xref: /XiangShan/src/main/scala/xiangshan/mem/lsqueue/StoreQueue.scala (revision 8b1251e1740d3b3b7d390a9d52d957debd943146)
1/***************************************************************************************
2* Copyright (c) 2020-2021 Institute of Computing Technology, Chinese Academy of Sciences
3* Copyright (c) 2020-2021 Peng Cheng Laboratory
4*
5* XiangShan is licensed under Mulan PSL v2.
6* You can use this software according to the terms and conditions of the Mulan PSL v2.
7* You may obtain a copy of Mulan PSL v2 at:
8*          http://license.coscl.org.cn/MulanPSL2
9*
10* THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND,
11* EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT,
12* MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE.
13*
14* See the Mulan PSL v2 for more details.
15***************************************************************************************/
16
17package xiangshan.mem
18
19import chipsalliance.rocketchip.config.Parameters
20import chisel3._
21import chisel3.util._
22import utils._
23import xiangshan._
24import xiangshan.cache._
25import xiangshan.cache.{DCacheWordIO, DCacheLineIO, MemoryOpConstants}
26import xiangshan.backend.rob.{RobLsqIO, RobPtr}
27import difftest._
28import device.RAMHelper
29
30class SqPtr(implicit p: Parameters) extends CircularQueuePtr[SqPtr](
31  p => p(XSCoreParamsKey).StoreQueueSize
32){
33}
34
35object SqPtr {
36  def apply(f: Bool, v: UInt)(implicit p: Parameters): SqPtr = {
37    val ptr = Wire(new SqPtr)
38    ptr.flag := f
39    ptr.value := v
40    ptr
41  }
42}
43
44class SqEnqIO(implicit p: Parameters) extends XSBundle {
45  val canAccept = Output(Bool())
46  val lqCanAccept = Input(Bool())
47  val needAlloc = Vec(exuParameters.LsExuCnt, Input(Bool()))
48  val req = Vec(exuParameters.LsExuCnt, Flipped(ValidIO(new MicroOp)))
49  val resp = Vec(exuParameters.LsExuCnt, Output(new SqPtr))
50}
51
52class DataBufferEntry (implicit p: Parameters)  extends DCacheBundle {
53  val addr   = UInt(PAddrBits.W)
54  val vaddr  = UInt(VAddrBits.W)
55  val data   = UInt(DataBits.W)
56  val mask   = UInt((DataBits/8).W)
57  val wline = Bool()
58  val sqPtr  = new SqPtr
59}
60
61// Store Queue
62class StoreQueue(implicit p: Parameters) extends XSModule
63  with HasDCacheParameters with HasCircularQueuePtrHelper with HasPerfEvents {
64  val io = IO(new Bundle() {
65    val hartId = Input(UInt(8.W))
66    val enq = new SqEnqIO
67    val brqRedirect = Flipped(ValidIO(new Redirect))
68    val storeIn = Vec(StorePipelineWidth, Flipped(Valid(new LsPipelineBundle))) // store addr, data is not included
69    val storeInRe = Vec(StorePipelineWidth, Input(new LsPipelineBundle())) // store more mmio and exception
70    val storeDataIn = Vec(StorePipelineWidth, Flipped(Valid(new ExuOutput))) // store data, send to sq from rs
71    val storeMaskIn = Vec(StorePipelineWidth, Flipped(Valid(new StoreMaskBundle))) // store mask, send to sq from rs
72    val sbuffer = Vec(EnsbufferWidth, Decoupled(new DCacheWordReqWithVaddr)) // write committed store to sbuffer
73    val mmioStout = DecoupledIO(new ExuOutput) // writeback uncached store
74    val forward = Vec(LoadPipelineWidth, Flipped(new PipeLoadForwardQueryIO))
75    val rob = Flipped(new RobLsqIO)
76    val uncache = new UncacheWordIO
77    // val refill = Flipped(Valid(new DCacheLineReq ))
78    val exceptionAddr = new ExceptionAddrIO
79    val sqempty = Output(Bool())
80    val issuePtrExt = Output(new SqPtr) // used to wake up delayed load/store
81    val sqFull = Output(Bool())
82    val sqCancelCnt = Output(UInt(log2Up(StoreQueueSize + 1).W))
83    val sqDeq = Output(UInt(log2Ceil(EnsbufferWidth + 1).W))
84  })
85
86  println("StoreQueue: size:" + StoreQueueSize)
87
88  // data modules
89  val uop = Reg(Vec(StoreQueueSize, new MicroOp))
90  // val data = Reg(Vec(StoreQueueSize, new LsqEntry))
91  val dataModule = Module(new SQDataModule(
92    numEntries = StoreQueueSize,
93    numRead = EnsbufferWidth,
94    numWrite = StorePipelineWidth,
95    numForward = StorePipelineWidth
96  ))
97  dataModule.io := DontCare
98  val paddrModule = Module(new SQAddrModule(
99    dataWidth = PAddrBits,
100    numEntries = StoreQueueSize,
101    numRead = EnsbufferWidth,
102    numWrite = StorePipelineWidth,
103    numForward = StorePipelineWidth
104  ))
105  paddrModule.io := DontCare
106  val vaddrModule = Module(new SQAddrModule(
107    dataWidth = VAddrBits,
108    numEntries = StoreQueueSize,
109    numRead = EnsbufferWidth + 1, // sbuffer + badvaddr 1 (TODO)
110    numWrite = StorePipelineWidth,
111    numForward = StorePipelineWidth
112  ))
113  vaddrModule.io := DontCare
114  val dataBuffer = Module(new DatamoduleResultBuffer(new DataBufferEntry))
115  val debug_paddr = Reg(Vec(StoreQueueSize, UInt((PAddrBits).W)))
116  val debug_vaddr = Reg(Vec(StoreQueueSize, UInt((VAddrBits).W)))
117  val debug_data = Reg(Vec(StoreQueueSize, UInt((XLEN).W)))
118
119  // state & misc
120  val allocated = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // sq entry has been allocated
121  val addrvalid = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // non-mmio addr is valid
122  val datavalid = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // non-mmio data is valid
123  val allvalid  = VecInit((0 until StoreQueueSize).map(i => addrvalid(i) && datavalid(i))) // non-mmio data & addr is valid
124  val committed = Reg(Vec(StoreQueueSize, Bool())) // inst has been committed by rob
125  val pending = Reg(Vec(StoreQueueSize, Bool())) // mmio pending: inst is an mmio inst, it will not be executed until it reachs the end of rob
126  val mmio = Reg(Vec(StoreQueueSize, Bool())) // mmio: inst is an mmio inst
127
128  // ptr
129  val enqPtrExt = RegInit(VecInit((0 until io.enq.req.length).map(_.U.asTypeOf(new SqPtr))))
130  val rdataPtrExt = RegInit(VecInit((0 until EnsbufferWidth).map(_.U.asTypeOf(new SqPtr))))
131  val deqPtrExt = RegInit(VecInit((0 until EnsbufferWidth).map(_.U.asTypeOf(new SqPtr))))
132  val cmtPtrExt = RegInit(VecInit((0 until CommitWidth).map(_.U.asTypeOf(new SqPtr))))
133  val issuePtrExt = RegInit(0.U.asTypeOf(new SqPtr))
134  val validCounter = RegInit(0.U(log2Ceil(LoadQueueSize + 1).W))
135
136  val enqPtr = enqPtrExt(0).value
137  val deqPtr = deqPtrExt(0).value
138  val cmtPtr = cmtPtrExt(0).value
139
140  val validCount = distanceBetween(enqPtrExt(0), deqPtrExt(0))
141  val allowEnqueue = validCount <= (StoreQueueSize - StorePipelineWidth).U
142
143  val deqMask = UIntToMask(deqPtr, StoreQueueSize)
144  val enqMask = UIntToMask(enqPtr, StoreQueueSize)
145
146  val commitCount = RegNext(io.rob.scommit)
147
148  // Read dataModule
149  assert(EnsbufferWidth <= 2)
150  // rdataPtrExtNext and rdataPtrExtNext+1 entry will be read from dataModule
151  val rdataPtrExtNext = WireInit(Mux(dataBuffer.io.enq(1).fire(),
152    VecInit(rdataPtrExt.map(_ + 2.U)),
153    Mux(dataBuffer.io.enq(0).fire() || io.mmioStout.fire(),
154      VecInit(rdataPtrExt.map(_ + 1.U)),
155      rdataPtrExt
156    )
157  ))
158
159  // deqPtrExtNext traces which inst is about to leave store queue
160  //
161  // io.sbuffer(i).fire() is RegNexted, as sbuffer data write takes 2 cycles.
162  // Before data write finish, sbuffer is unable to provide store to load
163  // forward data. As an workaround, deqPtrExt and allocated flag update
164  // is delayed so that load can get the right data from store queue.
165  //
166  // Modify deqPtrExtNext and io.sqDeq with care!
167  val deqPtrExtNext = Mux(RegNext(io.sbuffer(1).fire()),
168    VecInit(deqPtrExt.map(_ + 2.U)),
169    Mux(RegNext(io.sbuffer(0).fire()) || io.mmioStout.fire(),
170      VecInit(deqPtrExt.map(_ + 1.U)),
171      deqPtrExt
172    )
173  )
174  io.sqDeq := RegNext(Mux(RegNext(io.sbuffer(1).fire()), 2.U,
175    Mux(RegNext(io.sbuffer(0).fire()) || io.mmioStout.fire(), 1.U, 0.U)
176  ))
177  assert(!RegNext(RegNext(io.sbuffer(0).fire()) && io.mmioStout.fire()))
178
179  for (i <- 0 until EnsbufferWidth) {
180    dataModule.io.raddr(i) := rdataPtrExtNext(i).value
181    paddrModule.io.raddr(i) := rdataPtrExtNext(i).value
182    vaddrModule.io.raddr(i) := rdataPtrExtNext(i).value
183  }
184
185  // no inst will be committed 1 cycle before tval update
186  vaddrModule.io.raddr(EnsbufferWidth) := (cmtPtrExt(0) + commitCount).value
187
188  /**
189    * Enqueue at dispatch
190    *
191    * Currently, StoreQueue only allows enqueue when #emptyEntries > EnqWidth
192    */
193  io.enq.canAccept := allowEnqueue
194  val canEnqueue = io.enq.req.map(_.valid)
195  val enqCancel = io.enq.req.map(_.bits.robIdx.needFlush(io.brqRedirect))
196  for (i <- 0 until io.enq.req.length) {
197    val offset = if (i == 0) 0.U else PopCount(io.enq.needAlloc.take(i))
198    val sqIdx = enqPtrExt(offset)
199    val index = io.enq.req(i).bits.sqIdx.value
200    when (canEnqueue(i) && !enqCancel(i)) {
201      uop(index).robIdx := io.enq.req(i).bits.robIdx
202      allocated(index) := true.B
203      datavalid(index) := false.B
204      addrvalid(index) := false.B
205      committed(index) := false.B
206      pending(index) := false.B
207      XSError(!io.enq.canAccept || !io.enq.lqCanAccept, s"must accept $i\n")
208      XSError(index =/= sqIdx.value, s"must be the same entry $i\n")
209    }
210    io.enq.resp(i) := sqIdx
211  }
212  XSDebug(p"(ready, valid): ${io.enq.canAccept}, ${Binary(Cat(io.enq.req.map(_.valid)))}\n")
213
214  /**
215    * Update issuePtr when issue from rs
216    */
217  // update issuePtr
218  val IssuePtrMoveStride = 4
219  require(IssuePtrMoveStride >= 2)
220
221  val issueLookupVec = (0 until IssuePtrMoveStride).map(issuePtrExt + _.U)
222  val issueLookup = issueLookupVec.map(ptr => allocated(ptr.value) && addrvalid(ptr.value) && datavalid(ptr.value) && ptr =/= enqPtrExt(0))
223  val nextIssuePtr = issuePtrExt + PriorityEncoder(VecInit(issueLookup.map(!_) :+ true.B))
224  issuePtrExt := nextIssuePtr
225
226  when (io.brqRedirect.valid) {
227    issuePtrExt := Mux(
228      isAfter(cmtPtrExt(0), deqPtrExt(0)),
229      cmtPtrExt(0),
230      deqPtrExtNext(0) // for mmio insts, deqPtr may be ahead of cmtPtr
231    )
232  }
233  // send issuePtrExt to rs
234  // io.issuePtrExt := cmtPtrExt(0)
235  io.issuePtrExt := issuePtrExt
236
237  /**
238    * Writeback store from store units
239    *
240    * Most store instructions writeback to regfile in the previous cycle.
241    * However,
242    *   (1) For an mmio instruction with exceptions, we need to mark it as addrvalid
243    * (in this way it will trigger an exception when it reaches ROB's head)
244    * instead of pending to avoid sending them to lower level.
245    *   (2) For an mmio instruction without exceptions, we mark it as pending.
246    * When the instruction reaches ROB's head, StoreQueue sends it to uncache channel.
247    * Upon receiving the response, StoreQueue writes back the instruction
248    * through arbiter with store units. It will later commit as normal.
249    */
250
251  // Write addr to sq
252  for (i <- 0 until StorePipelineWidth) {
253    paddrModule.io.wen(i) := false.B
254    vaddrModule.io.wen(i) := false.B
255    dataModule.io.mask.wen(i) := false.B
256    val stWbIndex = io.storeIn(i).bits.uop.sqIdx.value
257    when (io.storeIn(i).fire()) {
258      val addr_valid = !io.storeIn(i).bits.miss
259      addrvalid(stWbIndex) := addr_valid //!io.storeIn(i).bits.mmio
260      // pending(stWbIndex) := io.storeIn(i).bits.mmio
261
262      paddrModule.io.waddr(i) := stWbIndex
263      paddrModule.io.wdata(i) := io.storeIn(i).bits.paddr
264      paddrModule.io.wlineflag(i) := io.storeIn(i).bits.wlineflag
265      paddrModule.io.wen(i) := true.B
266
267      vaddrModule.io.waddr(i) := stWbIndex
268      vaddrModule.io.wdata(i) := io.storeIn(i).bits.vaddr
269      vaddrModule.io.wlineflag(i) := io.storeIn(i).bits.wlineflag
270      vaddrModule.io.wen(i) := true.B
271
272      debug_paddr(paddrModule.io.waddr(i)) := paddrModule.io.wdata(i)
273
274      // mmio(stWbIndex) := io.storeIn(i).bits.mmio
275
276      uop(stWbIndex).ctrl := io.storeIn(i).bits.uop.ctrl
277      uop(stWbIndex).debugInfo := io.storeIn(i).bits.uop.debugInfo
278      XSInfo("store addr write to sq idx %d pc 0x%x miss:%d vaddr %x paddr %x mmio %x\n",
279        io.storeIn(i).bits.uop.sqIdx.value,
280        io.storeIn(i).bits.uop.cf.pc,
281        io.storeIn(i).bits.miss,
282        io.storeIn(i).bits.vaddr,
283        io.storeIn(i).bits.paddr,
284        io.storeIn(i).bits.mmio
285      )
286    }
287
288    // re-replinish mmio, for pma/pmp will get mmio one cycle later
289    val storeInFireReg = RegNext(io.storeIn(i).fire() && !io.storeIn(i).bits.miss)
290    val stWbIndexReg = RegNext(stWbIndex)
291    when (storeInFireReg) {
292      pending(stWbIndexReg) := io.storeInRe(i).mmio
293      mmio(stWbIndexReg) := io.storeInRe(i).mmio
294    }
295
296    when(vaddrModule.io.wen(i)){
297      debug_vaddr(vaddrModule.io.waddr(i)) := vaddrModule.io.wdata(i)
298    }
299  }
300
301  // Write data to sq
302  // Now store data pipeline is actually 2 stages
303  for (i <- 0 until StorePipelineWidth) {
304    dataModule.io.data.wen(i) := false.B
305    val stWbIndex = io.storeDataIn(i).bits.uop.sqIdx.value
306    // sq data write takes 2 cycles:
307    // sq data write s0
308    when (io.storeDataIn(i).fire()) {
309      // send data write req to data module
310      dataModule.io.data.waddr(i) := stWbIndex
311      dataModule.io.data.wdata(i) := Mux(io.storeDataIn(i).bits.uop.ctrl.fuOpType === LSUOpType.cbo_zero,
312        0.U,
313        genWdata(io.storeDataIn(i).bits.data, io.storeDataIn(i).bits.uop.ctrl.fuOpType(1,0))
314      )
315      dataModule.io.data.wen(i) := true.B
316
317      debug_data(dataModule.io.data.waddr(i)) := dataModule.io.data.wdata(i)
318
319      XSInfo("store data write to sq idx %d pc 0x%x data %x -> %x\n",
320        io.storeDataIn(i).bits.uop.sqIdx.value,
321        io.storeDataIn(i).bits.uop.cf.pc,
322        io.storeDataIn(i).bits.data,
323        dataModule.io.data.wdata(i)
324      )
325    }
326    // sq data write s1
327    when (
328      RegNext(io.storeDataIn(i).fire())
329      // && !RegNext(io.storeDataIn(i).bits.uop).robIdx.needFlush(io.brqRedirect)
330    ) {
331      datavalid(RegNext(stWbIndex)) := true.B
332    }
333  }
334
335  // Write mask to sq
336  for (i <- 0 until StorePipelineWidth) {
337    // sq mask write s0
338    when (io.storeMaskIn(i).fire()) {
339      // send data write req to data module
340      dataModule.io.mask.waddr(i) := io.storeMaskIn(i).bits.sqIdx.value
341      dataModule.io.mask.wdata(i) := io.storeMaskIn(i).bits.mask
342      dataModule.io.mask.wen(i) := true.B
343    }
344  }
345
346  /**
347    * load forward query
348    *
349    * Check store queue for instructions that is older than the load.
350    * The response will be valid at the next cycle after req.
351    */
352  // check over all lq entries and forward data from the first matched store
353  for (i <- 0 until LoadPipelineWidth) {
354    // Compare deqPtr (deqPtr) and forward.sqIdx, we have two cases:
355    // (1) if they have the same flag, we need to check range(tail, sqIdx)
356    // (2) if they have different flags, we need to check range(tail, LoadQueueSize) and range(0, sqIdx)
357    // Forward1: Mux(same_flag, range(tail, sqIdx), range(tail, LoadQueueSize))
358    // Forward2: Mux(same_flag, 0.U,                   range(0, sqIdx)    )
359    // i.e. forward1 is the target entries with the same flag bits and forward2 otherwise
360    val differentFlag = deqPtrExt(0).flag =/= io.forward(i).sqIdx.flag
361    val forwardMask = io.forward(i).sqIdxMask
362    // all addrvalid terms need to be checked
363    val addrValidVec = WireInit(VecInit((0 until StoreQueueSize).map(i => addrvalid(i) && allocated(i))))
364    val dataValidVec = WireInit(VecInit((0 until StoreQueueSize).map(i => datavalid(i))))
365    val allValidVec = WireInit(VecInit((0 until StoreQueueSize).map(i => addrvalid(i) && datavalid(i) && allocated(i))))
366    val canForward1 = Mux(differentFlag, ~deqMask, deqMask ^ forwardMask) & allValidVec.asUInt
367    val canForward2 = Mux(differentFlag, forwardMask, 0.U(StoreQueueSize.W)) & allValidVec.asUInt
368    val needForward = Mux(differentFlag, ~deqMask | forwardMask, deqMask ^ forwardMask)
369
370    XSDebug(p"$i f1 ${Binary(canForward1)} f2 ${Binary(canForward2)} " +
371      p"sqIdx ${io.forward(i).sqIdx} pa ${Hexadecimal(io.forward(i).paddr)}\n"
372    )
373
374    // do real fwd query (cam lookup in load_s1)
375    dataModule.io.needForward(i)(0) := canForward1 & vaddrModule.io.forwardMmask(i).asUInt
376    dataModule.io.needForward(i)(1) := canForward2 & vaddrModule.io.forwardMmask(i).asUInt
377
378    vaddrModule.io.forwardMdata(i) := io.forward(i).vaddr
379    paddrModule.io.forwardMdata(i) := io.forward(i).paddr
380
381    // vaddr cam result does not equal to paddr cam result
382    // replay needed
383    // val vpmaskNotEqual = ((paddrModule.io.forwardMmask(i).asUInt ^ vaddrModule.io.forwardMmask(i).asUInt) & needForward) =/= 0.U
384    // val vaddrMatchFailed = vpmaskNotEqual && io.forward(i).valid
385    val vpmaskNotEqual = (
386      (RegNext(paddrModule.io.forwardMmask(i).asUInt) ^ RegNext(vaddrModule.io.forwardMmask(i).asUInt)) &
387      RegNext(needForward) &
388      RegNext(addrValidVec.asUInt)
389    ) =/= 0.U
390    val vaddrMatchFailed = vpmaskNotEqual && RegNext(io.forward(i).valid)
391    when (vaddrMatchFailed) {
392      XSInfo("vaddrMatchFailed: pc %x pmask %x vmask %x\n",
393        RegNext(io.forward(i).uop.cf.pc),
394        RegNext(needForward & paddrModule.io.forwardMmask(i).asUInt),
395        RegNext(needForward & vaddrModule.io.forwardMmask(i).asUInt)
396      );
397    }
398    XSPerfAccumulate("vaddr_match_failed", vpmaskNotEqual)
399    XSPerfAccumulate("vaddr_match_really_failed", vaddrMatchFailed)
400
401    // Fast forward mask will be generated immediately (load_s1)
402    io.forward(i).forwardMaskFast := dataModule.io.forwardMaskFast(i)
403
404    // Forward result will be generated 1 cycle later (load_s2)
405    io.forward(i).forwardMask := dataModule.io.forwardMask(i)
406    io.forward(i).forwardData := dataModule.io.forwardData(i)
407
408    // If addr match, data not ready, mark it as dataInvalid
409    // load_s1: generate dataInvalid in load_s1 to set fastUop
410    val dataInvalidMask = (addrValidVec.asUInt & ~dataValidVec.asUInt & vaddrModule.io.forwardMmask(i).asUInt & needForward.asUInt)
411    io.forward(i).dataInvalidFast := dataInvalidMask.orR
412    val dataInvalidMaskReg = RegNext(dataInvalidMask)
413    // load_s2
414    io.forward(i).dataInvalid := RegNext(io.forward(i).dataInvalidFast)
415    // check if vaddr forward mismatched
416    io.forward(i).matchInvalid := vaddrMatchFailed
417    val dataInvalidMaskRegWire = Wire(UInt(StoreQueueSize.W))
418    dataInvalidMaskRegWire := dataInvalidMaskReg // make chisel happy
419    io.forward(i).dataInvalidSqIdx := PriorityEncoder(dataInvalidMaskRegWire)
420  }
421
422  /**
423    * Memory mapped IO / other uncached operations
424    *
425    * States:
426    * (1) writeback from store units: mark as pending
427    * (2) when they reach ROB's head, they can be sent to uncache channel
428    * (3) response from uncache channel: mark as datavalidmask.wen
429    * (4) writeback to ROB (and other units): mark as writebacked
430    * (5) ROB commits the instruction: same as normal instructions
431    */
432  //(2) when they reach ROB's head, they can be sent to uncache channel
433  val s_idle :: s_req :: s_resp :: s_wb :: s_wait :: Nil = Enum(5)
434  val uncacheState = RegInit(s_idle)
435  switch(uncacheState) {
436    is(s_idle) {
437      when(RegNext(io.rob.pendingst && pending(deqPtr) && allocated(deqPtr) && datavalid(deqPtr) && addrvalid(deqPtr))) {
438        uncacheState := s_req
439      }
440    }
441    is(s_req) {
442      when(io.uncache.req.fire()) {
443        uncacheState := s_resp
444      }
445    }
446    is(s_resp) {
447      when(io.uncache.resp.fire()) {
448        uncacheState := s_wb
449      }
450    }
451    is(s_wb) {
452      when (io.mmioStout.fire()) {
453        uncacheState := s_wait
454      }
455    }
456    is(s_wait) {
457      when(commitCount > 0.U) {
458        uncacheState := s_idle // ready for next mmio
459      }
460    }
461  }
462  io.uncache.req.valid := uncacheState === s_req
463
464  io.uncache.req.bits.cmd  := MemoryOpConstants.M_XWR
465  io.uncache.req.bits.addr := paddrModule.io.rdata(0) // data(deqPtr) -> rdata(0)
466  io.uncache.req.bits.data := dataModule.io.rdata(0).data
467  io.uncache.req.bits.mask := dataModule.io.rdata(0).mask
468
469  // CBO op type check can be delayed for 1 cycle,
470  // as uncache op will not start in s_idle
471  val cbo_mmio_addr = paddrModule.io.rdata(0) >> 2 << 2 // clear lowest 2 bits for op
472  val cbo_mmio_op = 0.U //TODO
473  val cbo_mmio_data = cbo_mmio_addr | cbo_mmio_op
474  when(RegNext(LSUOpType.isCbo(uop(deqPtr).ctrl.fuOpType))){
475    io.uncache.req.bits.addr := DontCare // TODO
476    io.uncache.req.bits.data := paddrModule.io.rdata(0)
477    io.uncache.req.bits.mask := DontCare // TODO
478  }
479
480  io.uncache.req.bits.id   := DontCare
481  io.uncache.req.bits.instrtype   := DontCare
482
483  when(io.uncache.req.fire()){
484    // mmio store should not be committed until uncache req is sent
485    pending(deqPtr) := false.B
486
487    XSDebug(
488      p"uncache req: pc ${Hexadecimal(uop(deqPtr).cf.pc)} " +
489      p"addr ${Hexadecimal(io.uncache.req.bits.addr)} " +
490      p"data ${Hexadecimal(io.uncache.req.bits.data)} " +
491      p"op ${Hexadecimal(io.uncache.req.bits.cmd)} " +
492      p"mask ${Hexadecimal(io.uncache.req.bits.mask)}\n"
493    )
494  }
495
496  // (3) response from uncache channel: mark as datavalid
497  io.uncache.resp.ready := true.B
498
499  // (4) writeback to ROB (and other units): mark as writebacked
500  io.mmioStout.valid := uncacheState === s_wb
501  io.mmioStout.bits.uop := uop(deqPtr)
502  io.mmioStout.bits.uop.sqIdx := deqPtrExt(0)
503  io.mmioStout.bits.data := dataModule.io.rdata(0).data // dataModule.io.rdata.read(deqPtr)
504  io.mmioStout.bits.redirectValid := false.B
505  io.mmioStout.bits.redirect := DontCare
506  io.mmioStout.bits.debug.isMMIO := true.B
507  io.mmioStout.bits.debug.paddr := DontCare
508  io.mmioStout.bits.debug.isPerfCnt := false.B
509  io.mmioStout.bits.fflags := DontCare
510  io.mmioStout.bits.debug.vaddr := DontCare
511  // Remove MMIO inst from store queue after MMIO request is being sent
512  // That inst will be traced by uncache state machine
513  when (io.mmioStout.fire()) {
514    allocated(deqPtr) := false.B
515  }
516
517  /**
518    * ROB commits store instructions (mark them as committed)
519    *
520    * (1) When store commits, mark it as committed.
521    * (2) They will not be cancelled and can be sent to lower level.
522    */
523  XSError(uncacheState =/= s_idle && uncacheState =/= s_wait && commitCount > 0.U,
524   "should not commit instruction when MMIO has not been finished\n")
525  for (i <- 0 until CommitWidth) {
526    when (commitCount > i.U) { // MMIO inst is not in progress
527      if(i == 0){
528        // MMIO inst should not update committed flag
529        // Note that commit count has been delayed for 1 cycle
530        when(uncacheState === s_idle){
531          committed(cmtPtrExt(0).value) := true.B
532        }
533      } else {
534        committed(cmtPtrExt(i).value) := true.B
535      }
536    }
537  }
538  cmtPtrExt := cmtPtrExt.map(_ + commitCount)
539
540  // committed stores will not be cancelled and can be sent to lower level.
541  // remove retired insts from sq, add retired store to sbuffer
542
543  // Read data from data module
544  // As store queue grows larger and larger, time needed to read data from data
545  // module keeps growing higher. Now we give data read a whole cycle.
546
547  val mmioStall = mmio(rdataPtrExt(0).value)
548  for (i <- 0 until EnsbufferWidth) {
549    val ptr = rdataPtrExt(i).value
550    dataBuffer.io.enq(i).valid := allocated(ptr) && committed(ptr) && !mmioStall
551    // Note that store data/addr should both be valid after store's commit
552    assert(!dataBuffer.io.enq(i).valid || allvalid(ptr))
553    dataBuffer.io.enq(i).bits.addr  := paddrModule.io.rdata(i)
554    dataBuffer.io.enq(i).bits.vaddr := vaddrModule.io.rdata(i)
555    dataBuffer.io.enq(i).bits.data  := dataModule.io.rdata(i).data
556    dataBuffer.io.enq(i).bits.mask  := dataModule.io.rdata(i).mask
557    dataBuffer.io.enq(i).bits.wline := paddrModule.io.rlineflag(i)
558    dataBuffer.io.enq(i).bits.sqPtr := rdataPtrExt(i)
559  }
560
561  // Send data stored in sbufferReqBitsReg to sbuffer
562  for (i <- 0 until EnsbufferWidth) {
563    io.sbuffer(i).valid := dataBuffer.io.deq(i).valid
564    dataBuffer.io.deq(i).ready := io.sbuffer(i).ready
565    // Write line request should have all 1 mask
566    assert(!(io.sbuffer(i).valid && io.sbuffer(i).bits.wline && !io.sbuffer(i).bits.mask.andR))
567    io.sbuffer(i).bits.cmd   := MemoryOpConstants.M_XWR
568    io.sbuffer(i).bits.addr  := dataBuffer.io.deq(i).bits.addr
569    io.sbuffer(i).bits.vaddr := dataBuffer.io.deq(i).bits.vaddr
570    io.sbuffer(i).bits.data  := dataBuffer.io.deq(i).bits.data
571    io.sbuffer(i).bits.mask  := dataBuffer.io.deq(i).bits.mask
572    io.sbuffer(i).bits.wline := dataBuffer.io.deq(i).bits.wline
573    io.sbuffer(i).bits.id    := DontCare
574    io.sbuffer(i).bits.instrtype    := DontCare
575
576    // io.sbuffer(i).fire() is RegNexted, as sbuffer data write takes 2 cycles.
577    // Before data write finish, sbuffer is unable to provide store to load
578    // forward data. As an workaround, deqPtrExt and allocated flag update
579    // is delayed so that load can get the right data from store queue.
580    val ptr = dataBuffer.io.deq(i).bits.sqPtr.value
581    when (RegNext(io.sbuffer(i).fire())) {
582      allocated(RegEnable(ptr, io.sbuffer(i).fire())) := false.B
583      XSDebug("sbuffer "+i+" fire: ptr %d\n", ptr)
584    }
585  }
586  (1 until EnsbufferWidth).foreach(i => when(io.sbuffer(i).fire) { assert(io.sbuffer(i - 1).fire) })
587  if (coreParams.dcacheParametersOpt.isEmpty) {
588    for (i <- 0 until EnsbufferWidth) {
589      val ptr = deqPtrExt(i).value
590      val fakeRAM = Module(new RAMHelper(64L * 1024 * 1024 * 1024))
591      fakeRAM.clk   := clock
592      fakeRAM.en    := allocated(ptr) && committed(ptr) && !mmio(ptr)
593      fakeRAM.rIdx  := 0.U
594      fakeRAM.wIdx  := (paddrModule.io.rdata(i) - "h80000000".U) >> 3
595      fakeRAM.wdata := dataModule.io.rdata(i).data
596      fakeRAM.wmask := MaskExpand(dataModule.io.rdata(i).mask)
597      fakeRAM.wen   := allocated(ptr) && committed(ptr) && !mmio(ptr)
598    }
599  }
600
601  if (env.EnableDifftest) {
602    for (i <- 0 until EnsbufferWidth) {
603      val storeCommit = io.sbuffer(i).fire()
604      val waddr = SignExt(io.sbuffer(i).bits.addr, 64)
605      val wdata = io.sbuffer(i).bits.data & MaskExpand(io.sbuffer(i).bits.mask)
606      val wmask = io.sbuffer(i).bits.mask
607
608      val difftest = Module(new DifftestStoreEvent)
609      difftest.io.clock       := clock
610      difftest.io.coreid      := io.hartId
611      difftest.io.index       := i.U
612      difftest.io.valid       := RegNext(RegNext(storeCommit))
613      difftest.io.storeAddr   := RegNext(RegNext(waddr))
614      difftest.io.storeData   := RegNext(RegNext(wdata))
615      difftest.io.storeMask   := RegNext(RegNext(wmask))
616    }
617  }
618
619  // Read vaddr for mem exception
620  io.exceptionAddr.vaddr := vaddrModule.io.rdata(EnsbufferWidth)
621
622  // misprediction recovery / exception redirect
623  // invalidate sq term using robIdx
624  val needCancel = Wire(Vec(StoreQueueSize, Bool()))
625  for (i <- 0 until StoreQueueSize) {
626    needCancel(i) := uop(i).robIdx.needFlush(io.brqRedirect) && allocated(i) && !committed(i)
627    when (needCancel(i)) {
628      allocated(i) := false.B
629    }
630  }
631
632  /**
633    * update pointers
634    */
635  val lastEnqCancel = PopCount(RegNext(VecInit(canEnqueue.zip(enqCancel).map(x => x._1 && x._2))))
636  val lastCycleRedirect = RegNext(io.brqRedirect.valid)
637  val lastCycleCancelCount = PopCount(RegNext(needCancel))
638  val enqNumber = Mux(io.enq.canAccept && io.enq.lqCanAccept, PopCount(io.enq.req.map(_.valid)), 0.U)
639  when (lastCycleRedirect) {
640    // we recover the pointers in the next cycle after redirect
641    enqPtrExt := VecInit(enqPtrExt.map(_ - (lastCycleCancelCount + lastEnqCancel)))
642  }.otherwise {
643    enqPtrExt := VecInit(enqPtrExt.map(_ + enqNumber))
644  }
645
646  deqPtrExt := deqPtrExtNext
647  rdataPtrExt := rdataPtrExtNext
648
649  // val dequeueCount = Mux(io.sbuffer(1).fire(), 2.U, Mux(io.sbuffer(0).fire() || io.mmioStout.fire(), 1.U, 0.U))
650
651  // If redirect at T0, sqCancelCnt is at T2
652  io.sqCancelCnt := RegNext(lastCycleCancelCount + lastEnqCancel)
653
654  // io.sqempty will be used by sbuffer
655  // We delay it for 1 cycle for better timing
656  // When sbuffer need to check if it is empty, the pipeline is blocked, which means delay io.sqempty
657  // for 1 cycle will also promise that sq is empty in that cycle
658  io.sqempty := RegNext(
659    enqPtrExt(0).value === deqPtrExt(0).value &&
660    enqPtrExt(0).flag === deqPtrExt(0).flag
661  )
662
663  // perf counter
664  QueuePerf(StoreQueueSize, validCount, !allowEnqueue)
665  io.sqFull := !allowEnqueue
666  XSPerfAccumulate("mmioCycle", uncacheState =/= s_idle) // lq is busy dealing with uncache req
667  XSPerfAccumulate("mmioCnt", io.uncache.req.fire())
668  XSPerfAccumulate("mmio_wb_success", io.mmioStout.fire())
669  XSPerfAccumulate("mmio_wb_blocked", io.mmioStout.valid && !io.mmioStout.ready)
670  XSPerfAccumulate("validEntryCnt", distanceBetween(enqPtrExt(0), deqPtrExt(0)))
671  XSPerfAccumulate("cmtEntryCnt", distanceBetween(cmtPtrExt(0), deqPtrExt(0)))
672  XSPerfAccumulate("nCmtEntryCnt", distanceBetween(enqPtrExt(0), cmtPtrExt(0)))
673
674  val perfValidCount = distanceBetween(enqPtrExt(0), deqPtrExt(0))
675  val perfEvents = Seq(
676    ("mmioCycle      ", uncacheState =/= s_idle),
677    ("mmioCnt        ", io.uncache.req.fire()),
678    ("mmio_wb_success", io.mmioStout.fire()),
679    ("mmio_wb_blocked", io.mmioStout.valid && !io.mmioStout.ready),
680    ("stq_1_4_valid  ", (perfValidCount < (StoreQueueSize.U/4.U))),
681    ("stq_2_4_valid  ", (perfValidCount > (StoreQueueSize.U/4.U)) & (perfValidCount <= (StoreQueueSize.U/2.U))),
682    ("stq_3_4_valid  ", (perfValidCount > (StoreQueueSize.U/2.U)) & (perfValidCount <= (StoreQueueSize.U*3.U/4.U))),
683    ("stq_4_4_valid  ", (perfValidCount > (StoreQueueSize.U*3.U/4.U))),
684  )
685  generatePerfEvent()
686
687  // debug info
688  XSDebug("enqPtrExt %d:%d deqPtrExt %d:%d\n", enqPtrExt(0).flag, enqPtr, deqPtrExt(0).flag, deqPtr)
689
690  def PrintFlag(flag: Bool, name: String): Unit = {
691    when(flag) {
692      XSDebug(false, true.B, name)
693    }.otherwise {
694      XSDebug(false, true.B, " ")
695    }
696  }
697
698  for (i <- 0 until StoreQueueSize) {
699    XSDebug(i + ": pc %x va %x pa %x data %x ",
700      uop(i).cf.pc,
701      debug_vaddr(i),
702      debug_paddr(i),
703      debug_data(i)
704    )
705    PrintFlag(allocated(i), "a")
706    PrintFlag(allocated(i) && addrvalid(i), "a")
707    PrintFlag(allocated(i) && datavalid(i), "d")
708    PrintFlag(allocated(i) && committed(i), "c")
709    PrintFlag(allocated(i) && pending(i), "p")
710    PrintFlag(allocated(i) && mmio(i), "m")
711    XSDebug(false, true.B, "\n")
712  }
713
714}
715