xref: /XiangShan/src/main/scala/xiangshan/mem/lsqueue/StoreQueue.scala (revision 887862dbb8debde8ab099befc426493834a69ee7)
1/***************************************************************************************
2* Copyright (c) 2024 Beijing Institute of Open Source Chip (BOSC)
3* Copyright (c) 2020-2024 Institute of Computing Technology, Chinese Academy of Sciences
4* Copyright (c) 2020-2021 Peng Cheng Laboratory
5*
6* XiangShan is licensed under Mulan PSL v2.
7* You can use this software according to the terms and conditions of the Mulan PSL v2.
8* You may obtain a copy of Mulan PSL v2 at:
9*          http://license.coscl.org.cn/MulanPSL2
10*
11* THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND,
12* EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT,
13* MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE.
14*
15* See the Mulan PSL v2 for more details.
16***************************************************************************************/
17
18package xiangshan.mem
19
20import chisel3._
21import chisel3.util._
22import difftest._
23import difftest.common.DifftestMem
24import org.chipsalliance.cde.config.Parameters
25import utility._
26import utils._
27import xiangshan._
28import xiangshan.cache._
29import xiangshan.cache.{DCacheLineIO, DCacheWordIO, MemoryOpConstants}
30import xiangshan.backend._
31import xiangshan.backend.rob.{RobLsqIO, RobPtr}
32import xiangshan.backend.Bundles.{DynInst, MemExuOutput}
33import xiangshan.backend.decode.isa.bitfield.{Riscv32BitInst, XSInstBitFields}
34import xiangshan.backend.fu.FuConfig._
35import xiangshan.backend.fu.FuType
36import xiangshan.ExceptionNO._
37import coupledL2.{CMOReq, CMOResp}
38
39class SqPtr(implicit p: Parameters) extends CircularQueuePtr[SqPtr](
40  p => p(XSCoreParamsKey).StoreQueueSize
41){
42}
43
44object SqPtr {
45  def apply(f: Bool, v: UInt)(implicit p: Parameters): SqPtr = {
46    val ptr = Wire(new SqPtr)
47    ptr.flag := f
48    ptr.value := v
49    ptr
50  }
51}
52
53class SqEnqIO(implicit p: Parameters) extends MemBlockBundle {
54  val canAccept = Output(Bool())
55  val lqCanAccept = Input(Bool())
56  val needAlloc = Vec(LSQEnqWidth, Input(Bool()))
57  val req = Vec(LSQEnqWidth, Flipped(ValidIO(new DynInst)))
58  val resp = Vec(LSQEnqWidth, Output(new SqPtr))
59}
60
61class DataBufferEntry (implicit p: Parameters)  extends DCacheBundle {
62  val addr   = UInt(PAddrBits.W)
63  val vaddr  = UInt(VAddrBits.W)
64  val data   = UInt(VLEN.W)
65  val mask   = UInt((VLEN/8).W)
66  val wline = Bool()
67  val sqPtr  = new SqPtr
68  val prefetch = Bool()
69  val vecValid = Bool()
70}
71
72class StoreExceptionBuffer(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper {
73  val io = IO(new Bundle() {
74    val redirect = Flipped(ValidIO(new Redirect))
75    val storeAddrIn = Vec(StorePipelineWidth * 2 + VecStorePipelineWidth, Flipped(ValidIO(new LsPipelineBundle())))
76    val flushFrmMaBuf = Input(Bool())
77    val exceptionAddr = new ExceptionAddrIO
78  })
79
80  val req_valid = RegInit(false.B)
81  val req = Reg(new LsPipelineBundle())
82
83  // enqueue
84  // S1:
85  val s1_req = VecInit(io.storeAddrIn.map(_.bits))
86  val s1_valid = VecInit(io.storeAddrIn.map(_.valid))
87
88  // S2: delay 1 cycle
89  val s2_req = (0 until StorePipelineWidth * 2 + VecStorePipelineWidth).map(i =>
90    RegEnable(s1_req(i), s1_valid(i)))
91  val s2_valid = (0 until StorePipelineWidth * 2 + VecStorePipelineWidth).map(i =>
92    RegNext(s1_valid(i)) &&
93      !s2_req(i).uop.robIdx.needFlush(RegNext(io.redirect)) &&
94      !s2_req(i).uop.robIdx.needFlush(io.redirect)
95  )
96  val s2_has_exception = s2_req.map(x => ExceptionNO.selectByFu(x.uop.exceptionVec, StaCfg).asUInt.orR)
97
98  val s2_enqueue = Wire(Vec(StorePipelineWidth * 2 + VecStorePipelineWidth, Bool()))
99  for (w <- 0 until StorePipelineWidth * 2 + VecStorePipelineWidth) {
100    s2_enqueue(w) := s2_valid(w) && s2_has_exception(w)
101  }
102
103  when (req_valid && req.uop.robIdx.needFlush(io.redirect)) {
104    req_valid := s2_enqueue.asUInt.orR
105  }.elsewhen (s2_enqueue.asUInt.orR) {
106    req_valid := req_valid || true.B
107  }
108
109  def selectOldest[T <: LsPipelineBundle](valid: Seq[Bool], bits: Seq[T]): (Seq[Bool], Seq[T]) = {
110    assert(valid.length == bits.length)
111    if (valid.length == 0 || valid.length == 1) {
112      (valid, bits)
113    } else if (valid.length == 2) {
114      val res = Seq.fill(2)(Wire(Valid(chiselTypeOf(bits(0)))))
115      for (i <- res.indices) {
116        res(i).valid := valid(i)
117        res(i).bits := bits(i)
118      }
119      val oldest = Mux(valid(0) && valid(1),
120        Mux(isAfter(bits(0).uop.robIdx, bits(1).uop.robIdx) ||
121          (isNotBefore(bits(0).uop.robIdx, bits(1).uop.robIdx) && bits(0).uop.uopIdx > bits(1).uop.uopIdx), res(1), res(0)),
122        Mux(valid(0) && !valid(1), res(0), res(1)))
123      (Seq(oldest.valid), Seq(oldest.bits))
124    } else {
125      val left = selectOldest(valid.take(valid.length / 2), bits.take(bits.length / 2))
126      val right = selectOldest(valid.takeRight(valid.length - (valid.length / 2)), bits.takeRight(bits.length - (bits.length / 2)))
127      selectOldest(left._1 ++ right._1, left._2 ++ right._2)
128    }
129  }
130
131  val reqSel = selectOldest(s2_enqueue, s2_req)
132
133  when (req_valid) {
134    req := Mux(
135      reqSel._1(0) && (isAfter(req.uop.robIdx, reqSel._2(0).uop.robIdx) || (isNotBefore(req.uop.robIdx, reqSel._2(0).uop.robIdx) && req.uop.uopIdx > reqSel._2(0).uop.uopIdx)),
136      reqSel._2(0),
137      req)
138  } .elsewhen (s2_enqueue.asUInt.orR) {
139    req := reqSel._2(0)
140  }
141
142  io.exceptionAddr.vaddr  := req.vaddr
143  io.exceptionAddr.gpaddr := req.gpaddr
144  io.exceptionAddr.vstart := req.uop.vpu.vstart
145  io.exceptionAddr.vl     := req.uop.vpu.vl
146
147  when(req_valid && io.flushFrmMaBuf) {
148    req_valid := false.B
149  }
150}
151
152// Store Queue
153class StoreQueue(implicit p: Parameters) extends XSModule
154  with HasDCacheParameters
155  with HasCircularQueuePtrHelper
156  with HasPerfEvents
157  with HasVLSUParameters {
158  val io = IO(new Bundle() {
159    val hartId = Input(UInt(hartIdLen.W))
160    val enq = new SqEnqIO
161    val brqRedirect = Flipped(ValidIO(new Redirect))
162    val vecFeedback = Vec(VecLoadPipelineWidth, Flipped(ValidIO(new FeedbackToLsqIO)))
163    val storeAddrIn = Vec(StorePipelineWidth, Flipped(Valid(new LsPipelineBundle))) // store addr, data is not included
164    val storeAddrInRe = Vec(StorePipelineWidth, Input(new LsPipelineBundle())) // store more mmio and exception
165    val storeDataIn = Vec(StorePipelineWidth, Flipped(Valid(new MemExuOutput(isVector = true)))) // store data, send to sq from rs
166    val storeMaskIn = Vec(StorePipelineWidth, Flipped(Valid(new StoreMaskBundle))) // store mask, send to sq from rs
167    val sbuffer = Vec(EnsbufferWidth, Decoupled(new DCacheWordReqWithVaddrAndPfFlag)) // write committed store to sbuffer
168    val sbufferVecDifftestInfo = Vec(EnsbufferWidth, Decoupled(new DynInst)) // The vector store difftest needs is, write committed store to sbuffer
169    val uncacheOutstanding = Input(Bool())
170    val cmoOpReq  = DecoupledIO(new CMOReq)
171    val cmoOpResp = Flipped(DecoupledIO(new CMOResp))
172    val mmioStout = DecoupledIO(new MemExuOutput) // writeback uncached store
173    val vecmmioStout = DecoupledIO(new MemExuOutput(isVector = true))
174    val forward = Vec(LoadPipelineWidth, Flipped(new PipeLoadForwardQueryIO))
175    // TODO: scommit is only for scalar store
176    val rob = Flipped(new RobLsqIO)
177    val uncache = new UncacheWordIO
178    // val refill = Flipped(Valid(new DCacheLineReq ))
179    val exceptionAddr = new ExceptionAddrIO
180    val flushSbuffer = new SbufferFlushBundle
181    val sqEmpty = Output(Bool())
182    val stAddrReadySqPtr = Output(new SqPtr)
183    val stAddrReadyVec = Output(Vec(StoreQueueSize, Bool()))
184    val stDataReadySqPtr = Output(new SqPtr)
185    val stDataReadyVec = Output(Vec(StoreQueueSize, Bool()))
186    val stIssuePtr = Output(new SqPtr)
187    val sqDeqPtr = Output(new SqPtr)
188    val sqFull = Output(Bool())
189    val sqCancelCnt = Output(UInt(log2Up(StoreQueueSize + 1).W))
190    val sqDeq = Output(UInt(log2Ceil(EnsbufferWidth + 1).W))
191    val force_write = Output(Bool())
192    val maControl   = Flipped(new StoreMaBufToSqControlIO)
193  })
194
195  println("StoreQueue: size:" + StoreQueueSize)
196
197  // data modules
198  val uop = Reg(Vec(StoreQueueSize, new DynInst))
199  // val data = Reg(Vec(StoreQueueSize, new LsqEntry))
200  val dataModule = Module(new SQDataModule(
201    numEntries = StoreQueueSize,
202    numRead = EnsbufferWidth,
203    numWrite = StorePipelineWidth,
204    numForward = LoadPipelineWidth
205  ))
206  dataModule.io := DontCare
207  val paddrModule = Module(new SQAddrModule(
208    dataWidth = PAddrBits,
209    numEntries = StoreQueueSize,
210    numRead = EnsbufferWidth,
211    numWrite = StorePipelineWidth,
212    numForward = LoadPipelineWidth
213  ))
214  paddrModule.io := DontCare
215  val vaddrModule = Module(new SQAddrModule(
216    dataWidth = VAddrBits,
217    numEntries = StoreQueueSize,
218    numRead = EnsbufferWidth, // sbuffer; badvaddr will be sent from exceptionBuffer
219    numWrite = StorePipelineWidth,
220    numForward = LoadPipelineWidth
221  ))
222  vaddrModule.io := DontCare
223  val dataBuffer = Module(new DatamoduleResultBuffer(new DataBufferEntry))
224  val difftestBuffer = if (env.EnableDifftest) Some(Module(new DatamoduleResultBuffer(new DynInst))) else None
225  val exceptionBuffer = Module(new StoreExceptionBuffer)
226  exceptionBuffer.io.redirect := io.brqRedirect
227  exceptionBuffer.io.exceptionAddr.isStore := DontCare
228  // vlsu exception!
229  for (i <- 0 until VecStorePipelineWidth) {
230    exceptionBuffer.io.storeAddrIn(StorePipelineWidth * 2 + i).valid               := io.vecFeedback(i).valid && io.vecFeedback(i).bits.feedback(VecFeedbacks.FLUSH) // have exception
231    exceptionBuffer.io.storeAddrIn(StorePipelineWidth * 2 + i).bits                := DontCare
232    exceptionBuffer.io.storeAddrIn(StorePipelineWidth * 2 + i).bits.vaddr          := io.vecFeedback(i).bits.vaddr
233    exceptionBuffer.io.storeAddrIn(StorePipelineWidth * 2 + i).bits.uop.uopIdx     := io.vecFeedback(i).bits.uopidx
234    exceptionBuffer.io.storeAddrIn(StorePipelineWidth * 2 + i).bits.uop.robIdx     := io.vecFeedback(i).bits.robidx
235    exceptionBuffer.io.storeAddrIn(StorePipelineWidth * 2 + i).bits.uop.vpu.vstart := io.vecFeedback(i).bits.vstart
236    exceptionBuffer.io.storeAddrIn(StorePipelineWidth * 2 + i).bits.uop.vpu.vl     := io.vecFeedback(i).bits.vl
237    exceptionBuffer.io.storeAddrIn(StorePipelineWidth * 2 + i).bits.uop.exceptionVec     := io.vecFeedback(i).bits.exceptionVec
238  }
239
240
241  val debug_paddr = Reg(Vec(StoreQueueSize, UInt((PAddrBits).W)))
242  val debug_vaddr = Reg(Vec(StoreQueueSize, UInt((VAddrBits).W)))
243  val debug_data = Reg(Vec(StoreQueueSize, UInt((XLEN).W)))
244
245  // state & misc
246  val allocated = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // sq entry has been allocated
247  val addrvalid = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // non-mmio addr is valid
248  val datavalid = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // non-mmio data is valid
249  val allvalid  = VecInit((0 until StoreQueueSize).map(i => addrvalid(i) && datavalid(i))) // non-mmio data & addr is valid
250  val committed = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // inst has been committed by rob
251  val unaligned = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // unaligned store
252  val pending = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // mmio pending: inst is an mmio inst, it will not be executed until it reachs the end of rob
253  val mmio = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // mmio: inst is an mmio inst
254  val atomic = RegInit(VecInit(List.fill(StoreQueueSize)(false.B)))
255  val prefetch = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // need prefetch when committing this store to sbuffer?
256  val isVec = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // vector store instruction
257  //val vec_lastuop = Reg(Vec(StoreQueueSize, Bool())) // last uop of vector store instruction
258  val vecMbCommit = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // vector store committed from merge buffer to rob
259  val vecDataValid = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // vector store need write to sbuffer
260  val hasException = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // store has exception, should deq but not write sbuffer
261  val waitStoreS2 = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // wait for mmio and exception result until store_s2
262  // val vec_robCommit = Reg(Vec(StoreQueueSize, Bool())) // vector store committed by rob
263  // val vec_secondInv = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // Vector unit-stride, second entry is invalid
264  val vecExceptionFlag = RegInit(0.U.asTypeOf(Valid(new DynInst)))
265
266  // ptr
267  val enqPtrExt = RegInit(VecInit((0 until io.enq.req.length).map(_.U.asTypeOf(new SqPtr))))
268  val rdataPtrExt = RegInit(VecInit((0 until EnsbufferWidth).map(_.U.asTypeOf(new SqPtr))))
269  val deqPtrExt = RegInit(VecInit((0 until EnsbufferWidth).map(_.U.asTypeOf(new SqPtr))))
270  val cmtPtrExt = RegInit(VecInit((0 until CommitWidth).map(_.U.asTypeOf(new SqPtr))))
271  val addrReadyPtrExt = RegInit(0.U.asTypeOf(new SqPtr))
272  val dataReadyPtrExt = RegInit(0.U.asTypeOf(new SqPtr))
273
274  val enqPtr = enqPtrExt(0).value
275  val deqPtr = deqPtrExt(0).value
276  val cmtPtr = cmtPtrExt(0).value
277
278  val validCount = distanceBetween(enqPtrExt(0), deqPtrExt(0))
279  val allowEnqueue = validCount <= (StoreQueueSize - LSQStEnqWidth).U
280
281  val deqMask = UIntToMask(deqPtr, StoreQueueSize)
282  val enqMask = UIntToMask(enqPtr, StoreQueueSize)
283
284  val commitCount = WireInit(0.U(log2Ceil(CommitWidth + 1).W))
285  val scommit = GatedRegNext(io.rob.scommit)
286
287  // RegNext misalign control for better timing
288  val doMisalignSt = GatedValidRegNext((rdataPtrExt(0).value === deqPtr) && (cmtPtr === deqPtr) && allocated(deqPtr) && datavalid(deqPtr) && unaligned(deqPtr) && !isVec(deqPtr))
289  val finishMisalignSt = GatedValidRegNext(doMisalignSt && io.maControl.control.removeSq && !io.maControl.control.hasException)
290  val misalignBlock = doMisalignSt && !finishMisalignSt
291
292  // store miss align info
293  io.maControl.storeInfo.data := dataModule.io.rdata(0).data
294  io.maControl.storeInfo.dataReady := doMisalignSt
295  io.maControl.storeInfo.completeSbTrans := doMisalignSt && dataBuffer.io.enq(0).fire
296
297  // store can be committed by ROB
298  io.rob.mmio := DontCare
299  io.rob.uop := DontCare
300
301  // Read dataModule
302  assert(EnsbufferWidth <= 2)
303  // rdataPtrExtNext and rdataPtrExtNext+1 entry will be read from dataModule
304  val rdataPtrExtNext = Wire(Vec(EnsbufferWidth, new SqPtr))
305  rdataPtrExtNext := WireInit(Mux(dataBuffer.io.enq(1).fire,
306    VecInit(rdataPtrExt.map(_ + 2.U)),
307    Mux(dataBuffer.io.enq(0).fire || io.mmioStout.fire || io.vecmmioStout.fire,
308      VecInit(rdataPtrExt.map(_ + 1.U)),
309      rdataPtrExt
310    )
311  ))
312
313  // deqPtrExtNext traces which inst is about to leave store queue
314  //
315  // io.sbuffer(i).fire is RegNexted, as sbuffer data write takes 2 cycles.
316  // Before data write finish, sbuffer is unable to provide store to load
317  // forward data. As an workaround, deqPtrExt and allocated flag update
318  // is delayed so that load can get the right data from store queue.
319  //
320  // Modify deqPtrExtNext and io.sqDeq with care!
321  val deqPtrExtNext = Wire(Vec(EnsbufferWidth, new SqPtr))
322  deqPtrExtNext := Mux(RegNext(io.sbuffer(1).fire),
323    VecInit(deqPtrExt.map(_ + 2.U)),
324    Mux((RegNext(io.sbuffer(0).fire)) || io.mmioStout.fire || io.vecmmioStout.fire,
325      VecInit(deqPtrExt.map(_ + 1.U)),
326      deqPtrExt
327    )
328  )
329
330  io.sqDeq := RegNext(Mux(RegNext(io.sbuffer(1).fire && !misalignBlock), 2.U,
331    Mux((RegNext(io.sbuffer(0).fire && !misalignBlock)) || io.mmioStout.fire || io.vecmmioStout.fire || finishMisalignSt, 1.U, 0.U)
332  ))
333  assert(!RegNext(RegNext(io.sbuffer(0).fire) && (io.mmioStout.fire || io.vecmmioStout.fire)))
334
335  for (i <- 0 until EnsbufferWidth) {
336    dataModule.io.raddr(i) := rdataPtrExtNext(i).value
337    paddrModule.io.raddr(i) := rdataPtrExtNext(i).value
338    vaddrModule.io.raddr(i) := rdataPtrExtNext(i).value
339  }
340
341  /**
342    * Enqueue at dispatch
343    *
344    * Currently, StoreQueue only allows enqueue when #emptyEntries > EnqWidth
345    */
346  io.enq.canAccept := allowEnqueue
347  val canEnqueue = io.enq.req.map(_.valid)
348  val enqCancel = io.enq.req.map(_.bits.robIdx.needFlush(io.brqRedirect))
349  val vStoreFlow = io.enq.req.map(_.bits.numLsElem)
350  val validVStoreFlow = vStoreFlow.zipWithIndex.map{case (vLoadFlowNumItem, index) => Mux(!RegNext(io.brqRedirect.valid) && io.enq.canAccept && io.enq.lqCanAccept && canEnqueue(index), vLoadFlowNumItem, 0.U)}
351  val validVStoreOffset = vStoreFlow.zip(io.enq.needAlloc).map{case (flow, needAllocItem) => Mux(needAllocItem, flow, 0.U)}
352  val validVStoreOffsetRShift = 0.U +: validVStoreOffset.take(vStoreFlow.length - 1)
353
354  for (i <- 0 until io.enq.req.length) {
355    val sqIdx = enqPtrExt(0) + validVStoreOffsetRShift.take(i + 1).reduce(_ + _)
356    val index = io.enq.req(i).bits.sqIdx
357    val enqInstr = io.enq.req(i).bits.instr.asTypeOf(new XSInstBitFields)
358    when (canEnqueue(i) && !enqCancel(i)) {
359      // The maximum 'numLsElem' number that can be emitted per dispatch port is:
360      //    16 2 2 2 2 2.
361      // Therefore, VecMemLSQEnqIteratorNumberSeq = Seq(16, 2, 2, 2, 2, 2)
362      for (j <- 0 until VecMemLSQEnqIteratorNumberSeq(i)) {
363        when (j.U < validVStoreOffset(i)) {
364          uop((index + j.U).value) := io.enq.req(i).bits
365          // NOTE: the index will be used when replay
366          uop((index + j.U).value).sqIdx := sqIdx + j.U
367          allocated((index + j.U).value) := true.B
368          datavalid((index + j.U).value) := false.B
369          addrvalid((index + j.U).value) := false.B
370          unaligned((index + j.U).value) := false.B
371          committed((index + j.U).value) := false.B
372          pending((index + j.U).value) := false.B
373          prefetch((index + j.U).value) := false.B
374          mmio((index + j.U).value) := false.B
375          isVec((index + j.U).value) := enqInstr.isVecStore // check vector store by the encoding of inst
376          vecMbCommit((index + j.U).value) := false.B
377          vecDataValid((index + j.U).value) := false.B
378          hasException((index + j.U).value) := false.B
379          waitStoreS2((index + j.U).value) := true.B
380          XSError(!io.enq.canAccept || !io.enq.lqCanAccept, s"must accept $i\n")
381          XSError(index.value =/= sqIdx.value, s"must be the same entry $i\n")
382        }
383      }
384    }
385    io.enq.resp(i) := sqIdx
386  }
387  XSDebug(p"(ready, valid): ${io.enq.canAccept}, ${Binary(Cat(io.enq.req.map(_.valid)))}\n")
388
389  /**
390    * Update addr/dataReadyPtr when issue from rs
391    */
392  // update issuePtr
393  val IssuePtrMoveStride = 4
394  require(IssuePtrMoveStride >= 2)
395
396  val addrReadyLookupVec = (0 until IssuePtrMoveStride).map(addrReadyPtrExt + _.U)
397  val addrReadyLookup = addrReadyLookupVec.map(ptr => allocated(ptr.value) &&
398   (mmio(ptr.value) || addrvalid(ptr.value) || vecMbCommit(ptr.value))
399    && ptr =/= enqPtrExt(0))
400  val nextAddrReadyPtr = addrReadyPtrExt + PriorityEncoder(VecInit(addrReadyLookup.map(!_) :+ true.B))
401  addrReadyPtrExt := nextAddrReadyPtr
402
403  val stAddrReadyVecReg = Wire(Vec(StoreQueueSize, Bool()))
404  (0 until StoreQueueSize).map(i => {
405    stAddrReadyVecReg(i) := allocated(i) && (mmio(i) || addrvalid(i) || (isVec(i) && vecMbCommit(i)))
406  })
407  io.stAddrReadyVec := GatedValidRegNext(stAddrReadyVecReg)
408
409  when (io.brqRedirect.valid) {
410    addrReadyPtrExt := Mux(
411      isAfter(cmtPtrExt(0), deqPtrExt(0)),
412      cmtPtrExt(0),
413      deqPtrExtNext(0) // for mmio insts, deqPtr may be ahead of cmtPtr
414    )
415  }
416
417  io.stAddrReadySqPtr := addrReadyPtrExt
418
419  // update
420  val dataReadyLookupVec = (0 until IssuePtrMoveStride).map(dataReadyPtrExt + _.U)
421  val dataReadyLookup = dataReadyLookupVec.map(ptr => allocated(ptr.value) &&
422   (mmio(ptr.value) || datavalid(ptr.value) || vecMbCommit(ptr.value))
423    && ptr =/= enqPtrExt(0))
424  val nextDataReadyPtr = dataReadyPtrExt + PriorityEncoder(VecInit(dataReadyLookup.map(!_) :+ true.B))
425  dataReadyPtrExt := nextDataReadyPtr
426
427  val stDataReadyVecReg = Wire(Vec(StoreQueueSize, Bool()))
428  (0 until StoreQueueSize).map(i => {
429    stDataReadyVecReg(i) := allocated(i) && (mmio(i) || datavalid(i) || (isVec(i) && vecMbCommit(i)))
430  })
431  io.stDataReadyVec := GatedValidRegNext(stDataReadyVecReg)
432
433  when (io.brqRedirect.valid) {
434    dataReadyPtrExt := Mux(
435      isAfter(cmtPtrExt(0), deqPtrExt(0)),
436      cmtPtrExt(0),
437      deqPtrExtNext(0) // for mmio insts, deqPtr may be ahead of cmtPtr
438    )
439  }
440
441  io.stDataReadySqPtr := dataReadyPtrExt
442  io.stIssuePtr := enqPtrExt(0)
443  io.sqDeqPtr := deqPtrExt(0)
444
445  /**
446    * Writeback store from store units
447    *
448    * Most store instructions writeback to regfile in the previous cycle.
449    * However,
450    *   (1) For an mmio instruction with exceptions, we need to mark it as addrvalid
451    * (in this way it will trigger an exception when it reaches ROB's head)
452    * instead of pending to avoid sending them to lower level.
453    *   (2) For an mmio instruction without exceptions, we mark it as pending.
454    * When the instruction reaches ROB's head, StoreQueue sends it to uncache channel.
455    * Upon receiving the response, StoreQueue writes back the instruction
456    * through arbiter with store units. It will later commit as normal.
457    */
458
459  // Write addr to sq
460  for (i <- 0 until StorePipelineWidth) {
461    paddrModule.io.wen(i) := false.B
462    vaddrModule.io.wen(i) := false.B
463    dataModule.io.mask.wen(i) := false.B
464    val stWbIndex = io.storeAddrIn(i).bits.uop.sqIdx.value
465    exceptionBuffer.io.storeAddrIn(i).valid := io.storeAddrIn(i).fire && !io.storeAddrIn(i).bits.miss && !io.storeAddrIn(i).bits.isvec
466    exceptionBuffer.io.storeAddrIn(i).bits := io.storeAddrIn(i).bits
467    // will re-enter exceptionbuffer at store_s2
468    exceptionBuffer.io.storeAddrIn(StorePipelineWidth + i).valid := false.B
469    exceptionBuffer.io.storeAddrIn(StorePipelineWidth + i).bits := 0.U.asTypeOf(new LsPipelineBundle)
470
471    when (io.storeAddrIn(i).fire) {
472      val addr_valid = !io.storeAddrIn(i).bits.miss
473      addrvalid(stWbIndex) := addr_valid //!io.storeAddrIn(i).bits.mmio
474      // pending(stWbIndex) := io.storeAddrIn(i).bits.mmio
475      unaligned(stWbIndex) := io.storeAddrIn(i).bits.uop.exceptionVec(storeAddrMisaligned)
476
477      paddrModule.io.waddr(i) := stWbIndex
478      paddrModule.io.wdata(i) := io.storeAddrIn(i).bits.paddr
479      paddrModule.io.wmask(i) := io.storeAddrIn(i).bits.mask
480      paddrModule.io.wlineflag(i) := io.storeAddrIn(i).bits.wlineflag
481      paddrModule.io.wen(i) := true.B
482
483      vaddrModule.io.waddr(i) := stWbIndex
484      vaddrModule.io.wdata(i) := io.storeAddrIn(i).bits.vaddr
485      vaddrModule.io.wmask(i) := io.storeAddrIn(i).bits.mask
486      vaddrModule.io.wlineflag(i) := io.storeAddrIn(i).bits.wlineflag
487      vaddrModule.io.wen(i) := true.B
488
489      debug_paddr(paddrModule.io.waddr(i)) := paddrModule.io.wdata(i)
490
491      // mmio(stWbIndex) := io.storeAddrIn(i).bits.mmio
492
493      uop(stWbIndex) := io.storeAddrIn(i).bits.uop
494      uop(stWbIndex).debugInfo := io.storeAddrIn(i).bits.uop.debugInfo
495
496      vecDataValid(stWbIndex) := io.storeAddrIn(i).bits.isvec
497
498      XSInfo("store addr write to sq idx %d pc 0x%x miss:%d vaddr %x paddr %x mmio %x isvec %x\n",
499        io.storeAddrIn(i).bits.uop.sqIdx.value,
500        io.storeAddrIn(i).bits.uop.pc,
501        io.storeAddrIn(i).bits.miss,
502        io.storeAddrIn(i).bits.vaddr,
503        io.storeAddrIn(i).bits.paddr,
504        io.storeAddrIn(i).bits.mmio,
505        io.storeAddrIn(i).bits.isvec
506      )
507    }
508
509    // re-replinish mmio, for pma/pmp will get mmio one cycle later
510    val storeAddrInFireReg = RegNext(io.storeAddrIn(i).fire && !io.storeAddrIn(i).bits.miss)
511    //val stWbIndexReg = RegNext(stWbIndex)
512    val stWbIndexReg = RegEnable(stWbIndex, io.storeAddrIn(i).fire)
513    when (storeAddrInFireReg) {
514      pending(stWbIndexReg) := io.storeAddrInRe(i).mmio
515      mmio(stWbIndexReg) := io.storeAddrInRe(i).mmio
516      atomic(stWbIndexReg) := io.storeAddrInRe(i).atomic
517      hasException(stWbIndexReg) := ExceptionNO.selectByFu(uop(stWbIndexReg).exceptionVec, StaCfg).asUInt.orR || io.storeAddrInRe(i).af
518      waitStoreS2(stWbIndexReg) := false.B
519    }
520    // dcache miss info (one cycle later than storeIn)
521    // if dcache report a miss in sta pipeline, this store will trigger a prefetch when committing to sbuffer (if EnableAtCommitMissTrigger)
522    when (storeAddrInFireReg) {
523      prefetch(stWbIndexReg) := io.storeAddrInRe(i).miss
524    }
525    // enter exceptionbuffer again
526    when (storeAddrInFireReg) {
527      exceptionBuffer.io.storeAddrIn(StorePipelineWidth + i).valid := io.storeAddrInRe(i).af
528      exceptionBuffer.io.storeAddrIn(StorePipelineWidth + i).bits := RegEnable(io.storeAddrIn(i).bits, io.storeAddrIn(i).fire && !io.storeAddrIn(i).bits.miss)
529      exceptionBuffer.io.storeAddrIn(StorePipelineWidth + i).bits.uop.exceptionVec(storeAccessFault) := io.storeAddrInRe(i).af
530    }
531
532    when(vaddrModule.io.wen(i)){
533      debug_vaddr(vaddrModule.io.waddr(i)) := vaddrModule.io.wdata(i)
534    }
535  }
536
537  // Write data to sq
538  // Now store data pipeline is actually 2 stages
539  for (i <- 0 until StorePipelineWidth) {
540    dataModule.io.data.wen(i) := false.B
541    val stWbIndex = io.storeDataIn(i).bits.uop.sqIdx.value
542    val isVec     = FuType.isVStore(io.storeDataIn(i).bits.uop.fuType)
543    // sq data write takes 2 cycles:
544    // sq data write s0
545    when (io.storeDataIn(i).fire) {
546      // send data write req to data module
547      dataModule.io.data.waddr(i) := stWbIndex
548      dataModule.io.data.wdata(i) := Mux(io.storeDataIn(i).bits.uop.fuOpType === LSUOpType.cbo_zero,
549        0.U,
550        Mux(isVec,
551          io.storeDataIn(i).bits.data,
552          genVWdata(io.storeDataIn(i).bits.data, io.storeDataIn(i).bits.uop.fuOpType(2,0)))
553      )
554      dataModule.io.data.wen(i) := true.B
555
556      debug_data(dataModule.io.data.waddr(i)) := dataModule.io.data.wdata(i)
557
558      XSInfo("store data write to sq idx %d pc 0x%x data %x -> %x\n",
559        io.storeDataIn(i).bits.uop.sqIdx.value,
560        io.storeDataIn(i).bits.uop.pc,
561        io.storeDataIn(i).bits.data,
562        dataModule.io.data.wdata(i)
563      )
564    }
565    // sq data write s1
566    when (
567      RegNext(io.storeDataIn(i).fire)
568      // && !RegNext(io.storeDataIn(i).bits.uop).robIdx.needFlush(io.brqRedirect)
569    ) {
570      datavalid(RegEnable(stWbIndex, io.storeDataIn(i).fire)) := true.B
571    }
572  }
573
574  // Write mask to sq
575  for (i <- 0 until StorePipelineWidth) {
576    // sq mask write s0
577    when (io.storeMaskIn(i).fire) {
578      // send data write req to data module
579      dataModule.io.mask.waddr(i) := io.storeMaskIn(i).bits.sqIdx.value
580      dataModule.io.mask.wdata(i) := io.storeMaskIn(i).bits.mask
581      dataModule.io.mask.wen(i) := true.B
582    }
583  }
584
585  /**
586    * load forward query
587    *
588    * Check store queue for instructions that is older than the load.
589    * The response will be valid at the next cycle after req.
590    */
591  // check over all lq entries and forward data from the first matched store
592  for (i <- 0 until LoadPipelineWidth) {
593    // Compare deqPtr (deqPtr) and forward.sqIdx, we have two cases:
594    // (1) if they have the same flag, we need to check range(tail, sqIdx)
595    // (2) if they have different flags, we need to check range(tail, VirtualLoadQueueSize) and range(0, sqIdx)
596    // Forward1: Mux(same_flag, range(tail, sqIdx), range(tail, VirtualLoadQueueSize))
597    // Forward2: Mux(same_flag, 0.U,                   range(0, sqIdx)    )
598    // i.e. forward1 is the target entries with the same flag bits and forward2 otherwise
599    val differentFlag = deqPtrExt(0).flag =/= io.forward(i).sqIdx.flag
600    val forwardMask = io.forward(i).sqIdxMask
601    // all addrvalid terms need to be checked
602    // Real Vaild: all scalar stores, and vector store with (!inactive && !secondInvalid)
603    val addrRealValidVec = WireInit(VecInit((0 until StoreQueueSize).map(j => addrvalid(j) && allocated(j))))
604    // vector store will consider all inactive || secondInvalid flows as valid
605    val addrValidVec = WireInit(VecInit((0 until StoreQueueSize).map(j => addrvalid(j) && allocated(j))))
606    val dataValidVec = WireInit(VecInit((0 until StoreQueueSize).map(j => datavalid(j))))
607    val allValidVec  = WireInit(VecInit((0 until StoreQueueSize).map(j => addrvalid(j) && datavalid(j) && allocated(j))))
608
609    val lfstEnable = Constantin.createRecord("LFSTEnable", LFSTEnable)
610    val storeSetHitVec = Mux(lfstEnable,
611      WireInit(VecInit((0 until StoreQueueSize).map(j => io.forward(i).uop.loadWaitBit && uop(j).robIdx === io.forward(i).uop.waitForRobIdx))),
612      WireInit(VecInit((0 until StoreQueueSize).map(j => uop(j).storeSetHit && uop(j).ssid === io.forward(i).uop.ssid)))
613    )
614
615    val forwardMask1 = Mux(differentFlag, ~deqMask, deqMask ^ forwardMask)
616    val forwardMask2 = Mux(differentFlag, forwardMask, 0.U(StoreQueueSize.W))
617    val canForward1 = forwardMask1 & allValidVec.asUInt
618    val canForward2 = forwardMask2 & allValidVec.asUInt
619    val needForward = Mux(differentFlag, ~deqMask | forwardMask, deqMask ^ forwardMask)
620
621    XSDebug(p"$i f1 ${Binary(canForward1)} f2 ${Binary(canForward2)} " +
622      p"sqIdx ${io.forward(i).sqIdx} pa ${Hexadecimal(io.forward(i).paddr)}\n"
623    )
624
625    // do real fwd query (cam lookup in load_s1)
626    dataModule.io.needForward(i)(0) := canForward1 & vaddrModule.io.forwardMmask(i).asUInt
627    dataModule.io.needForward(i)(1) := canForward2 & vaddrModule.io.forwardMmask(i).asUInt
628
629    vaddrModule.io.forwardMdata(i) := io.forward(i).vaddr
630    vaddrModule.io.forwardDataMask(i) := io.forward(i).mask
631    paddrModule.io.forwardMdata(i) := io.forward(i).paddr
632    paddrModule.io.forwardDataMask(i) := io.forward(i).mask
633
634    // vaddr cam result does not equal to paddr cam result
635    // replay needed
636    // val vpmaskNotEqual = ((paddrModule.io.forwardMmask(i).asUInt ^ vaddrModule.io.forwardMmask(i).asUInt) & needForward) =/= 0.U
637    // val vaddrMatchFailed = vpmaskNotEqual && io.forward(i).valid
638    val vpmaskNotEqual = (
639      (RegEnable(paddrModule.io.forwardMmask(i).asUInt, io.forward(i).valid) ^ RegEnable(vaddrModule.io.forwardMmask(i).asUInt, io.forward(i).valid)) &
640      RegNext(needForward) &
641      GatedRegNext(addrRealValidVec.asUInt)
642    ) =/= 0.U
643    val vaddrMatchFailed = vpmaskNotEqual && RegNext(io.forward(i).valid)
644    when (vaddrMatchFailed) {
645      XSInfo("vaddrMatchFailed: pc %x pmask %x vmask %x\n",
646        RegEnable(io.forward(i).uop.pc, io.forward(i).valid),
647        RegEnable(needForward & paddrModule.io.forwardMmask(i).asUInt, io.forward(i).valid),
648        RegEnable(needForward & vaddrModule.io.forwardMmask(i).asUInt, io.forward(i).valid)
649      );
650    }
651    XSPerfAccumulate("vaddr_match_failed", vpmaskNotEqual)
652    XSPerfAccumulate("vaddr_match_really_failed", vaddrMatchFailed)
653
654    // Fast forward mask will be generated immediately (load_s1)
655    io.forward(i).forwardMaskFast := dataModule.io.forwardMaskFast(i)
656
657    // Forward result will be generated 1 cycle later (load_s2)
658    io.forward(i).forwardMask := dataModule.io.forwardMask(i)
659    io.forward(i).forwardData := dataModule.io.forwardData(i)
660    // If addr match, data not ready, mark it as dataInvalid
661    // load_s1: generate dataInvalid in load_s1 to set fastUop
662    val dataInvalidMask1 = (addrValidVec.asUInt & ~dataValidVec.asUInt & vaddrModule.io.forwardMmask(i).asUInt & forwardMask1.asUInt)
663    val dataInvalidMask2 = (addrValidVec.asUInt & ~dataValidVec.asUInt & vaddrModule.io.forwardMmask(i).asUInt & forwardMask2.asUInt)
664    val dataInvalidMask = dataInvalidMask1 | dataInvalidMask2
665    io.forward(i).dataInvalidFast := dataInvalidMask.orR
666
667    // make chisel happy
668    val dataInvalidMask1Reg = Wire(UInt(StoreQueueSize.W))
669    dataInvalidMask1Reg := RegNext(dataInvalidMask1)
670    // make chisel happy
671    val dataInvalidMask2Reg = Wire(UInt(StoreQueueSize.W))
672    dataInvalidMask2Reg := RegNext(dataInvalidMask2)
673    val dataInvalidMaskReg = dataInvalidMask1Reg | dataInvalidMask2Reg
674
675    // If SSID match, address not ready, mark it as addrInvalid
676    // load_s2: generate addrInvalid
677    val addrInvalidMask1 = (~addrValidVec.asUInt & storeSetHitVec.asUInt & forwardMask1.asUInt)
678    val addrInvalidMask2 = (~addrValidVec.asUInt & storeSetHitVec.asUInt & forwardMask2.asUInt)
679    // make chisel happy
680    val addrInvalidMask1Reg = Wire(UInt(StoreQueueSize.W))
681    addrInvalidMask1Reg := RegNext(addrInvalidMask1)
682    // make chisel happy
683    val addrInvalidMask2Reg = Wire(UInt(StoreQueueSize.W))
684    addrInvalidMask2Reg := RegNext(addrInvalidMask2)
685    val addrInvalidMaskReg = addrInvalidMask1Reg | addrInvalidMask2Reg
686
687    // load_s2
688    io.forward(i).dataInvalid := RegNext(io.forward(i).dataInvalidFast)
689    // check if vaddr forward mismatched
690    io.forward(i).matchInvalid := vaddrMatchFailed
691
692    // data invalid sq index
693    // check whether false fail
694    // check flag
695    val s2_differentFlag = RegNext(differentFlag)
696    val s2_enqPtrExt = RegNext(enqPtrExt(0))
697    val s2_deqPtrExt = RegNext(deqPtrExt(0))
698
699    // addr invalid sq index
700    // make chisel happy
701    val addrInvalidMaskRegWire = Wire(UInt(StoreQueueSize.W))
702    addrInvalidMaskRegWire := addrInvalidMaskReg
703    val addrInvalidFlag = addrInvalidMaskRegWire.orR
704    val hasInvalidAddr = (~addrValidVec.asUInt & needForward).orR
705
706    val addrInvalidSqIdx1 = OHToUInt(Reverse(PriorityEncoderOH(Reverse(addrInvalidMask1Reg))))
707    val addrInvalidSqIdx2 = OHToUInt(Reverse(PriorityEncoderOH(Reverse(addrInvalidMask2Reg))))
708    val addrInvalidSqIdx = Mux(addrInvalidMask2Reg.orR, addrInvalidSqIdx2, addrInvalidSqIdx1)
709
710    // store-set content management
711    //                +-----------------------+
712    //                | Search a SSID for the |
713    //                |    load operation     |
714    //                +-----------------------+
715    //                           |
716    //                           V
717    //                 +-------------------+
718    //                 | load wait strict? |
719    //                 +-------------------+
720    //                           |
721    //                           V
722    //               +----------------------+
723    //            Set|                      |Clean
724    //               V                      V
725    //  +------------------------+   +------------------------------+
726    //  | Waiting for all older  |   | Wait until the corresponding |
727    //  |   stores operations    |   | older store operations       |
728    //  +------------------------+   +------------------------------+
729
730
731
732    when (RegEnable(io.forward(i).uop.loadWaitStrict, io.forward(i).valid)) {
733      io.forward(i).addrInvalidSqIdx := RegEnable((io.forward(i).uop.sqIdx - 1.U), io.forward(i).valid)
734    } .elsewhen (addrInvalidFlag) {
735      io.forward(i).addrInvalidSqIdx.flag := Mux(!s2_differentFlag || addrInvalidSqIdx >= s2_deqPtrExt.value, s2_deqPtrExt.flag, s2_enqPtrExt.flag)
736      io.forward(i).addrInvalidSqIdx.value := addrInvalidSqIdx
737    } .otherwise {
738      // may be store inst has been written to sbuffer already.
739      io.forward(i).addrInvalidSqIdx := RegEnable(io.forward(i).uop.sqIdx, io.forward(i).valid)
740    }
741    io.forward(i).addrInvalid := Mux(RegEnable(io.forward(i).uop.loadWaitStrict, io.forward(i).valid), RegNext(hasInvalidAddr), addrInvalidFlag)
742
743    // data invalid sq index
744    // make chisel happy
745    val dataInvalidMaskRegWire = Wire(UInt(StoreQueueSize.W))
746    dataInvalidMaskRegWire := dataInvalidMaskReg
747    val dataInvalidFlag = dataInvalidMaskRegWire.orR
748
749    val dataInvalidSqIdx1 = OHToUInt(Reverse(PriorityEncoderOH(Reverse(dataInvalidMask1Reg))))
750    val dataInvalidSqIdx2 = OHToUInt(Reverse(PriorityEncoderOH(Reverse(dataInvalidMask2Reg))))
751    val dataInvalidSqIdx = Mux(dataInvalidMask2Reg.orR, dataInvalidSqIdx2, dataInvalidSqIdx1)
752
753    when (dataInvalidFlag) {
754      io.forward(i).dataInvalidSqIdx.flag := Mux(!s2_differentFlag || dataInvalidSqIdx >= s2_deqPtrExt.value, s2_deqPtrExt.flag, s2_enqPtrExt.flag)
755      io.forward(i).dataInvalidSqIdx.value := dataInvalidSqIdx
756    } .otherwise {
757      // may be store inst has been written to sbuffer already.
758      io.forward(i).dataInvalidSqIdx := RegEnable(io.forward(i).uop.sqIdx, io.forward(i).valid)
759    }
760  }
761
762  /**
763    * Memory mapped IO / other uncached operations / CMO
764    *
765    * States:
766    * (1) writeback from store units: mark as pending
767    * (2) when they reach ROB's head, they can be sent to uncache channel
768    * (3) response from uncache channel: mark as datavalidmask.wen
769    * (4) writeback to ROB (and other units): mark as writebacked
770    * (5) ROB commits the instruction: same as normal instructions
771    */
772  //(2) when they reach ROB's head, they can be sent to uncache channel
773  // TODO: CAN NOT deal with vector mmio now!
774  val s_idle :: s_req :: s_resp :: s_wb :: s_wait :: Nil = Enum(5)
775  val uncacheState = RegInit(s_idle)
776  val uncacheUop = Reg(new DynInst)
777  val cboFlushedSb = RegInit(false.B)
778  switch(uncacheState) {
779    is(s_idle) {
780      when(RegNext(io.rob.pendingst && uop(deqPtr).robIdx === io.rob.pendingPtr && pending(deqPtr) && allocated(deqPtr) && datavalid(deqPtr) && addrvalid(deqPtr))) {
781        uncacheState := s_req
782        uncacheUop := uop(deqPtr)
783        cboFlushedSb := false.B
784      }
785    }
786    is(s_req) {
787      when (io.uncache.req.fire) {
788        when (io.uncacheOutstanding) {
789          uncacheState := s_wb
790        } .otherwise {
791          uncacheState := s_resp
792        }
793      }
794    }
795    is(s_resp) {
796      when(io.uncache.resp.fire) {
797        uncacheState := s_wb
798
799        when (io.uncache.resp.bits.nderr) {
800          uop(deqPtr).exceptionVec(storeAccessFault) := true.B
801        }
802      }
803    }
804    is(s_wb) {
805      when (io.mmioStout.fire || io.vecmmioStout.fire) {
806        uncacheState := s_wait
807      }
808    }
809    is(s_wait) {
810      // A MMIO store can always move cmtPtrExt as it must be ROB head
811      when(scommit > 0.U) {
812        uncacheState := s_idle // ready for next mmio
813      }
814    }
815  }
816  io.uncache.req.valid := uncacheState === s_req
817
818  io.uncache.req.bits := DontCare
819  io.uncache.req.bits.cmd  := MemoryOpConstants.M_XWR
820  io.uncache.req.bits.addr := paddrModule.io.rdata(0) // data(deqPtr) -> rdata(0)
821  io.uncache.req.bits.data := shiftDataToLow(paddrModule.io.rdata(0), dataModule.io.rdata(0).data)
822  io.uncache.req.bits.mask := shiftMaskToLow(paddrModule.io.rdata(0), dataModule.io.rdata(0).mask)
823
824  // CBO op type check can be delayed for 1 cycle,
825  // as uncache op will not start in s_idle
826  val cboMmioAddr = get_block_addr(paddrModule.io.rdata(0))
827  val deqCanDoCbo = GatedRegNext(LSUOpType.isCbo(uop(deqPtr).fuOpType) && allocated(deqPtr) && addrvalid(deqPtr))
828  when (deqCanDoCbo) {
829    // disable uncache channel
830    io.uncache.req.valid := false.B
831
832    when (io.cmoOpReq.fire) {
833      uncacheState := s_resp
834    }
835
836    when (uncacheState === s_resp) {
837      when (io.cmoOpResp.fire) {
838        uncacheState := s_wb
839      }
840    }
841  }
842
843  io.cmoOpReq.valid := deqCanDoCbo && cboFlushedSb && (uncacheState === s_req)
844  io.cmoOpReq.bits.opcode  := uop(deqPtr).fuOpType(1, 0)
845  io.cmoOpReq.bits.address := cboMmioAddr
846
847  io.cmoOpResp.ready := deqCanDoCbo && (uncacheState === s_resp)
848
849  io.flushSbuffer.valid := deqCanDoCbo && !cboFlushedSb && (uncacheState === s_req) && !io.flushSbuffer.empty
850
851  when(deqCanDoCbo && !cboFlushedSb && (uncacheState === s_req) && io.flushSbuffer.empty) {
852    cboFlushedSb := true.B
853  }
854
855  io.uncache.req.bits.atomic := atomic(GatedRegNext(rdataPtrExtNext(0)).value)
856
857  when(io.uncache.req.fire){
858    // mmio store should not be committed until uncache req is sent
859    pending(deqPtr) := false.B
860
861    XSDebug(
862      p"uncache req: pc ${Hexadecimal(uop(deqPtr).pc)} " +
863      p"addr ${Hexadecimal(io.uncache.req.bits.addr)} " +
864      p"data ${Hexadecimal(io.uncache.req.bits.data)} " +
865      p"op ${Hexadecimal(io.uncache.req.bits.cmd)} " +
866      p"mask ${Hexadecimal(io.uncache.req.bits.mask)}\n"
867    )
868  }
869
870  // (3) response from uncache channel: mark as datavalid
871  io.uncache.resp.ready := true.B
872
873  // (4) scalar store: writeback to ROB (and other units): mark as writebacked
874  io.mmioStout.valid := uncacheState === s_wb && !isVec(deqPtr)
875  io.mmioStout.bits.uop := uncacheUop
876  io.mmioStout.bits.uop.sqIdx := deqPtrExt(0)
877  io.mmioStout.bits.uop.flushPipe := deqCanDoCbo // flush Pipeline to keep order in CMO
878  io.mmioStout.bits.data := shiftDataToLow(paddrModule.io.rdata(0), dataModule.io.rdata(0).data) // dataModule.io.rdata.read(deqPtr)
879  io.mmioStout.bits.debug.isMMIO := true.B
880  io.mmioStout.bits.debug.paddr := DontCare
881  io.mmioStout.bits.debug.isPerfCnt := false.B
882  io.mmioStout.bits.debug.vaddr := DontCare
883  // Remove MMIO inst from store queue after MMIO request is being sent
884  // That inst will be traced by uncache state machine
885  when (io.mmioStout.fire) {
886    allocated(deqPtr) := false.B
887  }
888
889  // (4) or vector store:
890  // TODO: implement it!
891  io.vecmmioStout := DontCare
892  io.vecmmioStout.valid := false.B //uncacheState === s_wb && isVec(deqPtr)
893  io.vecmmioStout.bits.uop := uop(deqPtr)
894  io.vecmmioStout.bits.uop.sqIdx := deqPtrExt(0)
895  io.vecmmioStout.bits.data := shiftDataToLow(paddrModule.io.rdata(0), dataModule.io.rdata(0).data) // dataModule.io.rdata.read(deqPtr)
896  io.vecmmioStout.bits.debug.isMMIO := true.B
897  io.vecmmioStout.bits.debug.paddr := DontCare
898  io.vecmmioStout.bits.debug.isPerfCnt := false.B
899  io.vecmmioStout.bits.debug.vaddr := DontCare
900  // Remove MMIO inst from store queue after MMIO request is being sent
901  // That inst will be traced by uncache state machine
902  when (io.vecmmioStout.fire) {
903    allocated(deqPtr) := false.B
904  }
905
906  /**
907    * ROB commits store instructions (mark them as committed)
908    *
909    * (1) When store commits, mark it as committed.
910    * (2) They will not be cancelled and can be sent to lower level.
911    */
912  XSError(uncacheState =/= s_idle && uncacheState =/= s_wait && commitCount > 0.U,
913   "should not commit instruction when MMIO has not been finished\n")
914
915  val commitVec = WireInit(VecInit(Seq.fill(CommitWidth)(false.B)))
916  val needCancel = Wire(Vec(StoreQueueSize, Bool())) // Will be assigned later
917  dontTouch(commitVec)
918  // TODO: Deal with vector store mmio
919  for (i <- 0 until CommitWidth) {
920    when (allocated(cmtPtrExt(i).value) && isNotAfter(uop(cmtPtrExt(i).value).robIdx, GatedRegNext(io.rob.pendingPtr)) && !needCancel(cmtPtrExt(i).value) && (!waitStoreS2(cmtPtrExt(i).value) || isVec(cmtPtrExt(i).value))) {
921      // don't commit while doing misalign
922      if (i == 0){
923        // TODO: fixme for vector mmio
924        when ((uncacheState === s_idle) || (uncacheState === s_wait && scommit > 0.U)){
925          when ((isVec(cmtPtrExt(i).value) && vecMbCommit(cmtPtrExt(i).value)) || !isVec(cmtPtrExt(i).value)) {
926            committed(cmtPtrExt(0).value) := Mux(misalignBlock, false.B, true.B)
927            commitVec(0) := Mux(misalignBlock, false.B, true.B)
928          }
929        }
930      } else {
931        when ((isVec(cmtPtrExt(i).value) && vecMbCommit(cmtPtrExt(i).value)) || !isVec(cmtPtrExt(i).value)) {
932          committed(cmtPtrExt(i).value) := Mux(misalignBlock, false.B, commitVec(i - 1) || committed(cmtPtrExt(i).value))
933          commitVec(i) := Mux(misalignBlock, false.B, commitVec(i - 1))
934        }
935      }
936    }
937  }
938
939  commitCount := PopCount(commitVec)
940  cmtPtrExt := cmtPtrExt.map(_ + commitCount)
941
942  // committed stores will not be cancelled and can be sent to lower level.
943  // remove retired insts from sq, add retired store to sbuffer
944
945  // Read data from data module
946  // As store queue grows larger and larger, time needed to read data from data
947  // module keeps growing higher. Now we give data read a whole cycle.
948  for (i <- 0 until EnsbufferWidth) {
949    val ptr = rdataPtrExt(i).value
950    val mmioStall = if(i == 0) mmio(rdataPtrExt(0).value) else (mmio(rdataPtrExt(i).value) || mmio(rdataPtrExt(i-1).value))
951    val exceptionValid = if(i == 0) hasException(rdataPtrExt(0).value) else {
952      hasException(rdataPtrExt(i).value) || (hasException(rdataPtrExt(i-1).value))
953    }
954    val vecNotAllMask = dataModule.io.rdata(i).mask.orR
955    // Vector instructions that prevent triggered exceptions from being written to the 'databuffer'.
956    val vecHasExceptionFlagValid = vecExceptionFlag.valid && isVec(ptr)
957    if (i == 0) {
958      // use dataBuffer write port 0 to writeback missaligned store out
959      dataBuffer.io.enq(i).valid := Mux(
960        doMisalignSt,
961        io.maControl.control.writeSb,
962        allocated(ptr) && committed(ptr) && ((!isVec(ptr) && (allvalid(ptr) || hasException(ptr))) || vecMbCommit(ptr)) && !mmioStall
963      )
964    } else {
965      dataBuffer.io.enq(i).valid := Mux(
966        doMisalignSt,
967        false.B,
968        allocated(ptr) && committed(ptr) && ((!isVec(ptr) && (allvalid(ptr) || hasException(ptr))) || vecMbCommit(ptr)) && !mmioStall
969      )
970    }
971    // Note that store data/addr should both be valid after store's commit
972    assert(!dataBuffer.io.enq(i).valid || allvalid(ptr) || doMisalignSt || (allocated(ptr) && vecMbCommit(ptr)))
973    dataBuffer.io.enq(i).bits.addr     := Mux(doMisalignSt, io.maControl.control.paddr, paddrModule.io.rdata(i))
974    dataBuffer.io.enq(i).bits.vaddr    := Mux(doMisalignSt, io.maControl.control.vaddr, vaddrModule.io.rdata(i))
975    dataBuffer.io.enq(i).bits.data     := Mux(doMisalignSt, io.maControl.control.wdata, dataModule.io.rdata(i).data)
976    dataBuffer.io.enq(i).bits.mask     := Mux(doMisalignSt, io.maControl.control.wmask, dataModule.io.rdata(i).mask)
977    dataBuffer.io.enq(i).bits.wline    := Mux(doMisalignSt, false.B, paddrModule.io.rlineflag(i))
978    dataBuffer.io.enq(i).bits.sqPtr    := rdataPtrExt(i)
979    dataBuffer.io.enq(i).bits.prefetch := Mux(doMisalignSt, false.B, prefetch(ptr))
980    // when scalar has exception, will also not write into sbuffer
981    dataBuffer.io.enq(i).bits.vecValid := Mux(doMisalignSt, true.B, (!isVec(ptr) || (vecDataValid(ptr) && vecNotAllMask)) && !exceptionValid && !vecHasExceptionFlagValid)
982//    dataBuffer.io.enq(i).bits.vecValid := (!isVec(ptr) || vecDataValid(ptr)) && !hasException(ptr)
983  }
984
985  // Send data stored in sbufferReqBitsReg to sbuffer
986  for (i <- 0 until EnsbufferWidth) {
987    io.sbuffer(i).valid := dataBuffer.io.deq(i).valid
988    dataBuffer.io.deq(i).ready := io.sbuffer(i).ready
989    io.sbuffer(i).bits := DontCare
990    io.sbuffer(i).bits.cmd   := MemoryOpConstants.M_XWR
991    io.sbuffer(i).bits.addr  := dataBuffer.io.deq(i).bits.addr
992    io.sbuffer(i).bits.vaddr := dataBuffer.io.deq(i).bits.vaddr
993    io.sbuffer(i).bits.data  := dataBuffer.io.deq(i).bits.data
994    io.sbuffer(i).bits.mask  := dataBuffer.io.deq(i).bits.mask
995    io.sbuffer(i).bits.wline := dataBuffer.io.deq(i).bits.wline && dataBuffer.io.deq(i).bits.vecValid
996    io.sbuffer(i).bits.prefetch := dataBuffer.io.deq(i).bits.prefetch
997    io.sbuffer(i).bits.vecValid := dataBuffer.io.deq(i).bits.vecValid
998    // io.sbuffer(i).fire is RegNexted, as sbuffer data write takes 2 cycles.
999    // Before data write finish, sbuffer is unable to provide store to load
1000    // forward data. As an workaround, deqPtrExt and allocated flag update
1001    // is delayed so that load can get the right data from store queue.
1002    val ptr = dataBuffer.io.deq(i).bits.sqPtr.value
1003    when (RegNext(io.sbuffer(i).fire && !doMisalignSt)) {
1004      allocated(RegEnable(ptr, io.sbuffer(i).fire)) := false.B
1005      XSDebug("sbuffer "+i+" fire: ptr %d\n", ptr)
1006    }
1007  }
1008
1009  // All vector instruction uop normally dequeue, but the Uop after the exception is raised does not write to the 'sbuffer'.
1010  // Flags are used to record whether there are any exceptions when the queue is displayed.
1011  // This is determined each time a write is made to the 'databuffer', prevent subsequent uop of the same instruction from writing to the 'dataBuffer'.
1012  val vecCommitHasException = (0 until EnsbufferWidth).map{ i =>
1013    val ptr                 = rdataPtrExt(i).value
1014    val mmioStall           = if(i == 0) mmio(rdataPtrExt(0).value) else (mmio(rdataPtrExt(i).value) || mmio(rdataPtrExt(i-1).value))
1015    val exceptionVliad      = allocated(ptr) && committed(ptr) && vecMbCommit(ptr) && !mmioStall && isVec(ptr) && vecDataValid(ptr) && hasException(ptr)
1016    (exceptionVliad, uop(ptr))
1017  }
1018
1019  val vecCommitHasExceptionValid      = vecCommitHasException.map(_._1)
1020  val vecCommitHasExceptionUop        = vecCommitHasException.map(_._2)
1021  val vecCommitHasExceptionValidOR    = vecCommitHasExceptionValid.reduce(_ || _)
1022  // Just select the last Uop tah has an exception.
1023  val vecCommitHasExceptionSelectUop  = ParallelPosteriorityMux(vecCommitHasExceptionValid, vecCommitHasExceptionUop)
1024  // If the last Uop with an exception is the LastUop of this instruction, the flag is not set.
1025  val vecCommitLastUop = vecCommitHasExceptionSelectUop.lastUop
1026
1027  val vecExceptionFlagCancel  = (0 until EnsbufferWidth).map{ i =>
1028    val ptr                   = rdataPtrExt(i).value
1029    val mmioStall             = if(i == 0) mmio(rdataPtrExt(0).value) else (mmio(rdataPtrExt(i).value) || mmio(rdataPtrExt(i-1).value))
1030    val vecLastUopCommit      = uop(ptr).lastUop && (uop(ptr).robIdx === vecExceptionFlag.bits.robIdx) &&
1031                                allocated(ptr) && committed(ptr) && vecMbCommit(ptr) && !mmioStall && isVec(ptr) && vecDataValid(ptr)
1032    vecLastUopCommit
1033  }.reduce(_ || _)
1034
1035  // When a LastUop with an exception instruction is commited, clear the flag.
1036  when(!vecExceptionFlag.valid && vecCommitHasExceptionValidOR && !vecCommitLastUop) {
1037    vecExceptionFlag.valid  := true.B
1038    vecExceptionFlag.bits   := vecCommitHasExceptionSelectUop
1039  }.elsewhen(vecExceptionFlag.valid && vecExceptionFlagCancel) {
1040    vecExceptionFlag.valid  := false.B
1041    vecExceptionFlag.bits   := 0.U.asTypeOf(new DynInst)
1042  }
1043
1044  // A dumb defensive code. The flag should not be placed for a long period of time.
1045  // A relatively large timeout period, not have any special meaning.
1046  // If an assert appears and you confirm that it is not a Bug: Increase the timeout or remove the assert.
1047  TimeOutAssert(vecExceptionFlag.valid, 3000, "vecExceptionFlag timeout, Plase check for bugs or add timeouts.")
1048
1049  // Initialize when unenabled difftest.
1050  for (i <- 0 until EnsbufferWidth) {
1051    io.sbufferVecDifftestInfo(i) := DontCare
1052  }
1053  // Consistent with the logic above.
1054  // Only the vector store difftest required signal is separated from the rtl code.
1055  if (env.EnableDifftest) {
1056    for (i <- 0 until EnsbufferWidth) {
1057      val ptr = rdataPtrExt(i).value
1058      val mmioStall = if(i == 0) mmio(rdataPtrExt(0).value) else (mmio(rdataPtrExt(i).value) || mmio(rdataPtrExt(i-1).value))
1059      difftestBuffer.get.io.enq(i).valid := allocated(ptr) && committed(ptr) && (!isVec(ptr) || vecMbCommit(ptr)) && !mmioStall
1060      difftestBuffer.get.io.enq(i).bits := uop(ptr)
1061    }
1062    for (i <- 0 until EnsbufferWidth) {
1063      io.sbufferVecDifftestInfo(i).valid := difftestBuffer.get.io.deq(i).valid
1064      difftestBuffer.get.io.deq(i).ready := io.sbufferVecDifftestInfo(i).ready
1065
1066      io.sbufferVecDifftestInfo(i).bits := difftestBuffer.get.io.deq(i).bits
1067    }
1068  }
1069
1070  (1 until EnsbufferWidth).foreach(i => when(io.sbuffer(i).fire) { assert(io.sbuffer(i - 1).fire) })
1071  if (coreParams.dcacheParametersOpt.isEmpty) {
1072    for (i <- 0 until EnsbufferWidth) {
1073      val ptr = deqPtrExt(i).value
1074      val ram = DifftestMem(64L * 1024 * 1024 * 1024, 8)
1075      val wen = allocated(ptr) && committed(ptr) && !mmio(ptr)
1076      val waddr = ((paddrModule.io.rdata(i) - "h80000000".U) >> 3).asUInt
1077      val wdata = Mux(paddrModule.io.rdata(i)(3), dataModule.io.rdata(i).data(127, 64), dataModule.io.rdata(i).data(63, 0))
1078      val wmask = Mux(paddrModule.io.rdata(i)(3), dataModule.io.rdata(i).mask(15, 8), dataModule.io.rdata(i).mask(7, 0))
1079      when (wen) {
1080        ram.write(waddr, wdata.asTypeOf(Vec(8, UInt(8.W))), wmask.asBools)
1081      }
1082    }
1083  }
1084
1085  // Read vaddr for mem exception
1086  io.exceptionAddr.vaddr  := exceptionBuffer.io.exceptionAddr.vaddr
1087  io.exceptionAddr.gpaddr  := exceptionBuffer.io.exceptionAddr.gpaddr
1088  io.exceptionAddr.vstart := exceptionBuffer.io.exceptionAddr.vstart
1089  io.exceptionAddr.vl     := exceptionBuffer.io.exceptionAddr.vl
1090
1091  // vector commit or replay from
1092  val vecCommittmp = Wire(Vec(StoreQueueSize, Vec(VecStorePipelineWidth, Bool())))
1093  val vecCommit = Wire(Vec(StoreQueueSize, Bool()))
1094  for (i <- 0 until StoreQueueSize) {
1095    val fbk = io.vecFeedback
1096    for (j <- 0 until VecStorePipelineWidth) {
1097      vecCommittmp(i)(j) := fbk(j).valid && (fbk(j).bits.isCommit || fbk(j).bits.isFlush) &&
1098        uop(i).robIdx === fbk(j).bits.robidx && uop(i).uopIdx === fbk(j).bits.uopidx && allocated(i)
1099    }
1100    vecCommit(i) := vecCommittmp(i).reduce(_ || _)
1101
1102    when (vecCommit(i)) {
1103      vecMbCommit(i) := true.B
1104    }
1105  }
1106
1107  // misprediction recovery / exception redirect
1108  // invalidate sq term using robIdx
1109  for (i <- 0 until StoreQueueSize) {
1110    needCancel(i) := uop(i).robIdx.needFlush(io.brqRedirect) && allocated(i) && !committed(i) &&
1111      (!isVec(i) || !(uop(i).robIdx === io.brqRedirect.bits.robIdx))
1112    when (needCancel(i)) {
1113      allocated(i) := false.B
1114    }
1115  }
1116
1117 /**
1118* update pointers
1119**/
1120  val enqCancelValid = canEnqueue.zip(io.enq.req).map{case (v , x) =>
1121    v && x.bits.robIdx.needFlush(io.brqRedirect)
1122  }
1123  val enqCancelNum = enqCancelValid.zip(io.enq.req).map{case (v, req) =>
1124    Mux(v, req.bits.numLsElem, 0.U)
1125  }
1126  val lastEnqCancel = RegEnable(enqCancelNum.reduce(_ + _), io.brqRedirect.valid) // 1 cycle after redirect
1127
1128  val lastCycleCancelCount = PopCount(RegEnable(needCancel, io.brqRedirect.valid)) // 1 cycle after redirect
1129  val lastCycleRedirect = RegNext(io.brqRedirect.valid) // 1 cycle after redirect
1130  val enqNumber = validVStoreFlow.reduce(_ + _)
1131
1132  val lastlastCycleRedirect=RegNext(lastCycleRedirect)// 2 cycle after redirect
1133  val redirectCancelCount = RegEnable(lastCycleCancelCount + lastEnqCancel, 0.U, lastCycleRedirect) // 2 cycle after redirect
1134
1135  when (lastlastCycleRedirect) {
1136    // we recover the pointers in 2 cycle after redirect for better timing
1137    enqPtrExt := VecInit(enqPtrExt.map(_ - redirectCancelCount))
1138  }.otherwise {
1139    // lastCycleRedirect.valid or nornal case
1140    // when lastCycleRedirect.valid, enqNumber === 0.U, enqPtrExt will not change
1141    enqPtrExt := VecInit(enqPtrExt.map(_ + enqNumber))
1142  }
1143  assert(!(lastCycleRedirect && enqNumber =/= 0.U))
1144
1145  exceptionBuffer.io.flushFrmMaBuf := finishMisalignSt
1146  // special case (store miss align) in updating ptr
1147  when (doMisalignSt) {
1148    when (!finishMisalignSt) {
1149      // dont move deqPtr and rdataPtr until all split store has been written to sb
1150      deqPtrExtNext := deqPtrExt
1151      rdataPtrExtNext := rdataPtrExt
1152    } .otherwise {
1153      // remove this unaligned store from sq
1154      allocated(deqPtr) := false.B
1155      committed(deqPtr) := true.B
1156      cmtPtrExt := cmtPtrExt.map(_ + 1.U)
1157      deqPtrExtNext := deqPtrExt.map(_ + 1.U)
1158      rdataPtrExtNext := rdataPtrExt.map(_ + 1.U)
1159    }
1160  }
1161
1162  deqPtrExt := deqPtrExtNext
1163  rdataPtrExt := rdataPtrExtNext
1164
1165  // val dequeueCount = Mux(io.sbuffer(1).fire, 2.U, Mux(io.sbuffer(0).fire || io.mmioStout.fire, 1.U, 0.U))
1166
1167  // If redirect at T0, sqCancelCnt is at T2
1168  io.sqCancelCnt := redirectCancelCount
1169  val ForceWriteUpper = Wire(UInt(log2Up(StoreQueueSize + 1).W))
1170  ForceWriteUpper := Constantin.createRecord(s"ForceWriteUpper_${p(XSCoreParamsKey).HartId}", initValue = 60)
1171  val ForceWriteLower = Wire(UInt(log2Up(StoreQueueSize + 1).W))
1172  ForceWriteLower := Constantin.createRecord(s"ForceWriteLower_${p(XSCoreParamsKey).HartId}", initValue = 55)
1173
1174  val valid_cnt = PopCount(allocated)
1175  io.force_write := RegNext(Mux(valid_cnt >= ForceWriteUpper, true.B, valid_cnt >= ForceWriteLower && io.force_write), init = false.B)
1176
1177  // io.sqempty will be used by sbuffer
1178  // We delay it for 1 cycle for better timing
1179  // When sbuffer need to check if it is empty, the pipeline is blocked, which means delay io.sqempty
1180  // for 1 cycle will also promise that sq is empty in that cycle
1181  io.sqEmpty := RegNext(
1182    enqPtrExt(0).value === deqPtrExt(0).value &&
1183    enqPtrExt(0).flag === deqPtrExt(0).flag
1184  )
1185  // perf counter
1186  QueuePerf(StoreQueueSize, validCount, !allowEnqueue)
1187  val vecValidVec = WireInit(VecInit((0 until StoreQueueSize).map(i => allocated(i) && isVec(i))))
1188  QueuePerf(StoreQueueSize, PopCount(vecValidVec), !allowEnqueue)
1189  io.sqFull := !allowEnqueue
1190  XSPerfAccumulate("mmioCycle", uncacheState =/= s_idle) // lq is busy dealing with uncache req
1191  XSPerfAccumulate("mmioCnt", io.uncache.req.fire)
1192  XSPerfAccumulate("mmio_wb_success", io.mmioStout.fire || io.vecmmioStout.fire)
1193  XSPerfAccumulate("mmio_wb_blocked", (io.mmioStout.valid && !io.mmioStout.ready) || (io.vecmmioStout.valid && !io.vecmmioStout.ready))
1194  XSPerfAccumulate("validEntryCnt", distanceBetween(enqPtrExt(0), deqPtrExt(0)))
1195  XSPerfAccumulate("cmtEntryCnt", distanceBetween(cmtPtrExt(0), deqPtrExt(0)))
1196  XSPerfAccumulate("nCmtEntryCnt", distanceBetween(enqPtrExt(0), cmtPtrExt(0)))
1197
1198  val perfValidCount = distanceBetween(enqPtrExt(0), deqPtrExt(0))
1199  val perfEvents = Seq(
1200    ("mmioCycle      ", uncacheState =/= s_idle),
1201    ("mmioCnt        ", io.uncache.req.fire),
1202    ("mmio_wb_success", io.mmioStout.fire || io.vecmmioStout.fire),
1203    ("mmio_wb_blocked", (io.mmioStout.valid && !io.mmioStout.ready) || (io.vecmmioStout.valid && !io.vecmmioStout.ready)),
1204    ("stq_1_4_valid  ", (perfValidCount < (StoreQueueSize.U/4.U))),
1205    ("stq_2_4_valid  ", (perfValidCount > (StoreQueueSize.U/4.U)) & (perfValidCount <= (StoreQueueSize.U/2.U))),
1206    ("stq_3_4_valid  ", (perfValidCount > (StoreQueueSize.U/2.U)) & (perfValidCount <= (StoreQueueSize.U*3.U/4.U))),
1207    ("stq_4_4_valid  ", (perfValidCount > (StoreQueueSize.U*3.U/4.U))),
1208  )
1209  generatePerfEvent()
1210
1211  // debug info
1212  XSDebug("enqPtrExt %d:%d deqPtrExt %d:%d\n", enqPtrExt(0).flag, enqPtr, deqPtrExt(0).flag, deqPtr)
1213
1214  def PrintFlag(flag: Bool, name: String): Unit = {
1215    when(flag) {
1216      XSDebug(false, true.B, name)
1217    }.otherwise {
1218      XSDebug(false, true.B, " ")
1219    }
1220  }
1221
1222  for (i <- 0 until StoreQueueSize) {
1223    XSDebug(s"$i: pc %x va %x pa %x data %x ",
1224      uop(i).pc,
1225      debug_vaddr(i),
1226      debug_paddr(i),
1227      debug_data(i)
1228    )
1229    PrintFlag(allocated(i), "a")
1230    PrintFlag(allocated(i) && addrvalid(i), "a")
1231    PrintFlag(allocated(i) && datavalid(i), "d")
1232    PrintFlag(allocated(i) && committed(i), "c")
1233    PrintFlag(allocated(i) && pending(i), "p")
1234    PrintFlag(allocated(i) && mmio(i), "m")
1235    XSDebug(false, true.B, "\n")
1236  }
1237
1238}
1239