xref: /XiangShan/src/main/scala/xiangshan/mem/lsqueue/StoreQueue.scala (revision 92b88f30156d46e844042eea94f7121557fd09a1)
1/***************************************************************************************
2* Copyright (c) 2020-2021 Institute of Computing Technology, Chinese Academy of Sciences
3* Copyright (c) 2020-2021 Peng Cheng Laboratory
4*
5* XiangShan is licensed under Mulan PSL v2.
6* You can use this software according to the terms and conditions of the Mulan PSL v2.
7* You may obtain a copy of Mulan PSL v2 at:
8*          http://license.coscl.org.cn/MulanPSL2
9*
10* THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND,
11* EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT,
12* MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE.
13*
14* See the Mulan PSL v2 for more details.
15***************************************************************************************/
16
17package xiangshan.mem
18
19import chipsalliance.rocketchip.config.Parameters
20import chisel3._
21import chisel3.util._
22import utils._
23import utility._
24import xiangshan._
25import xiangshan.cache._
26import xiangshan.cache.{DCacheLineIO, DCacheWordIO, MemoryOpConstants}
27import xiangshan.backend.rob.{RobLsqIO, RobPtr}
28import difftest._
29import device.RAMHelper
30import xiangshan.backend.Bundles.{DynInst, MemExuOutput}
31
32class SqPtr(implicit p: Parameters) extends CircularQueuePtr[SqPtr](
33  p => p(XSCoreParamsKey).StoreQueueSize
34){
35}
36
37object SqPtr {
38  def apply(f: Bool, v: UInt)(implicit p: Parameters): SqPtr = {
39    val ptr = Wire(new SqPtr)
40    ptr.flag := f
41    ptr.value := v
42    ptr
43  }
44}
45
46class SqEnqIO(implicit p: Parameters) extends XSBundle {
47  val canAccept = Output(Bool())
48  val lqCanAccept = Input(Bool())
49  val needAlloc = Vec(backendParams.LsExuCnt, Input(Bool()))
50  val req = Vec(backendParams.LsExuCnt, Flipped(ValidIO(new DynInst)))
51  val resp = Vec(backendParams.LsExuCnt, Output(new SqPtr))
52}
53
54class DataBufferEntry (implicit p: Parameters)  extends DCacheBundle {
55  val addr   = UInt(PAddrBits.W)
56  val vaddr  = UInt(VAddrBits.W)
57  val data   = UInt(DataBits.W)
58  val mask   = UInt((DataBits/8).W)
59  val wline = Bool()
60  val sqPtr  = new SqPtr
61}
62
63// Store Queue
64class StoreQueue(implicit p: Parameters) extends XSModule
65  with HasDCacheParameters with HasCircularQueuePtrHelper with HasPerfEvents {
66  val io = IO(new Bundle() {
67    val hartId = Input(UInt(8.W))
68    val enq = new SqEnqIO
69    val brqRedirect = Flipped(ValidIO(new Redirect))
70    val storeAddrIn = Vec(StorePipelineWidth, Flipped(Valid(new LsPipelineBundle))) // store addr, data is not included
71    val storeAddrInRe = Vec(StorePipelineWidth, Input(new LsPipelineBundle())) // store more mmio and exception
72    val storeDataIn = Vec(StorePipelineWidth, Flipped(Valid(new MemExuOutput))) // store data, send to sq from rs
73    val storeMaskIn = Vec(StorePipelineWidth, Flipped(Valid(new StoreMaskBundle))) // store mask, send to sq from rs
74    val sbuffer = Vec(EnsbufferWidth, Decoupled(new DCacheWordReqWithVaddr)) // write committed store to sbuffer
75    val uncacheOutstanding = Input(Bool())
76    val mmioStout = DecoupledIO(new MemExuOutput) // writeback uncached store
77    val forward = Vec(LoadPipelineWidth, Flipped(new PipeLoadForwardQueryIO))
78    val rob = Flipped(new RobLsqIO)
79    val uncache = new UncacheWordIO
80    // val refill = Flipped(Valid(new DCacheLineReq ))
81    val exceptionAddr = new ExceptionAddrIO
82    val sqEmpty = Output(Bool())
83    val stAddrReadySqPtr = Output(new SqPtr)
84    val stAddrReadyVec = Output(Vec(StoreQueueSize, Bool()))
85    val stDataReadySqPtr = Output(new SqPtr)
86    val stDataReadyVec = Output(Vec(StoreQueueSize, Bool()))
87    val stIssuePtr = Output(new SqPtr)
88    val sqDeqPtr = Output(new SqPtr)
89    val sqFull = Output(Bool())
90    val sqCancelCnt = Output(UInt(log2Up(StoreQueueSize + 1).W))
91    val sqDeq = Output(UInt(log2Ceil(EnsbufferWidth + 1).W))
92  })
93
94  println("StoreQueue: size:" + StoreQueueSize)
95
96  // data modules
97  val uop = Reg(Vec(StoreQueueSize, new DynInst))
98  // val data = Reg(Vec(StoreQueueSize, new LsqEntry))
99  val dataModule = Module(new SQDataModule(
100    numEntries = StoreQueueSize,
101    numRead = EnsbufferWidth,
102    numWrite = StorePipelineWidth,
103    numForward = StorePipelineWidth
104  ))
105  dataModule.io := DontCare
106  val paddrModule = Module(new SQAddrModule(
107    dataWidth = PAddrBits,
108    numEntries = StoreQueueSize,
109    numRead = EnsbufferWidth,
110    numWrite = StorePipelineWidth,
111    numForward = StorePipelineWidth
112  ))
113  paddrModule.io := DontCare
114  val vaddrModule = Module(new SQAddrModule(
115    dataWidth = VAddrBits,
116    numEntries = StoreQueueSize,
117    numRead = EnsbufferWidth + 1, // sbuffer + badvaddr 1 (TODO)
118    numWrite = StorePipelineWidth,
119    numForward = StorePipelineWidth
120  ))
121  vaddrModule.io := DontCare
122  val dataBuffer = Module(new DatamoduleResultBuffer(new DataBufferEntry))
123  val debug_paddr = Reg(Vec(StoreQueueSize, UInt((PAddrBits).W)))
124  val debug_vaddr = Reg(Vec(StoreQueueSize, UInt((VAddrBits).W)))
125  val debug_data = Reg(Vec(StoreQueueSize, UInt((XLEN).W)))
126
127  // state & misc
128  val allocated = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // sq entry has been allocated
129  val addrvalid = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // non-mmio addr is valid
130  val datavalid = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // non-mmio data is valid
131  val allvalid  = VecInit((0 until StoreQueueSize).map(i => addrvalid(i) && datavalid(i))) // non-mmio data & addr is valid
132  val committed = Reg(Vec(StoreQueueSize, Bool())) // inst has been committed by rob
133  val pending = Reg(Vec(StoreQueueSize, Bool())) // mmio pending: inst is an mmio inst, it will not be executed until it reachs the end of rob
134  val mmio = Reg(Vec(StoreQueueSize, Bool())) // mmio: inst is an mmio inst
135  val atomic = Reg(Vec(StoreQueueSize, Bool()))
136
137  // ptr
138  val enqPtrExt = RegInit(VecInit((0 until io.enq.req.length).map(_.U.asTypeOf(new SqPtr))))
139  val rdataPtrExt = RegInit(VecInit((0 until EnsbufferWidth).map(_.U.asTypeOf(new SqPtr))))
140  val deqPtrExt = RegInit(VecInit((0 until EnsbufferWidth).map(_.U.asTypeOf(new SqPtr))))
141  val cmtPtrExt = RegInit(VecInit((0 until CommitWidth).map(_.U.asTypeOf(new SqPtr))))
142  val addrReadyPtrExt = RegInit(0.U.asTypeOf(new SqPtr))
143  val dataReadyPtrExt = RegInit(0.U.asTypeOf(new SqPtr))
144  val validCounter = RegInit(0.U(log2Ceil(VirtualLoadQueueSize + 1).W))
145
146  val enqPtr = enqPtrExt(0).value
147  val deqPtr = deqPtrExt(0).value
148  val cmtPtr = cmtPtrExt(0).value
149
150  val validCount = distanceBetween(enqPtrExt(0), deqPtrExt(0))
151  val allowEnqueue = validCount <= (StoreQueueSize - StorePipelineWidth).U
152
153  val deqMask = UIntToMask(deqPtr, StoreQueueSize)
154  val enqMask = UIntToMask(enqPtr, StoreQueueSize)
155
156  val commitCount = RegNext(io.rob.scommit)
157
158  // store can be committed by ROB
159  io.rob.mmio := DontCare
160  io.rob.uop := DontCare
161
162  // Read dataModule
163  assert(EnsbufferWidth <= 2)
164  // rdataPtrExtNext and rdataPtrExtNext+1 entry will be read from dataModule
165  val rdataPtrExtNext = WireInit(Mux(dataBuffer.io.enq(1).fire(),
166    VecInit(rdataPtrExt.map(_ + 2.U)),
167    Mux(dataBuffer.io.enq(0).fire() || io.mmioStout.fire(),
168      VecInit(rdataPtrExt.map(_ + 1.U)),
169      rdataPtrExt
170    )
171  ))
172
173  // deqPtrExtNext traces which inst is about to leave store queue
174  //
175  // io.sbuffer(i).fire() is RegNexted, as sbuffer data write takes 2 cycles.
176  // Before data write finish, sbuffer is unable to provide store to load
177  // forward data. As an workaround, deqPtrExt and allocated flag update
178  // is delayed so that load can get the right data from store queue.
179  //
180  // Modify deqPtrExtNext and io.sqDeq with care!
181  val deqPtrExtNext = Mux(RegNext(io.sbuffer(1).fire()),
182    VecInit(deqPtrExt.map(_ + 2.U)),
183    Mux(RegNext(io.sbuffer(0).fire()) || io.mmioStout.fire(),
184      VecInit(deqPtrExt.map(_ + 1.U)),
185      deqPtrExt
186    )
187  )
188  io.sqDeq := RegNext(Mux(RegNext(io.sbuffer(1).fire()), 2.U,
189    Mux(RegNext(io.sbuffer(0).fire()) || io.mmioStout.fire(), 1.U, 0.U)
190  ))
191  assert(!RegNext(RegNext(io.sbuffer(0).fire()) && io.mmioStout.fire()))
192
193  for (i <- 0 until EnsbufferWidth) {
194    dataModule.io.raddr(i) := rdataPtrExtNext(i).value
195    paddrModule.io.raddr(i) := rdataPtrExtNext(i).value
196    vaddrModule.io.raddr(i) := rdataPtrExtNext(i).value
197  }
198
199  // no inst will be committed 1 cycle before tval update
200  vaddrModule.io.raddr(EnsbufferWidth) := (cmtPtrExt(0) + commitCount).value
201
202  /**
203    * Enqueue at dispatch
204    *
205    * Currently, StoreQueue only allows enqueue when #emptyEntries > EnqWidth
206    */
207  io.enq.canAccept := allowEnqueue
208  val canEnqueue = io.enq.req.map(_.valid)
209  val enqCancel = io.enq.req.map(_.bits.robIdx.needFlush(io.brqRedirect))
210  for (i <- 0 until io.enq.req.length) {
211    val offset = if (i == 0) 0.U else PopCount(io.enq.needAlloc.take(i))
212    val sqIdx = enqPtrExt(offset)
213    val index = io.enq.req(i).bits.sqIdx.value
214    when (canEnqueue(i) && !enqCancel(i)) {
215      uop(index) := io.enq.req(i).bits
216      // NOTE: the index will be used when replay
217      uop(index).sqIdx := sqIdx
218      allocated(index) := true.B
219      datavalid(index) := false.B
220      addrvalid(index) := false.B
221      committed(index) := false.B
222      pending(index) := false.B
223      mmio(index) := false.B
224
225      XSError(!io.enq.canAccept || !io.enq.lqCanAccept, s"must accept $i\n")
226      XSError(index =/= sqIdx.value, s"must be the same entry $i\n")
227    }
228    io.enq.resp(i) := sqIdx
229  }
230  XSDebug(p"(ready, valid): ${io.enq.canAccept}, ${Binary(Cat(io.enq.req.map(_.valid)))}\n")
231
232  /**
233    * Update addr/dataReadyPtr when issue from rs
234    */
235  // update issuePtr
236  val IssuePtrMoveStride = 4
237  require(IssuePtrMoveStride >= 2)
238
239  val addrReadyLookupVec = (0 until IssuePtrMoveStride).map(addrReadyPtrExt + _.U)
240  val addrReadyLookup = addrReadyLookupVec.map(ptr => allocated(ptr.value) && (mmio(ptr.value) || addrvalid(ptr.value)) && ptr =/= enqPtrExt(0))
241  val nextAddrReadyPtr = addrReadyPtrExt + PriorityEncoder(VecInit(addrReadyLookup.map(!_) :+ true.B))
242  addrReadyPtrExt := nextAddrReadyPtr
243
244  (0 until StoreQueueSize).map(i => {
245    io.stAddrReadyVec(i) := RegNext(allocated(i) && (mmio(i) || addrvalid(i)))
246  })
247
248  when (io.brqRedirect.valid) {
249    addrReadyPtrExt := Mux(
250      isAfter(cmtPtrExt(0), deqPtrExt(0)),
251      cmtPtrExt(0),
252      deqPtrExtNext(0) // for mmio insts, deqPtr may be ahead of cmtPtr
253    )
254  }
255
256  io.stAddrReadySqPtr := addrReadyPtrExt
257
258  // update
259  val dataReadyLookupVec = (0 until IssuePtrMoveStride).map(dataReadyPtrExt + _.U)
260  val dataReadyLookup = dataReadyLookupVec.map(ptr => allocated(ptr.value) && (mmio(ptr.value) || datavalid(ptr.value)) && ptr =/= enqPtrExt(0))
261  val nextDataReadyPtr = dataReadyPtrExt + PriorityEncoder(VecInit(dataReadyLookup.map(!_) :+ true.B))
262  dataReadyPtrExt := nextDataReadyPtr
263
264  (0 until StoreQueueSize).map(i => {
265    io.stDataReadyVec(i) := RegNext(allocated(i) && (mmio(i) || datavalid(i)))
266  })
267
268  when (io.brqRedirect.valid) {
269    dataReadyPtrExt := Mux(
270      isAfter(cmtPtrExt(0), deqPtrExt(0)),
271      cmtPtrExt(0),
272      deqPtrExtNext(0) // for mmio insts, deqPtr may be ahead of cmtPtr
273    )
274  }
275
276  io.stDataReadySqPtr := dataReadyPtrExt
277  io.stIssuePtr := enqPtrExt(0)
278  io.sqDeqPtr := deqPtrExt(0)
279
280  /**
281    * Writeback store from store units
282    *
283    * Most store instructions writeback to regfile in the previous cycle.
284    * However,
285    *   (1) For an mmio instruction with exceptions, we need to mark it as addrvalid
286    * (in this way it will trigger an exception when it reaches ROB's head)
287    * instead of pending to avoid sending them to lower level.
288    *   (2) For an mmio instruction without exceptions, we mark it as pending.
289    * When the instruction reaches ROB's head, StoreQueue sends it to uncache channel.
290    * Upon receiving the response, StoreQueue writes back the instruction
291    * through arbiter with store units. It will later commit as normal.
292    */
293
294  // Write addr to sq
295  for (i <- 0 until StorePipelineWidth) {
296    paddrModule.io.wen(i) := false.B
297    vaddrModule.io.wen(i) := false.B
298    dataModule.io.mask.wen(i) := false.B
299    val stWbIndex = io.storeAddrIn(i).bits.uop.sqIdx.value
300    when (io.storeAddrIn(i).fire()) {
301      val addr_valid = !io.storeAddrIn(i).bits.miss
302      addrvalid(stWbIndex) := addr_valid //!io.storeAddrIn(i).bits.mmio
303      // pending(stWbIndex) := io.storeAddrIn(i).bits.mmio
304
305      paddrModule.io.waddr(i) := stWbIndex
306      paddrModule.io.wdata(i) := io.storeAddrIn(i).bits.paddr
307      paddrModule.io.wmask(i) := io.storeAddrIn(i).bits.mask
308      paddrModule.io.wlineflag(i) := io.storeAddrIn(i).bits.wlineflag
309      paddrModule.io.wen(i) := true.B
310
311      vaddrModule.io.waddr(i) := stWbIndex
312      vaddrModule.io.wdata(i) := io.storeAddrIn(i).bits.vaddr
313      vaddrModule.io.wmask(i) := io.storeAddrIn(i).bits.mask
314      vaddrModule.io.wlineflag(i) := io.storeAddrIn(i).bits.wlineflag
315      vaddrModule.io.wen(i) := true.B
316
317      debug_paddr(paddrModule.io.waddr(i)) := paddrModule.io.wdata(i)
318
319      // mmio(stWbIndex) := io.storeAddrIn(i).bits.mmio
320
321      uop(stWbIndex) := io.storeAddrIn(i).bits.uop
322      uop(stWbIndex).debugInfo := io.storeAddrIn(i).bits.uop.debugInfo
323      XSInfo("store addr write to sq idx %d pc 0x%x miss:%d vaddr %x paddr %x mmio %x\n",
324        io.storeAddrIn(i).bits.uop.sqIdx.value,
325        io.storeAddrIn(i).bits.uop.pc,
326        io.storeAddrIn(i).bits.miss,
327        io.storeAddrIn(i).bits.vaddr,
328        io.storeAddrIn(i).bits.paddr,
329        io.storeAddrIn(i).bits.mmio
330      )
331    }
332
333    // re-replinish mmio, for pma/pmp will get mmio one cycle later
334    val storeAddrInFireReg = RegNext(io.storeAddrIn(i).fire() && !io.storeAddrIn(i).bits.miss)
335    val stWbIndexReg = RegNext(stWbIndex)
336    when (storeAddrInFireReg) {
337      pending(stWbIndexReg) := io.storeAddrInRe(i).mmio
338      mmio(stWbIndexReg) := io.storeAddrInRe(i).mmio
339      atomic(stWbIndexReg) := io.storeAddrInRe(i).atomic
340    }
341
342    when(vaddrModule.io.wen(i)){
343      debug_vaddr(vaddrModule.io.waddr(i)) := vaddrModule.io.wdata(i)
344    }
345  }
346
347  // Write data to sq
348  // Now store data pipeline is actually 2 stages
349  for (i <- 0 until StorePipelineWidth) {
350    dataModule.io.data.wen(i) := false.B
351    val stWbIndex = io.storeDataIn(i).bits.uop.sqIdx.value
352    // sq data write takes 2 cycles:
353    // sq data write s0
354    when (io.storeDataIn(i).fire()) {
355      // send data write req to data module
356      dataModule.io.data.waddr(i) := stWbIndex
357      dataModule.io.data.wdata(i) := Mux(io.storeDataIn(i).bits.uop.fuOpType === LSUOpType.cbo_zero,
358        0.U,
359        genWdata(io.storeDataIn(i).bits.data, io.storeDataIn(i).bits.uop.fuOpType(1,0))
360      )
361      dataModule.io.data.wen(i) := true.B
362
363      debug_data(dataModule.io.data.waddr(i)) := dataModule.io.data.wdata(i)
364
365      XSInfo("store data write to sq idx %d pc 0x%x data %x -> %x\n",
366        io.storeDataIn(i).bits.uop.sqIdx.value,
367        io.storeDataIn(i).bits.uop.pc,
368        io.storeDataIn(i).bits.data,
369        dataModule.io.data.wdata(i)
370      )
371    }
372    // sq data write s1
373    when (
374      RegNext(io.storeDataIn(i).fire())
375      // && !RegNext(io.storeDataIn(i).bits.uop).robIdx.needFlush(io.brqRedirect)
376    ) {
377      datavalid(RegNext(stWbIndex)) := true.B
378    }
379  }
380
381  // Write mask to sq
382  for (i <- 0 until StorePipelineWidth) {
383    // sq mask write s0
384    when (io.storeMaskIn(i).fire()) {
385      // send data write req to data module
386      dataModule.io.mask.waddr(i) := io.storeMaskIn(i).bits.sqIdx.value
387      dataModule.io.mask.wdata(i) := io.storeMaskIn(i).bits.mask
388      dataModule.io.mask.wen(i) := true.B
389    }
390  }
391
392  /**
393    * load forward query
394    *
395    * Check store queue for instructions that is older than the load.
396    * The response will be valid at the next cycle after req.
397    */
398  // check over all lq entries and forward data from the first matched store
399  for (i <- 0 until LoadPipelineWidth) {
400    // Compare deqPtr (deqPtr) and forward.sqIdx, we have two cases:
401    // (1) if they have the same flag, we need to check range(tail, sqIdx)
402    // (2) if they have different flags, we need to check range(tail, VirtualLoadQueueSize) and range(0, sqIdx)
403    // Forward1: Mux(same_flag, range(tail, sqIdx), range(tail, VirtualLoadQueueSize))
404    // Forward2: Mux(same_flag, 0.U,                   range(0, sqIdx)    )
405    // i.e. forward1 is the target entries with the same flag bits and forward2 otherwise
406    val differentFlag = deqPtrExt(0).flag =/= io.forward(i).sqIdx.flag
407    val forwardMask = io.forward(i).sqIdxMask
408    // all addrvalid terms need to be checked
409    val addrValidVec = WireInit(VecInit((0 until StoreQueueSize).map(i => addrvalid(i) && allocated(i))))
410    val dataValidVec = WireInit(VecInit((0 until StoreQueueSize).map(i => datavalid(i))))
411    val allValidVec  = WireInit(VecInit((0 until StoreQueueSize).map(i => addrvalid(i) && datavalid(i) && allocated(i))))
412
413    val storeSetHitVec =
414      if (LFSTEnable) {
415        WireInit(VecInit((0 until StoreQueueSize).map(j => io.forward(i).uop.loadWaitBit && uop(j).robIdx === io.forward(i).uop.waitForRobIdx)))
416      } else {
417        WireInit(VecInit((0 until StoreQueueSize).map(j => uop(j).storeSetHit && uop(j).ssid === io.forward(i).uop.ssid)))
418      }
419
420    val forwardMask1 = Mux(differentFlag, ~deqMask, deqMask ^ forwardMask)
421    val forwardMask2 = Mux(differentFlag, forwardMask, 0.U(StoreQueueSize.W))
422    val canForward1 = forwardMask1 & allValidVec.asUInt
423    val canForward2 = forwardMask2 & allValidVec.asUInt
424    val needForward = Mux(differentFlag, ~deqMask | forwardMask, deqMask ^ forwardMask)
425
426    XSDebug(p"$i f1 ${Binary(canForward1)} f2 ${Binary(canForward2)} " +
427      p"sqIdx ${io.forward(i).sqIdx} pa ${Hexadecimal(io.forward(i).paddr)}\n"
428    )
429
430    // do real fwd query (cam lookup in load_s1)
431    dataModule.io.needForward(i)(0) := canForward1 & vaddrModule.io.forwardMmask(i).asUInt
432    dataModule.io.needForward(i)(1) := canForward2 & vaddrModule.io.forwardMmask(i).asUInt
433
434    vaddrModule.io.forwardMdata(i) := io.forward(i).vaddr
435    vaddrModule.io.forwardDataMask(i) := io.forward(i).mask
436    paddrModule.io.forwardMdata(i) := io.forward(i).paddr
437    paddrModule.io.forwardDataMask(i) := io.forward(i).mask
438
439
440    // vaddr cam result does not equal to paddr cam result
441    // replay needed
442    // val vpmaskNotEqual = ((paddrModule.io.forwardMmask(i).asUInt ^ vaddrModule.io.forwardMmask(i).asUInt) & needForward) =/= 0.U
443    // val vaddrMatchFailed = vpmaskNotEqual && io.forward(i).valid
444    val vpmaskNotEqual = (
445      (RegNext(paddrModule.io.forwardMmask(i).asUInt) ^ RegNext(vaddrModule.io.forwardMmask(i).asUInt)) &
446      RegNext(needForward) &
447      RegNext(addrValidVec.asUInt)
448    ) =/= 0.U
449    val vaddrMatchFailed = vpmaskNotEqual && RegNext(io.forward(i).valid)
450    when (vaddrMatchFailed) {
451      XSInfo("vaddrMatchFailed: pc %x pmask %x vmask %x\n",
452        RegNext(io.forward(i).uop.pc),
453        RegNext(needForward & paddrModule.io.forwardMmask(i).asUInt),
454        RegNext(needForward & vaddrModule.io.forwardMmask(i).asUInt)
455      );
456    }
457    XSPerfAccumulate("vaddr_match_failed", vpmaskNotEqual)
458    XSPerfAccumulate("vaddr_match_really_failed", vaddrMatchFailed)
459
460    // Fast forward mask will be generated immediately (load_s1)
461    io.forward(i).forwardMaskFast := dataModule.io.forwardMaskFast(i)
462
463    // Forward result will be generated 1 cycle later (load_s2)
464    io.forward(i).forwardMask := dataModule.io.forwardMask(i)
465    io.forward(i).forwardData := dataModule.io.forwardData(i)
466    // If addr match, data not ready, mark it as dataInvalid
467    // load_s1: generate dataInvalid in load_s1 to set fastUop
468    val dataInvalidMask1 = (addrValidVec.asUInt & ~dataValidVec.asUInt & vaddrModule.io.forwardMmask(i).asUInt & forwardMask1.asUInt)
469    val dataInvalidMask2 = (addrValidVec.asUInt & ~dataValidVec.asUInt & vaddrModule.io.forwardMmask(i).asUInt & forwardMask2.asUInt)
470    val dataInvalidMask = dataInvalidMask1 | dataInvalidMask2
471    io.forward(i).dataInvalidFast := dataInvalidMask.orR
472
473    // make chisel happy
474    val dataInvalidMask1Reg = Wire(UInt(StoreQueueSize.W))
475    dataInvalidMask1Reg := RegNext(dataInvalidMask1)
476    // make chisel happy
477    val dataInvalidMask2Reg = Wire(UInt(StoreQueueSize.W))
478    dataInvalidMask2Reg := RegNext(dataInvalidMask2)
479    val dataInvalidMaskReg = dataInvalidMask1Reg | dataInvalidMask2Reg
480
481    // If SSID match, address not ready, mark it as addrInvalid
482    // load_s2: generate addrInvalid
483    val addrInvalidMask1 = (~addrValidVec.asUInt & storeSetHitVec.asUInt & forwardMask1.asUInt)
484    val addrInvalidMask2 = (~addrValidVec.asUInt & storeSetHitVec.asUInt & forwardMask2.asUInt)
485    // make chisel happy
486    val addrInvalidMask1Reg = Wire(UInt(StoreQueueSize.W))
487    addrInvalidMask1Reg := RegNext(addrInvalidMask1)
488    // make chisel happy
489    val addrInvalidMask2Reg = Wire(UInt(StoreQueueSize.W))
490    addrInvalidMask2Reg := RegNext(addrInvalidMask2)
491    val addrInvalidMaskReg = addrInvalidMask1Reg | addrInvalidMask2Reg
492
493    // load_s2
494    io.forward(i).dataInvalid := RegNext(io.forward(i).dataInvalidFast)
495    // check if vaddr forward mismatched
496    io.forward(i).matchInvalid := vaddrMatchFailed
497
498    // data invalid sq index
499    // check whether false fail
500    // check flag
501    val s2_differentFlag = RegNext(differentFlag)
502    val s2_enqPtrExt = RegNext(enqPtrExt(0))
503    val s2_deqPtrExt = RegNext(deqPtrExt(0))
504
505    // addr invalid sq index
506    // make chisel happy
507    val addrInvalidMaskRegWire = Wire(UInt(StoreQueueSize.W))
508    addrInvalidMaskRegWire := addrInvalidMaskReg
509    val addrInvalidFlag = addrInvalidMaskRegWire.orR
510    val hasInvalidAddr = (~addrValidVec.asUInt & needForward).orR
511
512    val addrInvalidSqIdx1 = OHToUInt(Reverse(PriorityEncoderOH(Reverse(addrInvalidMask1Reg))))
513    val addrInvalidSqIdx2 = OHToUInt(Reverse(PriorityEncoderOH(Reverse(addrInvalidMask2Reg))))
514    val addrInvalidSqIdx = Mux(addrInvalidMask2Reg.orR, addrInvalidSqIdx2, addrInvalidSqIdx1)
515
516    when (addrInvalidFlag && !RegNext(io.forward(i).uop.loadWaitStrict)) {
517      io.forward(i).addrInvalidSqIdx.flag := Mux(!s2_differentFlag || addrInvalidSqIdx >= s2_deqPtrExt.value, s2_deqPtrExt.flag, s2_enqPtrExt.flag)
518      io.forward(i).addrInvalidSqIdx.value := addrInvalidSqIdx
519    } .otherwise {
520      // may be store inst has been written to sbuffer already.
521      io.forward(i).addrInvalidSqIdx := RegNext(io.forward(i).uop.sqIdx)
522    }
523    io.forward(i).addrInvalid := Mux(RegNext(io.forward(i).uop.loadWaitStrict), RegNext(hasInvalidAddr), addrInvalidFlag)
524
525    // data invalid sq index
526    // make chisel happy
527    val dataInvalidMaskRegWire = Wire(UInt(StoreQueueSize.W))
528    dataInvalidMaskRegWire := dataInvalidMaskReg
529    val dataInvalidFlag = dataInvalidMaskRegWire.orR
530
531    val dataInvalidSqIdx1 = OHToUInt(Reverse(PriorityEncoderOH(Reverse(dataInvalidMask1Reg))))
532    val dataInvalidSqIdx2 = OHToUInt(Reverse(PriorityEncoderOH(Reverse(dataInvalidMask2Reg))))
533    val dataInvalidSqIdx = Mux(dataInvalidMask2Reg.orR, dataInvalidSqIdx2, dataInvalidSqIdx1)
534
535    when (dataInvalidFlag) {
536      io.forward(i).dataInvalidSqIdx.flag := Mux(!s2_differentFlag || dataInvalidSqIdx >= s2_deqPtrExt.value, s2_deqPtrExt.flag, s2_enqPtrExt.flag)
537      io.forward(i).dataInvalidSqIdx.value := dataInvalidSqIdx
538    } .otherwise {
539      // may be store inst has been written to sbuffer already.
540      io.forward(i).dataInvalidSqIdx := RegNext(io.forward(i).uop.sqIdx)
541    }
542  }
543
544  /**
545    * Memory mapped IO / other uncached operations
546    *
547    * States:
548    * (1) writeback from store units: mark as pending
549    * (2) when they reach ROB's head, they can be sent to uncache channel
550    * (3) response from uncache channel: mark as datavalidmask.wen
551    * (4) writeback to ROB (and other units): mark as writebacked
552    * (5) ROB commits the instruction: same as normal instructions
553    */
554  //(2) when they reach ROB's head, they can be sent to uncache channel
555  val s_idle :: s_req :: s_resp :: s_wb :: s_wait :: Nil = Enum(5)
556  val uncacheState = RegInit(s_idle)
557  switch(uncacheState) {
558    is(s_idle) {
559      when(RegNext(io.rob.pendingst && pending(deqPtr) && allocated(deqPtr) && datavalid(deqPtr) && addrvalid(deqPtr))) {
560        uncacheState := s_req
561      }
562    }
563    is(s_req) {
564      when (io.uncache.req.fire) {
565        when (io.uncacheOutstanding) {
566          uncacheState := s_wb
567        } .otherwise {
568          uncacheState := s_resp
569        }
570      }
571    }
572    is(s_resp) {
573      when(io.uncache.resp.fire()) {
574        uncacheState := s_wb
575      }
576    }
577    is(s_wb) {
578      when (io.mmioStout.fire()) {
579        uncacheState := s_wait
580      }
581    }
582    is(s_wait) {
583      when(commitCount > 0.U) {
584        uncacheState := s_idle // ready for next mmio
585      }
586    }
587  }
588  io.uncache.req.valid := uncacheState === s_req
589
590  io.uncache.req.bits := DontCare
591  io.uncache.req.bits.cmd  := MemoryOpConstants.M_XWR
592  io.uncache.req.bits.addr := paddrModule.io.rdata(0) // data(deqPtr) -> rdata(0)
593  io.uncache.req.bits.data := dataModule.io.rdata(0).data
594  io.uncache.req.bits.mask := dataModule.io.rdata(0).mask
595
596  // CBO op type check can be delayed for 1 cycle,
597  // as uncache op will not start in s_idle
598  val cbo_mmio_addr = paddrModule.io.rdata(0) >> 2 << 2 // clear lowest 2 bits for op
599  val cbo_mmio_op = 0.U //TODO
600  val cbo_mmio_data = cbo_mmio_addr | cbo_mmio_op
601  when(RegNext(LSUOpType.isCbo(uop(deqPtr).fuOpType))){
602    io.uncache.req.bits.addr := DontCare // TODO
603    io.uncache.req.bits.data := paddrModule.io.rdata(0)
604    io.uncache.req.bits.mask := DontCare // TODO
605  }
606
607  io.uncache.req.bits.atomic := atomic(RegNext(rdataPtrExtNext(0)).value)
608
609  when(io.uncache.req.fire){
610    // mmio store should not be committed until uncache req is sent
611    pending(deqPtr) := false.B
612
613    XSDebug(
614      p"uncache req: pc ${Hexadecimal(uop(deqPtr).pc)} " +
615      p"addr ${Hexadecimal(io.uncache.req.bits.addr)} " +
616      p"data ${Hexadecimal(io.uncache.req.bits.data)} " +
617      p"op ${Hexadecimal(io.uncache.req.bits.cmd)} " +
618      p"mask ${Hexadecimal(io.uncache.req.bits.mask)}\n"
619    )
620  }
621
622  // (3) response from uncache channel: mark as datavalid
623  io.uncache.resp.ready := true.B
624
625  // (4) writeback to ROB (and other units): mark as writebacked
626  io.mmioStout.valid := uncacheState === s_wb
627  io.mmioStout.bits.uop := uop(deqPtr)
628  io.mmioStout.bits.uop.sqIdx := deqPtrExt(0)
629  io.mmioStout.bits.data := dataModule.io.rdata(0).data // dataModule.io.rdata.read(deqPtr)
630  io.mmioStout.bits.debug.isMMIO := true.B
631  io.mmioStout.bits.debug.paddr := DontCare
632  io.mmioStout.bits.debug.isPerfCnt := false.B
633  io.mmioStout.bits.debug.vaddr := DontCare
634  // Remove MMIO inst from store queue after MMIO request is being sent
635  // That inst will be traced by uncache state machine
636  when (io.mmioStout.fire()) {
637    allocated(deqPtr) := false.B
638  }
639
640  /**
641    * ROB commits store instructions (mark them as committed)
642    *
643    * (1) When store commits, mark it as committed.
644    * (2) They will not be cancelled and can be sent to lower level.
645    */
646  XSError(uncacheState =/= s_idle && uncacheState =/= s_wait && commitCount > 0.U,
647   "should not commit instruction when MMIO has not been finished\n")
648  for (i <- 0 until CommitWidth) {
649    when (commitCount > i.U) { // MMIO inst is not in progress
650      if(i == 0){
651        // MMIO inst should not update committed flag
652        // Note that commit count has been delayed for 1 cycle
653        when(uncacheState === s_idle){
654          committed(cmtPtrExt(0).value) := true.B
655        }
656      } else {
657        committed(cmtPtrExt(i).value) := true.B
658      }
659    }
660  }
661  cmtPtrExt := cmtPtrExt.map(_ + commitCount)
662
663  // committed stores will not be cancelled and can be sent to lower level.
664  // remove retired insts from sq, add retired store to sbuffer
665
666  // Read data from data module
667  // As store queue grows larger and larger, time needed to read data from data
668  // module keeps growing higher. Now we give data read a whole cycle.
669
670  val mmioStall = mmio(rdataPtrExt(0).value)
671  for (i <- 0 until EnsbufferWidth) {
672    val ptr = rdataPtrExt(i).value
673    dataBuffer.io.enq(i).valid := allocated(ptr) && committed(ptr) && !mmioStall
674    // Note that store data/addr should both be valid after store's commit
675    assert(!dataBuffer.io.enq(i).valid || allvalid(ptr))
676    dataBuffer.io.enq(i).bits.addr  := paddrModule.io.rdata(i)
677    dataBuffer.io.enq(i).bits.vaddr := vaddrModule.io.rdata(i)
678    dataBuffer.io.enq(i).bits.data  := dataModule.io.rdata(i).data
679    dataBuffer.io.enq(i).bits.mask  := dataModule.io.rdata(i).mask
680    dataBuffer.io.enq(i).bits.wline := paddrModule.io.rlineflag(i)
681    dataBuffer.io.enq(i).bits.sqPtr := rdataPtrExt(i)
682  }
683
684  // Send data stored in sbufferReqBitsReg to sbuffer
685  for (i <- 0 until EnsbufferWidth) {
686    io.sbuffer(i).valid := dataBuffer.io.deq(i).valid
687    dataBuffer.io.deq(i).ready := io.sbuffer(i).ready
688    // Write line request should have all 1 mask
689    assert(!(io.sbuffer(i).valid && io.sbuffer(i).bits.wline && !io.sbuffer(i).bits.mask.andR))
690    io.sbuffer(i).bits := DontCare
691    io.sbuffer(i).bits.cmd   := MemoryOpConstants.M_XWR
692    io.sbuffer(i).bits.addr  := dataBuffer.io.deq(i).bits.addr
693    io.sbuffer(i).bits.vaddr := dataBuffer.io.deq(i).bits.vaddr
694    io.sbuffer(i).bits.data  := dataBuffer.io.deq(i).bits.data
695    io.sbuffer(i).bits.mask  := dataBuffer.io.deq(i).bits.mask
696    io.sbuffer(i).bits.wline := dataBuffer.io.deq(i).bits.wline
697
698    // io.sbuffer(i).fire() is RegNexted, as sbuffer data write takes 2 cycles.
699    // Before data write finish, sbuffer is unable to provide store to load
700    // forward data. As an workaround, deqPtrExt and allocated flag update
701    // is delayed so that load can get the right data from store queue.
702    val ptr = dataBuffer.io.deq(i).bits.sqPtr.value
703    when (RegNext(io.sbuffer(i).fire())) {
704      allocated(RegEnable(ptr, io.sbuffer(i).fire())) := false.B
705      XSDebug("sbuffer "+i+" fire: ptr %d\n", ptr)
706    }
707  }
708  (1 until EnsbufferWidth).foreach(i => when(io.sbuffer(i).fire) { assert(io.sbuffer(i - 1).fire) })
709  if (coreParams.dcacheParametersOpt.isEmpty) {
710    for (i <- 0 until EnsbufferWidth) {
711      val ptr = deqPtrExt(i).value
712      val fakeRAM = Module(new RAMHelper(64L * 1024 * 1024 * 1024))
713      fakeRAM.clk   := clock
714      fakeRAM.en    := allocated(ptr) && committed(ptr) && !mmio(ptr)
715      fakeRAM.rIdx  := 0.U
716      fakeRAM.wIdx  := (paddrModule.io.rdata(i) - "h80000000".U) >> 3
717      fakeRAM.wdata := dataModule.io.rdata(i).data
718      fakeRAM.wmask := MaskExpand(dataModule.io.rdata(i).mask)
719      fakeRAM.wen   := allocated(ptr) && committed(ptr) && !mmio(ptr)
720    }
721  }
722
723  if (env.EnableDifftest) {
724    for (i <- 0 until EnsbufferWidth) {
725      val storeCommit = io.sbuffer(i).fire()
726      val waddr = SignExt(io.sbuffer(i).bits.addr, 64)
727      val wdata = io.sbuffer(i).bits.data & MaskExpand(io.sbuffer(i).bits.mask)
728      val wmask = io.sbuffer(i).bits.mask
729
730      val difftest = Module(new DifftestStoreEvent)
731      difftest.io.clock       := clock
732      difftest.io.coreid      := io.hartId
733      difftest.io.index       := i.U
734      difftest.io.valid       := RegNext(RegNext(storeCommit))
735      difftest.io.storeAddr   := RegNext(RegNext(waddr))
736      difftest.io.storeData   := RegNext(RegNext(wdata))
737      difftest.io.storeMask   := RegNext(RegNext(wmask))
738    }
739  }
740
741  // Read vaddr for mem exception
742  io.exceptionAddr.vaddr := vaddrModule.io.rdata(EnsbufferWidth)
743
744  // misprediction recovery / exception redirect
745  // invalidate sq term using robIdx
746  val needCancel = Wire(Vec(StoreQueueSize, Bool()))
747  for (i <- 0 until StoreQueueSize) {
748    needCancel(i) := uop(i).robIdx.needFlush(io.brqRedirect) && allocated(i) && !committed(i)
749    when (needCancel(i)) {
750      allocated(i) := false.B
751    }
752  }
753
754  /**
755    * update pointers
756    */
757  val lastEnqCancel = PopCount(RegNext(VecInit(canEnqueue.zip(enqCancel).map(x => x._1 && x._2))))
758  val lastCycleRedirect = RegNext(io.brqRedirect.valid)
759  val lastCycleCancelCount = PopCount(RegNext(needCancel))
760  val enqNumber = Mux(io.enq.canAccept && io.enq.lqCanAccept, PopCount(io.enq.req.map(_.valid)), 0.U)
761  when (lastCycleRedirect) {
762    // we recover the pointers in the next cycle after redirect
763    enqPtrExt := VecInit(enqPtrExt.map(_ - (lastCycleCancelCount + lastEnqCancel)))
764  }.otherwise {
765    enqPtrExt := VecInit(enqPtrExt.map(_ + enqNumber))
766  }
767
768  deqPtrExt := deqPtrExtNext
769  rdataPtrExt := rdataPtrExtNext
770
771  // val dequeueCount = Mux(io.sbuffer(1).fire(), 2.U, Mux(io.sbuffer(0).fire() || io.mmioStout.fire(), 1.U, 0.U))
772
773  // If redirect at T0, sqCancelCnt is at T2
774  io.sqCancelCnt := RegNext(lastCycleCancelCount + lastEnqCancel)
775
776  // io.sqempty will be used by sbuffer
777  // We delay it for 1 cycle for better timing
778  // When sbuffer need to check if it is empty, the pipeline is blocked, which means delay io.sqempty
779  // for 1 cycle will also promise that sq is empty in that cycle
780  io.sqEmpty := RegNext(
781    enqPtrExt(0).value === deqPtrExt(0).value &&
782    enqPtrExt(0).flag === deqPtrExt(0).flag
783  )
784
785  // perf counter
786  QueuePerf(StoreQueueSize, validCount, !allowEnqueue)
787  io.sqFull := !allowEnqueue
788  XSPerfAccumulate("mmioCycle", uncacheState =/= s_idle) // lq is busy dealing with uncache req
789  XSPerfAccumulate("mmioCnt", io.uncache.req.fire())
790  XSPerfAccumulate("mmio_wb_success", io.mmioStout.fire())
791  XSPerfAccumulate("mmio_wb_blocked", io.mmioStout.valid && !io.mmioStout.ready)
792  XSPerfAccumulate("validEntryCnt", distanceBetween(enqPtrExt(0), deqPtrExt(0)))
793  XSPerfAccumulate("cmtEntryCnt", distanceBetween(cmtPtrExt(0), deqPtrExt(0)))
794  XSPerfAccumulate("nCmtEntryCnt", distanceBetween(enqPtrExt(0), cmtPtrExt(0)))
795
796  val perfValidCount = distanceBetween(enqPtrExt(0), deqPtrExt(0))
797  val perfEvents = Seq(
798    ("mmioCycle      ", uncacheState =/= s_idle),
799    ("mmioCnt        ", io.uncache.req.fire()),
800    ("mmio_wb_success", io.mmioStout.fire()),
801    ("mmio_wb_blocked", io.mmioStout.valid && !io.mmioStout.ready),
802    ("stq_1_4_valid  ", (perfValidCount < (StoreQueueSize.U/4.U))),
803    ("stq_2_4_valid  ", (perfValidCount > (StoreQueueSize.U/4.U)) & (perfValidCount <= (StoreQueueSize.U/2.U))),
804    ("stq_3_4_valid  ", (perfValidCount > (StoreQueueSize.U/2.U)) & (perfValidCount <= (StoreQueueSize.U*3.U/4.U))),
805    ("stq_4_4_valid  ", (perfValidCount > (StoreQueueSize.U*3.U/4.U))),
806  )
807  generatePerfEvent()
808
809  // debug info
810  XSDebug("enqPtrExt %d:%d deqPtrExt %d:%d\n", enqPtrExt(0).flag, enqPtr, deqPtrExt(0).flag, deqPtr)
811
812  def PrintFlag(flag: Bool, name: String): Unit = {
813    when(flag) {
814      XSDebug(false, true.B, name)
815    }.otherwise {
816      XSDebug(false, true.B, " ")
817    }
818  }
819
820  for (i <- 0 until StoreQueueSize) {
821    XSDebug(i + ": pc %x va %x pa %x data %x ",
822      uop(i).pc,
823      debug_vaddr(i),
824      debug_paddr(i),
825      debug_data(i)
826    )
827    PrintFlag(allocated(i), "a")
828    PrintFlag(allocated(i) && addrvalid(i), "a")
829    PrintFlag(allocated(i) && datavalid(i), "d")
830    PrintFlag(allocated(i) && committed(i), "c")
831    PrintFlag(allocated(i) && pending(i), "p")
832    PrintFlag(allocated(i) && mmio(i), "m")
833    XSDebug(false, true.B, "\n")
834  }
835
836}
837