 253 val addrReadyLookup = addrReadyLookupVec.map(ptr => allocated(ptr.value) && (mmio(ptr.value) || addrvalid(ptr.value) || (vec(ptr.value) && vecAddrvalid(ptr.value))) && ptr =/= enqPtrExt(0)) 254 val nextAddrReadyPtr = addrReadyPtrExt + PriorityEncoder(VecInit(addrReadyLookup.map(!_) :+ true.B)) 255 addrReadyPtrExt := nextAddrReadyPtr 256 257 (0 until StoreQueueSize).map(i => { 258 io.stAddrReadyVec(i) := RegNext(allocated(i) && (mmio(i) || addrvalid(i))) 259 }) 260 261 when (io.brqRedirect.valid) { 262 addrReadyPtrExt := Mux( 263 isAfter(cmtPtrExt(0), deqPtrExt(0)), 264 cmtPtrExt(0), 265 deqPtrExtNext(0) // for mmio insts, deqPtr may be ahead of cmtPtr 266 ) 267 } 268 269 io.stAddrReadySqPtr := addrReadyPtrExt 270 271 // update 272 val dataReadyLookupVec = (0 until IssuePtrMoveStride).map(dataReadyPtrExt + _.U) 273 val dataReadyLookup = dataReadyLookupVec.map(ptr => allocated(ptr.value) && (mmio(ptr.value) || datavalid(ptr.value) || vec(ptr.value)) && ptr =/= enqPtrExt(0)) // TODO : flag of vector store data valid not add yet 274 val nextDataReadyPtr = dataReadyPtrExt + PriorityEncoder(VecInit(dataReadyLookup.map(!_) :+ true.B)) 275 dataReadyPtrExt := nextDataReadyPtr 276 277 (0 until StoreQueueSize).map(i => { 278 io.stDataReadyVec(i) := RegNext(allocated(i) && (mmio(i) || datavalid(i))) 279 }) 280 281 when (io.brqRedirect.valid) { 282 dataReadyPtrExt := Mux( 283 isAfter(cmtPtrExt(0), deqPtrExt(0)), 284 cmtPtrExt(0), 285 deqPtrExtNext(0) // for mmio insts, deqPtr may be ahead of cmtPtr 286 ) 287 } 288 289 io.stDataReadySqPtr := dataReadyPtrExt 290 io.stIssuePtr := enqPtrExt(0) 291 io.sqDeqPtr := deqPtrExt(0) 292 293 /** 294 * Writeback store from store units 295 * 296 * Most store instructions writeback to regfile in the previous cycle. 297 * However, 298 * (1) For an mmio instruction with exceptions, we need to mark it as addrvalid 299 * (in this way it will trigger an exception when it reaches ROB's head) 300 * instead of pending to avoid sending them to lower level. 301 * (2) For an mmio instruction without exceptions, we mark it as pending. 302 * When the instruction reaches ROB's head, StoreQueue sends it to uncache channel. 303 * Upon receiving the response, StoreQueue writes back the instruction 304 * through arbiter with store units. It will later commit as normal. 305 */ 306 307 // Write addr to sq 308 for (i <- 0 until StorePipelineWidth) { 309 paddrModule.io.wen(i) := false.B 310 vaddrModule.io.wen(i) := false.B 311 dataModule.io.mask.wen(i) := false.B 312 val stWbIndex = io.storeAddrIn(i).bits.uop.sqIdx.value 313 when (io.storeAddrIn(i).fire) { 314 val addr_valid = !io.storeAddrIn(i).bits.miss 315 addrvalid(stWbIndex) := addr_valid //!io.storeAddrIn(i).bits.mmio 316 // pending(stWbIndex) := io.storeAddrIn(i).bits.mmio 317 318 paddrModule.io.waddr(i) := stWbIndex 319 paddrModule.io.wdata(i) := io.storeAddrIn(i).bits.paddr 320 paddrModule.io.wmask(i) := io.storeAddrIn(i).bits.mask 321 paddrModule.io.wlineflag(i) := io.storeAddrIn(i).bits.wlineflag 322 paddrModule.io.wen(i) := true.B 323 324 vaddrModule.io.waddr(i) := stWbIndex 325 vaddrModule.io.wdata(i) := io.storeAddrIn(i).bits.vaddr 326 vaddrModule.io.wmask(i) := io.storeAddrIn(i).bits.mask 327 vaddrModule.io.wlineflag(i) := io.storeAddrIn(i).bits.wlineflag 328 vaddrModule.io.wen(i) := true.B 329 330 debug_paddr(paddrModule.io.waddr(i)) := paddrModule.io.wdata(i) 331 332 // mmio(stWbIndex) := io.storeAddrIn(i).bits.mmio 333 334 uop(stWbIndex) := io.storeAddrIn(i).bits.uop 335 uop(stWbIndex).debugInfo := io.storeAddrIn(i).bits.uop.debugInfo 336 XSInfo("store addr write to sq idx %d pc 0x%x miss:%d vaddr %x paddr %x mmio %x\n", 337 io.storeAddrIn(i).bits.uop.sqIdx.value, 338 io.storeAddrIn(i).bits.uop.pc, 339 io.storeAddrIn(i).bits.miss, 340 io.storeAddrIn(i).bits.vaddr, 341 io.storeAddrIn(i).bits.paddr, 342 io.storeAddrIn(i).bits.mmio 343 ) 344 } 345 346 // re-replinish mmio, for pma/pmp will get mmio one cycle later 347 val storeAddrInFireReg = RegNext(io.storeAddrIn(i).fire && !io.storeAddrIn(i).bits.miss) 348 val stWbIndexReg = RegNext(stWbIndex) 349 when (storeAddrInFireReg) { 350 pending(stWbIndexReg) := io.storeAddrInRe(i).mmio 351 mmio(stWbIndexReg) := io.storeAddrInRe(i).mmio 352 atomic(stWbIndexReg) := io.storeAddrInRe(i).atomic 353 } 354 // dcache miss info (one cycle later than storeIn) 355 // if dcache report a miss in sta pipeline, this store will trigger a prefetch when committing to sbuffer (if EnableAtCommitMissTrigger) 356 when (storeAddrInFireReg) { 357 prefetch(stWbIndexReg) := io.storeAddrInRe(i).miss 358 } 359 360 when(vaddrModule.io.wen(i)){ 361 debug_vaddr(vaddrModule.io.waddr(i)) := vaddrModule.io.wdata(i) 362 } 363 // TODO : When lastElem issue to stu or inactivative issue in vsFlowQueue, set vector store addr ready 364 val vecStWbIndex = io.vecStoreAddrIn(i).bits.uop.sqIdx.value 365 when(io.vecStoreAddrIn(i).fire){ 366 vecAddrvalid(vecStWbIndex) := true.B 367 } 368 } 369 370 // Write data to sq 371 // Now store data pipeline is actually 2 stages 372 for (i <- 0 until StorePipelineWidth) { 373 dataModule.io.data.wen(i) := false.B 374 val stWbIndex = io.storeDataIn(i).bits.uop.sqIdx.value 375 // sq data write takes 2 cycles: 376 // sq data write s0 377 when (io.storeDataIn(i).fire) { 378 // send data write req to data module 379 dataModule.io.data.waddr(i) := stWbIndex 380 dataModule.io.data.wdata(i) := Mux(io.storeDataIn(i).bits.uop.fuOpType === LSUOpType.cbo_zero, 381 0.U, 382 genWdata(io.storeDataIn(i).bits.data, io.storeDataIn(i).bits.uop.fuOpType(1,0)) 383 ) 384 dataModule.io.data.wen(i) := true.B 385 386 debug_data(dataModule.io.data.waddr(i)) := dataModule.io.data.wdata(i) 387 388 XSInfo("store data write to sq idx %d pc 0x%x data %x -> %x\n", 389 io.storeDataIn(i).bits.uop.sqIdx.value, 390 io.storeDataIn(i).bits.uop.pc, 391 io.storeDataIn(i).bits.data, 392 dataModule.io.data.wdata(i) 393 ) 394 } 395 // sq data write s1 396 when ( 397 RegNext(io.storeDataIn(i).fire) 398 // && !RegNext(io.storeDataIn(i).bits.uop).robIdx.needFlush(io.brqRedirect) 399 ) { 400 datavalid(RegNext(stWbIndex)) := true.B 401 } 402 } 403 404 // Write mask to sq 405 for (i <- 0 until StorePipelineWidth) { 406 // sq mask write s0 407 when (io.storeMaskIn(i).fire) { 408 // send data write req to data module 409 dataModule.io.mask.waddr(i) := io.storeMaskIn(i).bits.sqIdx.value 410 dataModule.io.mask.wdata(i) := io.storeMaskIn(i).bits.mask 411 dataModule.io.mask.wen(i) := true.B 412 } 413 } 414 415 /** 416 * load forward query 417 * 418 * Check store queue for instructions that is older than the load. 419 * The response will be valid at the next cycle after req. 420 */ 421 // check over all lq entries and forward data from the first matched store 422 for (i <- 0 until LoadPipelineWidth) { 423 // Compare deqPtr (deqPtr) and forward.sqIdx, we have two cases: 424 // (1) if they have the same flag, we need to check range(tail, sqIdx) 425 // (2) if they have different flags, we need to check range(tail, VirtualLoadQueueSize) and range(0, sqIdx) 426 // Forward1: Mux(same_flag, range(tail, sqIdx), range(tail, VirtualLoadQueueSize)) 427 // Forward2: Mux(same_flag, 0.U, range(0, sqIdx) ) 428 // i.e. forward1 is the target entries with the same flag bits and forward2 otherwise 429 val differentFlag = deqPtrExt(0).flag =/= io.forward(i).sqIdx.flag 430 val forwardMask = io.forward(i).sqIdxMask 431 // all addrvalid terms need to be checked 432 val addrValidVec = WireInit(VecInit((0 until StoreQueueSize).map(j => addrvalid(j) && allocated(j)))) 433 val dataValidVec = WireInit(VecInit((0 until StoreQueueSize).map(j => datavalid(j)))) 434 val allValidVec = WireInit(VecInit((0 until StoreQueueSize).map(j => addrvalid(j) && datavalid(j) && allocated(j)))) 435 436 val lfstEnable = Constantin.createRecord("LFSTEnable", LFSTEnable.B).orR 437 val storeSetHitVec = Mux(lfstEnable, 438 WireInit(VecInit((0 until StoreQueueSize).map(j => io.forward(i).uop.loadWaitBit && uop(j).robIdx === io.forward(i).uop.waitForRobIdx))), 439 WireInit(VecInit((0 until StoreQueueSize).map(j => uop(j).storeSetHit && uop(j).ssid === io.forward(i).uop.ssid))) 440 ) 441 442 val forwardMask1 = Mux(differentFlag, ~deqMask, deqMask ^ forwardMask) 443 val forwardMask2 = Mux(differentFlag, forwardMask, 0.U(StoreQueueSize.W)) 444 val canForward1 = forwardMask1 & allValidVec.asUInt 445 val canForward2 = forwardMask2 & allValidVec.asUInt 446 val needForward = Mux(differentFlag, ~deqMask | forwardMask, deqMask ^ forwardMask) 447 448 XSDebug(p"$i f1 ${Binary(canForward1)} f2 ${Binary(canForward2)} " + 449 p"sqIdx ${io.forward(i).sqIdx} pa ${Hexadecimal(io.forward(i).paddr)}\n" 450 ) 451 452 // do real fwd query (cam lookup in load_s1) 453 dataModule.io.needForward(i)(0) := canForward1 & vaddrModule.io.forwardMmask(i).asUInt 454 dataModule.io.needForward(i)(1) := canForward2 & vaddrModule.io.forwardMmask(i).asUInt 455 456 vaddrModule.io.forwardMdata(i) := io.forward(i).vaddr 457 vaddrModule.io.forwardDataMask(i) := io.forward(i).mask 458 paddrModule.io.forwardMdata(i) := io.forward(i).paddr 459 paddrModule.io.forwardDataMask(i) := io.forward(i).mask 460 461 462 // vaddr cam result does not equal to paddr cam result 463 // replay needed 464 // val vpmaskNotEqual = ((paddrModule.io.forwardMmask(i).asUInt ^ vaddrModule.io.forwardMmask(i).asUInt) & needForward) =/= 0.U 465 // val vaddrMatchFailed = vpmaskNotEqual && io.forward(i).valid 466 val vpmaskNotEqual = ( 467 (RegNext(paddrModule.io.forwardMmask(i).asUInt) ^ RegNext(vaddrModule.io.forwardMmask(i).asUInt)) & 468 RegNext(needForward) & 469 RegNext(addrValidVec.asUInt) 470 ) =/= 0.U 471 val vaddrMatchFailed = vpmaskNotEqual && RegNext(io.forward(i).valid) 472 when (vaddrMatchFailed) { 473 XSInfo("vaddrMatchFailed: pc %x pmask %x vmask %x\n", 474 RegNext(io.forward(i).uop.pc), 475 RegNext(needForward & paddrModule.io.forwardMmask(i).asUInt), 476 RegNext(needForward & vaddrModule.io.forwardMmask(i).asUInt) 477 ); 478 } 479 XSPerfAccumulate("vaddr_match_failed", vpmaskNotEqual) 480 XSPerfAccumulate("vaddr_match_really_failed", vaddrMatchFailed) 481 482 // Fast forward mask will be generated immediately (load_s1) 483 io.forward(i).forwardMaskFast := dataModule.io.forwardMaskFast(i) 484 485 // Forward result will be generated 1 cycle later (load_s2) 486 io.forward(i).forwardMask := dataModule.io.forwardMask(i) 487 io.forward(i).forwardData := dataModule.io.forwardData(i) 488 // If addr match, data not ready, mark it as dataInvalid 489 // load_s1: generate dataInvalid in load_s1 to set fastUop 490 val dataInvalidMask1 = (addrValidVec.asUInt & ~dataValidVec.asUInt & vaddrModule.io.forwardMmask(i).asUInt & forwardMask1.asUInt) 491 val dataInvalidMask2 = (addrValidVec.asUInt & ~dataValidVec.asUInt & vaddrModule.io.forwardMmask(i).asUInt & forwardMask2.asUInt) 492 val dataInvalidMask = dataInvalidMask1 | dataInvalidMask2 493 io.forward(i).dataInvalidFast := dataInvalidMask.orR 494 495 // make chisel happy 496 val dataInvalidMask1Reg = Wire(UInt(StoreQueueSize.W)) 497 dataInvalidMask1Reg := RegNext(dataInvalidMask1) 498 // make chisel happy 499 val dataInvalidMask2Reg = Wire(UInt(StoreQueueSize.W)) 500 dataInvalidMask2Reg := RegNext(dataInvalidMask2) 501 val dataInvalidMaskReg = dataInvalidMask1Reg | dataInvalidMask2Reg 502 503 // If SSID match, address not ready, mark it as addrInvalid 504 // load_s2: generate addrInvalid 505 val addrInvalidMask1 = (~addrValidVec.asUInt & storeSetHitVec.asUInt & forwardMask1.asUInt) 506 val addrInvalidMask2 = (~addrValidVec.asUInt & storeSetHitVec.asUInt & forwardMask2.asUInt) 507 // make chisel happy 508 val addrInvalidMask1Reg = Wire(UInt(StoreQueueSize.W)) 509 addrInvalidMask1Reg := RegNext(addrInvalidMask1) 510 // make chisel happy 511 val addrInvalidMask2Reg = Wire(UInt(StoreQueueSize.W)) 512 addrInvalidMask2Reg := RegNext(addrInvalidMask2) 513 val addrInvalidMaskReg = addrInvalidMask1Reg | addrInvalidMask2Reg 514 515 // load_s2 516 io.forward(i).dataInvalid := RegNext(io.forward(i).dataInvalidFast) 517 // check if vaddr forward mismatched 518 io.forward(i).matchInvalid := vaddrMatchFailed 519 520 // data invalid sq index 521 // check whether false fail 522 // check flag 523 val s2_differentFlag = RegNext(differentFlag) 524 val s2_enqPtrExt = RegNext(enqPtrExt(0)) 525 val s2_deqPtrExt = RegNext(deqPtrExt(0)) 526 527 // addr invalid sq index 528 // make chisel happy 529 val addrInvalidMaskRegWire = Wire(UInt(StoreQueueSize.W)) 530 addrInvalidMaskRegWire := addrInvalidMaskReg 531 val addrInvalidFlag = addrInvalidMaskRegWire.orR 532 val hasInvalidAddr = (~addrValidVec.asUInt & needForward).orR 533 534 val addrInvalidSqIdx1 = OHToUInt(Reverse(PriorityEncoderOH(Reverse(addrInvalidMask1Reg)))) 535 val addrInvalidSqIdx2 = OHToUInt(Reverse(PriorityEncoderOH(Reverse(addrInvalidMask2Reg)))) 536 val addrInvalidSqIdx = Mux(addrInvalidMask2Reg.orR, addrInvalidSqIdx2, addrInvalidSqIdx1) 537 538 // store-set content management 539 // +-----------------------+ 540 // | Search a SSID for the | 541 // | load operation | 542 // +-----------------------+ 543 // | 544 // V 545 // +-------------------+ 546 // | load wait strict? | 547 // +-------------------+ 548 // | 549 // V 550 // +----------------------+ 551 // Set| |Clean 552 // V V 553 // +------------------------+ +------------------------------+ 554 // | Waiting for all older | | Wait until the corresponding | 555 // | stores operations | | older store operations | 556 // +------------------------+ +------------------------------+ 557 558 559 560 when (RegNext(io.forward(i).uop.loadWaitStrict)) { 561 io.forward(i).addrInvalidSqIdx := RegNext(io.forward(i).uop.sqIdx - 1.U) 562 } .elsewhen (addrInvalidFlag) { 563 io.forward(i).addrInvalidSqIdx.flag := Mux(!s2_differentFlag || addrInvalidSqIdx >= s2_deqPtrExt.value, s2_deqPtrExt.flag, s2_enqPtrExt.flag) 564 io.forward(i).addrInvalidSqIdx.value := addrInvalidSqIdx 565 } .otherwise { 566 // may be store inst has been written to sbuffer already. 567 io.forward(i).addrInvalidSqIdx := RegNext(io.forward(i).uop.sqIdx) 568 } 569 io.forward(i).addrInvalid := Mux(RegNext(io.forward(i).uop.loadWaitStrict), RegNext(hasInvalidAddr), addrInvalidFlag) 570 571 // data invalid sq index 572 // make chisel happy 573 val dataInvalidMaskRegWire = Wire(UInt(StoreQueueSize.W)) 574 dataInvalidMaskRegWire := dataInvalidMaskReg 575 val dataInvalidFlag = dataInvalidMaskRegWire.orR 576 577 val dataInvalidSqIdx1 = OHToUInt(Reverse(PriorityEncoderOH(Reverse(dataInvalidMask1Reg)))) 578 val dataInvalidSqIdx2 = OHToUInt(Reverse(PriorityEncoderOH(Reverse(dataInvalidMask2Reg)))) 579 val dataInvalidSqIdx = Mux(dataInvalidMask2Reg.orR, dataInvalidSqIdx2, dataInvalidSqIdx1) 580 581 when (dataInvalidFlag) { 582 io.forward(i).dataInvalidSqIdx.flag := Mux(!s2_differentFlag || dataInvalidSqIdx >= s2_deqPtrExt.value, s2_deqPtrExt.flag, s2_enqPtrExt.flag) 583 io.forward(i).dataInvalidSqIdx.value := dataInvalidSqIdx 584 } .otherwise { 585 // may be store inst has been written to sbuffer already. 586 io.forward(i).dataInvalidSqIdx := RegNext(io.forward(i).uop.sqIdx) 587 } 588 } 589 590 /** 591 * Memory mapped IO / other uncached operations 592 * 593 * States: 594 * (1) writeback from store units: mark as pending 595 * (2) when they reach ROB's head, they can be sent to uncache channel 596 * (3) response from uncache channel: mark as datavalidmask.wen 597 * (4) writeback to ROB (and other units): mark as writebacked 598 * (5) ROB commits the instruction: same as normal instructions 599 */ 600 //(2) when they reach ROB's head, they can be sent to uncache channel 601 val s_idle :: s_req :: s_resp :: s_wb :: s_wait :: Nil = Enum(5) 602 val uncacheState = RegInit(s_idle) 603 switch(uncacheState) { 604 is(s_idle) { 605 when(RegNext(io.rob.pendingst && pending(deqPtr) && allocated(deqPtr) && datavalid(deqPtr) && addrvalid(deqPtr))) { 606 uncacheState := s_req 607 } 608 } 609 is(s_req) { 610 when (io.uncache.req.fire) { 611 when (io.uncacheOutstanding) { 612 uncacheState := s_wb 613 } .otherwise { 614 uncacheState := s_resp 615 } 616 } 617 } 618 is(s_resp) { 619 when(io.uncache.resp.fire) { 620 uncacheState := s_wb 621 } 622 } 623 is(s_wb) { 624 when (io.mmioStout.fire) { 625 uncacheState := s_wait 626 } 627 } 628 is(s_wait) { 629 when(commitCount > 0.U) { 630 uncacheState := s_idle // ready for next mmio 631 } 632 } 633 } 634 io.uncache.req.valid := uncacheState === s_req 635 636 io.uncache.req.bits := DontCare 637 io.uncache.req.bits.cmd := MemoryOpConstants.M_XWR 638 io.uncache.req.bits.addr := paddrModule.io.rdata(0) // data(deqPtr) -> rdata(0) 639 io.uncache.req.bits.data := shiftDataToLow(paddrModule.io.rdata(0), dataModule.io.rdata(0).data) 640 io.uncache.req.bits.mask := shiftMaskToLow(paddrModule.io.rdata(0), dataModule.io.rdata(0).mask) 641 642 // CBO op type check can be delayed for 1 cycle, 643 // as uncache op will not start in s_idle 644 val cbo_mmio_addr = paddrModule.io.rdata(0) >> 2 << 2 // clear lowest 2 bits for op 645 val cbo_mmio_op = 0.U //TODO 646 val cbo_mmio_data = cbo_mmio_addr | cbo_mmio_op 647 when(RegNext(LSUOpType.isCbo(uop(deqPtr).fuOpType))){ 648 io.uncache.req.bits.addr := DontCare // TODO 649 io.uncache.req.bits.data := paddrModule.io.rdata(0) 650 io.uncache.req.bits.mask := DontCare // TODO 651 } 652 653 io.uncache.req.bits.atomic := atomic(RegNext(rdataPtrExtNext(0)).value) 654 655 when(io.uncache.req.fire){ 656 // mmio store should not be committed until uncache req is sent 657 pending(deqPtr) := false.B 658 659 XSDebug( 660 p"uncache req: pc ${Hexadecimal(uop(deqPtr).pc)} " + 661 p"addr ${Hexadecimal(io.uncache.req.bits.addr)} " + 662 p"data ${Hexadecimal(io.uncache.req.bits.data)} " + 663 p"op ${Hexadecimal(io.uncache.req.bits.cmd)} " + 664 p"mask ${Hexadecimal(io.uncache.req.bits.mask)}\n" 665 ) 666 } 667 668 // (3) response from uncache channel: mark as datavalid 669 io.uncache.resp.ready := true.B 670 671 // (4) writeback to ROB (and other units): mark as writebacked 672 io.mmioStout.valid := uncacheState === s_wb 673 io.mmioStout.bits.uop := uop(deqPtr) 674 io.mmioStout.bits.uop.sqIdx := deqPtrExt(0) 675 io.mmioStout.bits.data := shiftDataToLow(paddrModule.io.rdata(0), dataModule.io.rdata(0).data) // dataModule.io.rdata.read(deqPtr) 676 io.mmioStout.bits.debug.isMMIO := true.B 677 io.mmioStout.bits.debug.paddr := DontCare 678 io.mmioStout.bits.debug.isPerfCnt := false.B 679 io.mmioStout.bits.debug.vaddr := DontCare 680 // Remove MMIO inst from store queue after MMIO request is being sent 681 // That inst will be traced by uncache state machine 682 when (io.mmioStout.fire) { 683 allocated(deqPtr) := false.B 684 } 685 686 /** 687 * ROB commits store instructions (mark them as committed) 688 * 689 * (1) When store commits, mark it as committed. 690 * (2) They will not be cancelled and can be sent to lower level. 691 */ 692 XSError(uncacheState =/= s_idle && uncacheState =/= s_wait && commitCount > 0.U, 693 "should not commit instruction when MMIO has not been finished\n") 694 for (i <- 0 until CommitWidth) { 695 when (commitCount > i.U) { // MMIO inst is not in progress 696 if(i == 0){ 697 // MMIO inst should not update committed flag 698 // Note that commit count has been delayed for 1 cycle 699 when(uncacheState === s_idle){ 700 committed(cmtPtrExt(0).value) := true.B 701 } 702 } else { 703 committed(cmtPtrExt(i).value) := true.B 704 } 705 } 706 } 707 cmtPtrExt := cmtPtrExt.map(_ + commitCount) 708 709 // committed stores will not be cancelled and can be sent to lower level. 710 // remove retired insts from sq, add retired store to sbuffer 711 712 // Read data from data module 713 // As store queue grows larger and larger, time needed to read data from data 714 // module keeps growing higher. Now we give data read a whole cycle. 715 716 // Vector stores are written to sbuffer by vector store flow queue rather than sq 717 XSError(io.vecStoreRetire.valid && !vec(rdataPtrExt(0).value), "Vector store flow queue is trying to retire a scalar store") 718 XSError(io.vecStoreRetire.valid && !allocated(rdataPtrExt(0).value), "Vector store flow queue is trying to retire an invalid entry") 719 XSError(io.vecStoreRetire.valid && vec(rdataPtrExt(0).value) && !vecAddrvalid(rdataPtrExt(0).value), "Vector store is trying to retire without write last element!") 720 when (io.vecStoreRetire.valid) { 721 assert(io.vecStoreRetire.bits === rdataPtrExt(0)) 722 vec(rdataPtrExt(0).value) := false.B 723 vecAddrvalid(rdataPtrExt(0).value) := false.B 724 allocated(rdataPtrExt(0).value) := false.B 725 } 726 727 val mmioStall = mmio(rdataPtrExt(0).value) 728 val vecStall = vec(rdataPtrExt(0).value) 729 for (i <- 0 until EnsbufferWidth) { 730 val ptr = rdataPtrExt(i).value 731 dataBuffer.io.enq(i).valid := allocated(ptr) && committed(ptr) && !mmioStall && !vecStall 732 // Note that store data/addr should both be valid after store's commit 733 assert(!dataBuffer.io.enq(i).valid || allvalid(ptr)) 734 dataBuffer.io.enq(i).bits.addr := paddrModule.io.rdata(i) 735 dataBuffer.io.enq(i).bits.vaddr := vaddrModule.io.rdata(i) 736 dataBuffer.io.enq(i).bits.data := dataModule.io.rdata(i).data 737 dataBuffer.io.enq(i).bits.mask := dataModule.io.rdata(i).mask 738 dataBuffer.io.enq(i).bits.wline := paddrModule.io.rlineflag(i) 739 dataBuffer.io.enq(i).bits.sqPtr := rdataPtrExt(i) 740 dataBuffer.io.enq(i).bits.prefetch := prefetch(ptr) 741 } 742 743 // Send data stored in sbufferReqBitsReg to sbuffer 744 for (i <- 0 until EnsbufferWidth) { 745 io.sbuffer(i).valid := dataBuffer.io.deq(i).valid 746 dataBuffer.io.deq(i).ready := io.sbuffer(i).ready 747 // Write line request should have all 1 mask 748 assert(!(io.sbuffer(i).valid && io.sbuffer(i).bits.wline && !io.sbuffer(i).bits.mask.andR)) 749 io.sbuffer(i).bits := DontCare 750 io.sbuffer(i).bits.cmd := MemoryOpConstants.M_XWR 751 io.sbuffer(i).bits.addr := dataBuffer.io.deq(i).bits.addr 752 io.sbuffer(i).bits.vaddr := dataBuffer.io.deq(i).bits.vaddr 753 io.sbuffer(i).bits.data := dataBuffer.io.deq(i).bits.data 754 io.sbuffer(i).bits.mask := dataBuffer.io.deq(i).bits.mask 755 io.sbuffer(i).bits.wline := dataBuffer.io.deq(i).bits.wline 756 io.sbuffer(i).bits.prefetch := dataBuffer.io.deq(i).bits.prefetch 757 758 // io.sbuffer(i).fire is RegNexted, as sbuffer data write takes 2 cycles. 759 // Before data write finish, sbuffer is unable to provide store to load 760 // forward data. As an workaround, deqPtrExt and allocated flag update 761 // is delayed so that load can get the right data from store queue. 762 val ptr = dataBuffer.io.deq(i).bits.sqPtr.value 763 when (RegNext(io.sbuffer(i).fire)) { 764 allocated(RegEnable(ptr, io.sbuffer(i).fire)) := false.B 765 XSDebug("sbuffer "+i+" fire: ptr %d\n", ptr) 766 } 767 } 768 (1 until EnsbufferWidth).foreach(i => when(io.sbuffer(i).fire) { assert(io.sbuffer(i - 1).fire) }) 769 if (coreParams.dcacheParametersOpt.isEmpty) { 770 for (i <- 0 until EnsbufferWidth) { 771 val ptr = deqPtrExt(i).value 772 val ram = DifftestMem(64L * 1024 * 1024 * 1024, 8) 773 val wen = allocated(ptr) && committed(ptr) && !mmio(ptr) 774 val waddr = ((paddrModule.io.rdata(i) - "h80000000".U) >> 3).asUInt 775 val wdata = Mux(paddrModule.io.rdata(i)(3), dataModule.io.rdata(i).data(127, 64), dataModule.io.rdata(i).data(63, 0)) 776 val wmask = Mux(paddrModule.io.rdata(i)(3), dataModule.io.rdata(i).mask(15, 8), dataModule.io.rdata(i).mask(7, 0)) 777 when (wen) { 778 ram.write(waddr, wdata.asTypeOf(Vec(8, UInt(8.W))), wmask.asBools) 779 } 780 } 781 } 782 783 // Read vaddr for mem exception 784 io.exceptionAddr.vaddr := vaddrModule.io.rdata(EnsbufferWidth) 785 786 // misprediction recovery / exception redirect 787 // invalidate sq term using robIdx 788 val needCancel = Wire(Vec(StoreQueueSize, Bool())) 789 for (i <- 0 until StoreQueueSize) { 790 needCancel(i) := uop(i).robIdx.needFlush(io.brqRedirect) && allocated(i) && !committed(i) 791 when (needCancel(i)) { 792 allocated(i) := false.B 793 } 794 } 795 796 /** 797* update pointers 798**/ 799 val lastEnqCancel = PopCount(RegNext(VecInit(canEnqueue.zip(enqCancel).map(x => x._1 && x._2)))) // 1 cycle after redirect 800 val lastCycleCancelCount = PopCount(RegNext(needCancel)) // 1 cycle after redirect 801 val lastCycleRedirect = RegNext(io.brqRedirect.valid) // 1 cycle after redirect 802 val enqNumber = Mux(!lastCycleRedirect&&io.enq.canAccept && io.enq.lqCanAccept, PopCount(io.enq.req.map(_.valid)), 0.U) // 1 cycle after redirect 803 804 val lastlastCycleRedirect=RegNext(lastCycleRedirect)// 2 cycle after redirect 805 val redirectCancelCount = RegEnable(lastCycleCancelCount + lastEnqCancel, lastCycleRedirect) // 2 cycle after redirect 806 807 when (lastlastCycleRedirect) { 808 // we recover the pointers in 2 cycle after redirect for better timing 809 enqPtrExt := VecInit(enqPtrExt.map(_ - redirectCancelCount)) 810 }.otherwise { 811 // lastCycleRedirect.valid or nornal case 812 // when lastCycleRedirect.valid, enqNumber === 0.U, enqPtrExt will not change 813 enqPtrExt := VecInit(enqPtrExt.map(_ + enqNumber)) 814 } 815 assert(!(lastCycleRedirect && enqNumber =/= 0.U)) 816 817 deqPtrExt := deqPtrExtNext 818 rdataPtrExt := rdataPtrExtNext 819 820 // val dequeueCount = Mux(io.sbuffer(1).fire, 2.U, Mux(io.sbuffer(0).fire || io.mmioStout.fire, 1.U, 0.U)) 821 822 // If redirect at T0, sqCancelCnt is at T2 823 io.sqCancelCnt := redirectCancelCount 824 val ForceWriteUpper = Wire(UInt(log2Up(StoreQueueSize + 1).W)) 825 ForceWriteUpper := Constantin.createRecord("ForceWriteUpper_"+p(XSCoreParamsKey).HartId.toString(), initValue = 60.U) 826 val ForceWriteLower = Wire(UInt(log2Up(StoreQueueSize + 1).W)) 827 ForceWriteLower := Constantin.createRecord("ForceWriteLower_"+p(XSCoreParamsKey).HartId.toString(), initValue = 55.U) 828 829 val valid_cnt = PopCount(allocated) 830 io.force_write := RegNext(Mux(valid_cnt >= ForceWriteUpper, true.B, valid_cnt >= ForceWriteLower && io.force_write), init = false.B) 831 832 // io.sqempty will be used by sbuffer 833 // We delay it for 1 cycle for better timing 834 // When sbuffer need to check if it is empty, the pipeline is blocked, which means delay io.sqempty 835 // for 1 cycle will also promise that sq is empty in that cycle 836 io.sqEmpty := RegNext( 837 enqPtrExt(0).value === deqPtrExt(0).value && 838 enqPtrExt(0).flag === deqPtrExt(0).flag 839 ) 840 // perf counter 841 QueuePerf(StoreQueueSize, validCount, !allowEnqueue) 842 io.sqFull := !allowEnqueue 843 XSPerfAccumulate("mmioCycle", uncacheState =/= s_idle) // lq is busy dealing with uncache req 844 XSPerfAccumulate("mmioCnt", io.uncache.req.fire) 845 XSPerfAccumulate("mmio_wb_success", io.mmioStout.fire) 846 XSPerfAccumulate("mmio_wb_blocked", io.mmioStout.valid && !io.mmioStout.ready) 847 XSPerfAccumulate("validEntryCnt", distanceBetween(enqPtrExt(0), deqPtrExt(0))) 848 XSPerfAccumulate("cmtEntryCnt", distanceBetween(cmtPtrExt(0), deqPtrExt(0))) 849 XSPerfAccumulate("nCmtEntryCnt", distanceBetween(enqPtrExt(0), cmtPtrExt(0))) 850 851 val perfValidCount = distanceBetween(enqPtrExt(0), deqPtrExt(0)) 852 val perfEvents = Seq( 853 ("mmioCycle ", uncacheState =/= s_idle), 854 ("mmioCnt ", io.uncache.req.fire), 855 ("mmio_wb_success", io.mmioStout.fire), 856 ("mmio_wb_blocked", io.mmioStout.valid && !io.mmioStout.ready), 857 ("stq_1_4_valid ", (perfValidCount < (StoreQueueSize.U/4.U))), 858 ("stq_2_4_valid ", (perfValidCount > (StoreQueueSize.U/4.U)) & (perfValidCount <= (StoreQueueSize.U/2.U))), 859 ("stq_3_4_valid ", (perfValidCount > (StoreQueueSize.U/2.U)) & (perfValidCount <= (StoreQueueSize.U*3.U/4.U))), 860 ("stq_4_4_valid ", (perfValidCount > (StoreQueueSize.U*3.U/4.U))), 861 ) 862 generatePerfEvent() 863 864 // debug info 865 XSDebug("enqPtrExt %d:%d deqPtrExt %d:%d\n", enqPtrExt(0).flag, enqPtr, deqPtrExt(0).flag, deqPtr) 866 867 def PrintFlag(flag: Bool, name: String): Unit = { 868 when(flag) { 869 XSDebug(false, true.B, name) 870 }.otherwise { 871 XSDebug(false, true.B, " ") 872 } 873 } 874 875 for (i <- 0 until StoreQueueSize) { 876 XSDebug(i + ": pc %x va %x pa %x data %x ", 877 uop(i).pc, 878 debug_vaddr(i), 879 debug_paddr(i), 880 debug_data(i) 881 ) 882 PrintFlag(allocated(i), "a") 883 PrintFlag(allocated(i) && addrvalid(i), "a") 884 PrintFlag(allocated(i) && datavalid(i), "d") 885 PrintFlag(allocated(i) && committed(i), "c") 886 PrintFlag(allocated(i) && pending(i), "p") 887 PrintFlag(allocated(i) && mmio(i), "m") 888 XSDebug(false, true.B, "\n") 889 } 890 891} 892