1/*************************************************************************************** 2* Copyright (c) 2020-2021 Institute of Computing Technology, Chinese Academy of Sciences 3* Copyright (c) 2020-2021 Peng Cheng Laboratory 4* 5* XiangShan is licensed under Mulan PSL v2. 6* You can use this software according to the terms and conditions of the Mulan PSL v2. 7* You may obtain a copy of Mulan PSL v2 at: 8* http://license.coscl.org.cn/MulanPSL2 9* 10* THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND, 11* EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT, 12* MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE. 13* 14* See the Mulan PSL v2 for more details. 15***************************************************************************************/ 16 17package xiangshan.mem 18 19import chipsalliance.rocketchip.config.Parameters 20import chisel3._ 21import chisel3.util._ 22import utils._ 23import utility._ 24import xiangshan._ 25import xiangshan.cache._ 26import xiangshan.cache.{DCacheLineIO, DCacheWordIO, MemoryOpConstants} 27import xiangshan.backend.rob.{RobLsqIO, RobPtr} 28import difftest._ 29import device.RAMHelper 30import xiangshan.backend.Bundles.{DynInst, MemExuOutput} 31 32class SqPtr(implicit p: Parameters) extends CircularQueuePtr[SqPtr]( 33 p => p(XSCoreParamsKey).StoreQueueSize 34){ 35} 36 37object SqPtr { 38 def apply(f: Bool, v: UInt)(implicit p: Parameters): SqPtr = { 39 val ptr = Wire(new SqPtr) 40 ptr.flag := f 41 ptr.value := v 42 ptr 43 } 44} 45 46class SqEnqIO(implicit p: Parameters) extends XSBundle { 47 val canAccept = Output(Bool()) 48 val lqCanAccept = Input(Bool()) 49 val needAlloc = Vec(backendParams.LsExuCnt, Input(Bool())) 50 val req = Vec(backendParams.LsExuCnt, Flipped(ValidIO(new DynInst))) 51 val resp = Vec(backendParams.LsExuCnt, Output(new SqPtr)) 52} 53 54class DataBufferEntry (implicit p: Parameters) extends DCacheBundle { 55 val addr = UInt(PAddrBits.W) 56 val vaddr = UInt(VAddrBits.W) 57 val data = UInt(VLEN.W) 58 val mask = UInt((VLEN/8).W) 59 val wline = Bool() 60 val sqPtr = new SqPtr 61} 62 63// Store Queue 64class StoreQueue(implicit p: Parameters) extends XSModule 65 with HasDCacheParameters with HasCircularQueuePtrHelper with HasPerfEvents { 66 val io = IO(new Bundle() { 67 val hartId = Input(UInt(8.W)) 68 val enq = new SqEnqIO 69 val brqRedirect = Flipped(ValidIO(new Redirect)) 70 val storeAddrIn = Vec(StorePipelineWidth, Flipped(Valid(new LsPipelineBundle))) // store addr, data is not included 71 val storeAddrInRe = Vec(StorePipelineWidth, Input(new LsPipelineBundle())) // store more mmio and exception 72 val storeDataIn = Vec(StorePipelineWidth, Flipped(Valid(new MemExuOutput))) // store data, send to sq from rs 73 val storeMaskIn = Vec(StorePipelineWidth, Flipped(Valid(new StoreMaskBundle))) // store mask, send to sq from rs 74 val sbuffer = Vec(EnsbufferWidth, Decoupled(new DCacheWordReqWithVaddr)) // write committed store to sbuffer 75 val uncacheOutstanding = Input(Bool()) 76 val mmioStout = DecoupledIO(new MemExuOutput) // writeback uncached store 77 val forward = Vec(LoadPipelineWidth, Flipped(new PipeLoadForwardQueryIO)) 78 val rob = Flipped(new RobLsqIO) 79 val uncache = new UncacheWordIO 80 // val refill = Flipped(Valid(new DCacheLineReq )) 81 val exceptionAddr = new ExceptionAddrIO 82 val sqEmpty = Output(Bool()) 83 val stAddrReadySqPtr = Output(new SqPtr) 84 val stAddrReadyVec = Output(Vec(StoreQueueSize, Bool())) 85 val stDataReadySqPtr = Output(new SqPtr) 86 val stDataReadyVec = Output(Vec(StoreQueueSize, Bool())) 87 val stIssuePtr = Output(new SqPtr) 88 val sqDeqPtr = Output(new SqPtr) 89 val sqFull = Output(Bool()) 90 val sqCancelCnt = Output(UInt(log2Up(StoreQueueSize + 1).W)) 91 val sqDeq = Output(UInt(log2Ceil(EnsbufferWidth + 1).W)) 92 val force_write = Output(Bool()) 93 }) 94 95 println("StoreQueue: size:" + StoreQueueSize) 96 97 // data modules 98 val uop = Reg(Vec(StoreQueueSize, new DynInst)) 99 // val data = Reg(Vec(StoreQueueSize, new LsqEntry)) 100 val dataModule = Module(new SQDataModule( 101 numEntries = StoreQueueSize, 102 numRead = EnsbufferWidth, 103 numWrite = StorePipelineWidth, 104 numForward = StorePipelineWidth 105 )) 106 dataModule.io := DontCare 107 val paddrModule = Module(new SQAddrModule( 108 dataWidth = PAddrBits, 109 numEntries = StoreQueueSize, 110 numRead = EnsbufferWidth, 111 numWrite = StorePipelineWidth, 112 numForward = StorePipelineWidth 113 )) 114 paddrModule.io := DontCare 115 val vaddrModule = Module(new SQAddrModule( 116 dataWidth = VAddrBits, 117 numEntries = StoreQueueSize, 118 numRead = EnsbufferWidth + 1, // sbuffer + badvaddr 1 (TODO) 119 numWrite = StorePipelineWidth, 120 numForward = StorePipelineWidth 121 )) 122 vaddrModule.io := DontCare 123 val dataBuffer = Module(new DatamoduleResultBuffer(new DataBufferEntry)) 124 val debug_paddr = Reg(Vec(StoreQueueSize, UInt((PAddrBits).W))) 125 val debug_vaddr = Reg(Vec(StoreQueueSize, UInt((VAddrBits).W))) 126 val debug_data = Reg(Vec(StoreQueueSize, UInt((XLEN).W))) 127 128 // state & misc 129 val allocated = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // sq entry has been allocated 130 val addrvalid = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // non-mmio addr is valid 131 val datavalid = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // non-mmio data is valid 132 val allvalid = VecInit((0 until StoreQueueSize).map(i => addrvalid(i) && datavalid(i))) // non-mmio data & addr is valid 133 val committed = Reg(Vec(StoreQueueSize, Bool())) // inst has been committed by rob 134 val pending = Reg(Vec(StoreQueueSize, Bool())) // mmio pending: inst is an mmio inst, it will not be executed until it reachs the end of rob 135 val mmio = Reg(Vec(StoreQueueSize, Bool())) // mmio: inst is an mmio inst 136 val atomic = Reg(Vec(StoreQueueSize, Bool())) 137 138 // ptr 139 val enqPtrExt = RegInit(VecInit((0 until io.enq.req.length).map(_.U.asTypeOf(new SqPtr)))) 140 val rdataPtrExt = RegInit(VecInit((0 until EnsbufferWidth).map(_.U.asTypeOf(new SqPtr)))) 141 val deqPtrExt = RegInit(VecInit((0 until EnsbufferWidth).map(_.U.asTypeOf(new SqPtr)))) 142 val cmtPtrExt = RegInit(VecInit((0 until CommitWidth).map(_.U.asTypeOf(new SqPtr)))) 143 val addrReadyPtrExt = RegInit(0.U.asTypeOf(new SqPtr)) 144 val dataReadyPtrExt = RegInit(0.U.asTypeOf(new SqPtr)) 145 val validCounter = RegInit(0.U(log2Ceil(VirtualLoadQueueSize + 1).W)) 146 147 val enqPtr = enqPtrExt(0).value 148 val deqPtr = deqPtrExt(0).value 149 val cmtPtr = cmtPtrExt(0).value 150 151 val validCount = distanceBetween(enqPtrExt(0), deqPtrExt(0)) 152 val allowEnqueue = validCount <= (StoreQueueSize - StorePipelineWidth).U 153 154 val deqMask = UIntToMask(deqPtr, StoreQueueSize) 155 val enqMask = UIntToMask(enqPtr, StoreQueueSize) 156 157 val commitCount = RegNext(io.rob.scommit) 158 159 // store can be committed by ROB 160 io.rob.mmio := DontCare 161 io.rob.uop := DontCare 162 163 // Read dataModule 164 assert(EnsbufferWidth <= 2) 165 // rdataPtrExtNext and rdataPtrExtNext+1 entry will be read from dataModule 166 val rdataPtrExtNext = WireInit(Mux(dataBuffer.io.enq(1).fire(), 167 VecInit(rdataPtrExt.map(_ + 2.U)), 168 Mux(dataBuffer.io.enq(0).fire() || io.mmioStout.fire(), 169 VecInit(rdataPtrExt.map(_ + 1.U)), 170 rdataPtrExt 171 ) 172 )) 173 174 // deqPtrExtNext traces which inst is about to leave store queue 175 // 176 // io.sbuffer(i).fire() is RegNexted, as sbuffer data write takes 2 cycles. 177 // Before data write finish, sbuffer is unable to provide store to load 178 // forward data. As an workaround, deqPtrExt and allocated flag update 179 // is delayed so that load can get the right data from store queue. 180 // 181 // Modify deqPtrExtNext and io.sqDeq with care! 182 val deqPtrExtNext = Mux(RegNext(io.sbuffer(1).fire()), 183 VecInit(deqPtrExt.map(_ + 2.U)), 184 Mux(RegNext(io.sbuffer(0).fire()) || io.mmioStout.fire(), 185 VecInit(deqPtrExt.map(_ + 1.U)), 186 deqPtrExt 187 ) 188 ) 189 io.sqDeq := RegNext(Mux(RegNext(io.sbuffer(1).fire()), 2.U, 190 Mux(RegNext(io.sbuffer(0).fire()) || io.mmioStout.fire(), 1.U, 0.U) 191 )) 192 assert(!RegNext(RegNext(io.sbuffer(0).fire()) && io.mmioStout.fire())) 193 194 for (i <- 0 until EnsbufferWidth) { 195 dataModule.io.raddr(i) := rdataPtrExtNext(i).value 196 paddrModule.io.raddr(i) := rdataPtrExtNext(i).value 197 vaddrModule.io.raddr(i) := rdataPtrExtNext(i).value 198 } 199 200 // no inst will be committed 1 cycle before tval update 201 vaddrModule.io.raddr(EnsbufferWidth) := (cmtPtrExt(0) + commitCount).value 202 203 /** 204 * Enqueue at dispatch 205 * 206 * Currently, StoreQueue only allows enqueue when #emptyEntries > EnqWidth 207 */ 208 io.enq.canAccept := allowEnqueue 209 val canEnqueue = io.enq.req.map(_.valid) 210 val enqCancel = io.enq.req.map(_.bits.robIdx.needFlush(io.brqRedirect)) 211 for (i <- 0 until io.enq.req.length) { 212 val offset = if (i == 0) 0.U else PopCount(io.enq.needAlloc.take(i)) 213 val sqIdx = enqPtrExt(offset) 214 val index = io.enq.req(i).bits.sqIdx.value 215 when (canEnqueue(i) && !enqCancel(i)) { 216 uop(index) := io.enq.req(i).bits 217 // NOTE: the index will be used when replay 218 uop(index).sqIdx := sqIdx 219 allocated(index) := true.B 220 datavalid(index) := false.B 221 addrvalid(index) := false.B 222 committed(index) := false.B 223 pending(index) := false.B 224 mmio(index) := false.B 225 226 XSError(!io.enq.canAccept || !io.enq.lqCanAccept, s"must accept $i\n") 227 XSError(index =/= sqIdx.value, s"must be the same entry $i\n") 228 } 229 io.enq.resp(i) := sqIdx 230 } 231 XSDebug(p"(ready, valid): ${io.enq.canAccept}, ${Binary(Cat(io.enq.req.map(_.valid)))}\n") 232 233 /** 234 * Update addr/dataReadyPtr when issue from rs 235 */ 236 // update issuePtr 237 val IssuePtrMoveStride = 4 238 require(IssuePtrMoveStride >= 2) 239 240 val addrReadyLookupVec = (0 until IssuePtrMoveStride).map(addrReadyPtrExt + _.U) 241 val addrReadyLookup = addrReadyLookupVec.map(ptr => allocated(ptr.value) && (mmio(ptr.value) || addrvalid(ptr.value)) && ptr =/= enqPtrExt(0)) 242 val nextAddrReadyPtr = addrReadyPtrExt + PriorityEncoder(VecInit(addrReadyLookup.map(!_) :+ true.B)) 243 addrReadyPtrExt := nextAddrReadyPtr 244 245 (0 until StoreQueueSize).map(i => { 246 io.stAddrReadyVec(i) := RegNext(allocated(i) && (mmio(i) || addrvalid(i))) 247 }) 248 249 when (io.brqRedirect.valid) { 250 addrReadyPtrExt := Mux( 251 isAfter(cmtPtrExt(0), deqPtrExt(0)), 252 cmtPtrExt(0), 253 deqPtrExtNext(0) // for mmio insts, deqPtr may be ahead of cmtPtr 254 ) 255 } 256 257 io.stAddrReadySqPtr := addrReadyPtrExt 258 259 // update 260 val dataReadyLookupVec = (0 until IssuePtrMoveStride).map(dataReadyPtrExt + _.U) 261 val dataReadyLookup = dataReadyLookupVec.map(ptr => allocated(ptr.value) && (mmio(ptr.value) || datavalid(ptr.value)) && ptr =/= enqPtrExt(0)) 262 val nextDataReadyPtr = dataReadyPtrExt + PriorityEncoder(VecInit(dataReadyLookup.map(!_) :+ true.B)) 263 dataReadyPtrExt := nextDataReadyPtr 264 265 (0 until StoreQueueSize).map(i => { 266 io.stDataReadyVec(i) := RegNext(allocated(i) && (mmio(i) || datavalid(i))) 267 }) 268 269 when (io.brqRedirect.valid) { 270 dataReadyPtrExt := Mux( 271 isAfter(cmtPtrExt(0), deqPtrExt(0)), 272 cmtPtrExt(0), 273 deqPtrExtNext(0) // for mmio insts, deqPtr may be ahead of cmtPtr 274 ) 275 } 276 277 io.stDataReadySqPtr := dataReadyPtrExt 278 io.stIssuePtr := enqPtrExt(0) 279 io.sqDeqPtr := deqPtrExt(0) 280 281 /** 282 * Writeback store from store units 283 * 284 * Most store instructions writeback to regfile in the previous cycle. 285 * However, 286 * (1) For an mmio instruction with exceptions, we need to mark it as addrvalid 287 * (in this way it will trigger an exception when it reaches ROB's head) 288 * instead of pending to avoid sending them to lower level. 289 * (2) For an mmio instruction without exceptions, we mark it as pending. 290 * When the instruction reaches ROB's head, StoreQueue sends it to uncache channel. 291 * Upon receiving the response, StoreQueue writes back the instruction 292 * through arbiter with store units. It will later commit as normal. 293 */ 294 295 // Write addr to sq 296 for (i <- 0 until StorePipelineWidth) { 297 paddrModule.io.wen(i) := false.B 298 vaddrModule.io.wen(i) := false.B 299 dataModule.io.mask.wen(i) := false.B 300 val stWbIndex = io.storeAddrIn(i).bits.uop.sqIdx.value 301 when (io.storeAddrIn(i).fire()) { 302 val addr_valid = !io.storeAddrIn(i).bits.miss 303 addrvalid(stWbIndex) := addr_valid //!io.storeAddrIn(i).bits.mmio 304 // pending(stWbIndex) := io.storeAddrIn(i).bits.mmio 305 306 paddrModule.io.waddr(i) := stWbIndex 307 paddrModule.io.wdata(i) := io.storeAddrIn(i).bits.paddr 308 paddrModule.io.wmask(i) := io.storeAddrIn(i).bits.mask 309 paddrModule.io.wlineflag(i) := io.storeAddrIn(i).bits.wlineflag 310 paddrModule.io.wen(i) := true.B 311 312 vaddrModule.io.waddr(i) := stWbIndex 313 vaddrModule.io.wdata(i) := io.storeAddrIn(i).bits.vaddr 314 vaddrModule.io.wmask(i) := io.storeAddrIn(i).bits.mask 315 vaddrModule.io.wlineflag(i) := io.storeAddrIn(i).bits.wlineflag 316 vaddrModule.io.wen(i) := true.B 317 318 debug_paddr(paddrModule.io.waddr(i)) := paddrModule.io.wdata(i) 319 320 // mmio(stWbIndex) := io.storeAddrIn(i).bits.mmio 321 322 uop(stWbIndex) := io.storeAddrIn(i).bits.uop 323 uop(stWbIndex).debugInfo := io.storeAddrIn(i).bits.uop.debugInfo 324 XSInfo("store addr write to sq idx %d pc 0x%x miss:%d vaddr %x paddr %x mmio %x\n", 325 io.storeAddrIn(i).bits.uop.sqIdx.value, 326 io.storeAddrIn(i).bits.uop.pc, 327 io.storeAddrIn(i).bits.miss, 328 io.storeAddrIn(i).bits.vaddr, 329 io.storeAddrIn(i).bits.paddr, 330 io.storeAddrIn(i).bits.mmio 331 ) 332 } 333 334 // re-replinish mmio, for pma/pmp will get mmio one cycle later 335 val storeAddrInFireReg = RegNext(io.storeAddrIn(i).fire() && !io.storeAddrIn(i).bits.miss) 336 val stWbIndexReg = RegNext(stWbIndex) 337 when (storeAddrInFireReg) { 338 pending(stWbIndexReg) := io.storeAddrInRe(i).mmio 339 mmio(stWbIndexReg) := io.storeAddrInRe(i).mmio 340 atomic(stWbIndexReg) := io.storeAddrInRe(i).atomic 341 } 342 343 when(vaddrModule.io.wen(i)){ 344 debug_vaddr(vaddrModule.io.waddr(i)) := vaddrModule.io.wdata(i) 345 } 346 } 347 348 // Write data to sq 349 // Now store data pipeline is actually 2 stages 350 for (i <- 0 until StorePipelineWidth) { 351 dataModule.io.data.wen(i) := false.B 352 val stWbIndex = io.storeDataIn(i).bits.uop.sqIdx.value 353 // sq data write takes 2 cycles: 354 // sq data write s0 355 when (io.storeDataIn(i).fire()) { 356 // send data write req to data module 357 dataModule.io.data.waddr(i) := stWbIndex 358 dataModule.io.data.wdata(i) := Mux(io.storeDataIn(i).bits.uop.fuOpType === LSUOpType.cbo_zero, 359 0.U, 360 genWdata(io.storeDataIn(i).bits.data, io.storeDataIn(i).bits.uop.fuOpType(1,0)) 361 ) 362 dataModule.io.data.wen(i) := true.B 363 364 debug_data(dataModule.io.data.waddr(i)) := dataModule.io.data.wdata(i) 365 366 XSInfo("store data write to sq idx %d pc 0x%x data %x -> %x\n", 367 io.storeDataIn(i).bits.uop.sqIdx.value, 368 io.storeDataIn(i).bits.uop.pc, 369 io.storeDataIn(i).bits.data, 370 dataModule.io.data.wdata(i) 371 ) 372 } 373 // sq data write s1 374 when ( 375 RegNext(io.storeDataIn(i).fire()) 376 // && !RegNext(io.storeDataIn(i).bits.uop).robIdx.needFlush(io.brqRedirect) 377 ) { 378 datavalid(RegNext(stWbIndex)) := true.B 379 } 380 } 381 382 // Write mask to sq 383 for (i <- 0 until StorePipelineWidth) { 384 // sq mask write s0 385 when (io.storeMaskIn(i).fire()) { 386 // send data write req to data module 387 dataModule.io.mask.waddr(i) := io.storeMaskIn(i).bits.sqIdx.value 388 dataModule.io.mask.wdata(i) := io.storeMaskIn(i).bits.mask 389 dataModule.io.mask.wen(i) := true.B 390 } 391 } 392 393 /** 394 * load forward query 395 * 396 * Check store queue for instructions that is older than the load. 397 * The response will be valid at the next cycle after req. 398 */ 399 // check over all lq entries and forward data from the first matched store 400 for (i <- 0 until LoadPipelineWidth) { 401 // Compare deqPtr (deqPtr) and forward.sqIdx, we have two cases: 402 // (1) if they have the same flag, we need to check range(tail, sqIdx) 403 // (2) if they have different flags, we need to check range(tail, VirtualLoadQueueSize) and range(0, sqIdx) 404 // Forward1: Mux(same_flag, range(tail, sqIdx), range(tail, VirtualLoadQueueSize)) 405 // Forward2: Mux(same_flag, 0.U, range(0, sqIdx) ) 406 // i.e. forward1 is the target entries with the same flag bits and forward2 otherwise 407 val differentFlag = deqPtrExt(0).flag =/= io.forward(i).sqIdx.flag 408 val forwardMask = io.forward(i).sqIdxMask 409 // all addrvalid terms need to be checked 410 val addrValidVec = WireInit(VecInit((0 until StoreQueueSize).map(i => addrvalid(i) && allocated(i)))) 411 val dataValidVec = WireInit(VecInit((0 until StoreQueueSize).map(i => datavalid(i)))) 412 val allValidVec = WireInit(VecInit((0 until StoreQueueSize).map(i => addrvalid(i) && datavalid(i) && allocated(i)))) 413 414 val storeSetHitVec = 415 if (LFSTEnable) { 416 WireInit(VecInit((0 until StoreQueueSize).map(j => io.forward(i).uop.loadWaitBit && uop(j).robIdx === io.forward(i).uop.waitForRobIdx))) 417 } else { 418 WireInit(VecInit((0 until StoreQueueSize).map(j => uop(j).storeSetHit && uop(j).ssid === io.forward(i).uop.ssid))) 419 } 420 421 val forwardMask1 = Mux(differentFlag, ~deqMask, deqMask ^ forwardMask) 422 val forwardMask2 = Mux(differentFlag, forwardMask, 0.U(StoreQueueSize.W)) 423 val canForward1 = forwardMask1 & allValidVec.asUInt 424 val canForward2 = forwardMask2 & allValidVec.asUInt 425 val needForward = Mux(differentFlag, ~deqMask | forwardMask, deqMask ^ forwardMask) 426 427 XSDebug(p"$i f1 ${Binary(canForward1)} f2 ${Binary(canForward2)} " + 428 p"sqIdx ${io.forward(i).sqIdx} pa ${Hexadecimal(io.forward(i).paddr)}\n" 429 ) 430 431 // do real fwd query (cam lookup in load_s1) 432 dataModule.io.needForward(i)(0) := canForward1 & vaddrModule.io.forwardMmask(i).asUInt 433 dataModule.io.needForward(i)(1) := canForward2 & vaddrModule.io.forwardMmask(i).asUInt 434 435 vaddrModule.io.forwardMdata(i) := io.forward(i).vaddr 436 vaddrModule.io.forwardDataMask(i) := io.forward(i).mask 437 paddrModule.io.forwardMdata(i) := io.forward(i).paddr 438 paddrModule.io.forwardDataMask(i) := io.forward(i).mask 439 440 441 // vaddr cam result does not equal to paddr cam result 442 // replay needed 443 // val vpmaskNotEqual = ((paddrModule.io.forwardMmask(i).asUInt ^ vaddrModule.io.forwardMmask(i).asUInt) & needForward) =/= 0.U 444 // val vaddrMatchFailed = vpmaskNotEqual && io.forward(i).valid 445 val vpmaskNotEqual = ( 446 (RegNext(paddrModule.io.forwardMmask(i).asUInt) ^ RegNext(vaddrModule.io.forwardMmask(i).asUInt)) & 447 RegNext(needForward) & 448 RegNext(addrValidVec.asUInt) 449 ) =/= 0.U 450 val vaddrMatchFailed = vpmaskNotEqual && RegNext(io.forward(i).valid) 451 when (vaddrMatchFailed) { 452 XSInfo("vaddrMatchFailed: pc %x pmask %x vmask %x\n", 453 RegNext(io.forward(i).uop.pc), 454 RegNext(needForward & paddrModule.io.forwardMmask(i).asUInt), 455 RegNext(needForward & vaddrModule.io.forwardMmask(i).asUInt) 456 ); 457 } 458 XSPerfAccumulate("vaddr_match_failed", vpmaskNotEqual) 459 XSPerfAccumulate("vaddr_match_really_failed", vaddrMatchFailed) 460 461 // Fast forward mask will be generated immediately (load_s1) 462 io.forward(i).forwardMaskFast := dataModule.io.forwardMaskFast(i) 463 464 // Forward result will be generated 1 cycle later (load_s2) 465 io.forward(i).forwardMask := dataModule.io.forwardMask(i) 466 io.forward(i).forwardData := dataModule.io.forwardData(i) 467 // If addr match, data not ready, mark it as dataInvalid 468 // load_s1: generate dataInvalid in load_s1 to set fastUop 469 val dataInvalidMask1 = (addrValidVec.asUInt & ~dataValidVec.asUInt & vaddrModule.io.forwardMmask(i).asUInt & forwardMask1.asUInt) 470 val dataInvalidMask2 = (addrValidVec.asUInt & ~dataValidVec.asUInt & vaddrModule.io.forwardMmask(i).asUInt & forwardMask2.asUInt) 471 val dataInvalidMask = dataInvalidMask1 | dataInvalidMask2 472 io.forward(i).dataInvalidFast := dataInvalidMask.orR 473 474 // make chisel happy 475 val dataInvalidMask1Reg = Wire(UInt(StoreQueueSize.W)) 476 dataInvalidMask1Reg := RegNext(dataInvalidMask1) 477 // make chisel happy 478 val dataInvalidMask2Reg = Wire(UInt(StoreQueueSize.W)) 479 dataInvalidMask2Reg := RegNext(dataInvalidMask2) 480 val dataInvalidMaskReg = dataInvalidMask1Reg | dataInvalidMask2Reg 481 482 // If SSID match, address not ready, mark it as addrInvalid 483 // load_s2: generate addrInvalid 484 val addrInvalidMask1 = (~addrValidVec.asUInt & storeSetHitVec.asUInt & forwardMask1.asUInt) 485 val addrInvalidMask2 = (~addrValidVec.asUInt & storeSetHitVec.asUInt & forwardMask2.asUInt) 486 // make chisel happy 487 val addrInvalidMask1Reg = Wire(UInt(StoreQueueSize.W)) 488 addrInvalidMask1Reg := RegNext(addrInvalidMask1) 489 // make chisel happy 490 val addrInvalidMask2Reg = Wire(UInt(StoreQueueSize.W)) 491 addrInvalidMask2Reg := RegNext(addrInvalidMask2) 492 val addrInvalidMaskReg = addrInvalidMask1Reg | addrInvalidMask2Reg 493 494 // load_s2 495 io.forward(i).dataInvalid := RegNext(io.forward(i).dataInvalidFast) 496 // check if vaddr forward mismatched 497 io.forward(i).matchInvalid := vaddrMatchFailed 498 499 // data invalid sq index 500 // check whether false fail 501 // check flag 502 val s2_differentFlag = RegNext(differentFlag) 503 val s2_enqPtrExt = RegNext(enqPtrExt(0)) 504 val s2_deqPtrExt = RegNext(deqPtrExt(0)) 505 506 // addr invalid sq index 507 // make chisel happy 508 val addrInvalidMaskRegWire = Wire(UInt(StoreQueueSize.W)) 509 addrInvalidMaskRegWire := addrInvalidMaskReg 510 val addrInvalidFlag = addrInvalidMaskRegWire.orR 511 val hasInvalidAddr = (~addrValidVec.asUInt & needForward).orR 512 513 val addrInvalidSqIdx1 = OHToUInt(Reverse(PriorityEncoderOH(Reverse(addrInvalidMask1Reg)))) 514 val addrInvalidSqIdx2 = OHToUInt(Reverse(PriorityEncoderOH(Reverse(addrInvalidMask2Reg)))) 515 val addrInvalidSqIdx = Mux(addrInvalidMask2Reg.orR, addrInvalidSqIdx2, addrInvalidSqIdx1) 516 517 // store-set content management 518 // +-----------------------+ 519 // | Search a SSID for the | 520 // | load operation | 521 // +-----------------------+ 522 // | 523 // V 524 // +-------------------+ 525 // | load wait strict? | 526 // +-------------------+ 527 // | 528 // V 529 // +----------------------+ 530 // Set| |Clean 531 // V V 532 // +------------------------+ +------------------------------+ 533 // | Waiting for all older | | Wait until the corresponding | 534 // | stores operations | | older store operations | 535 // +------------------------+ +------------------------------+ 536 537 538 539 when (RegNext(io.forward(i).uop.loadWaitStrict)) { 540 io.forward(i).addrInvalidSqIdx := RegNext(io.forward(i).uop.sqIdx - 1.U) 541 } .elsewhen (addrInvalidFlag) { 542 io.forward(i).addrInvalidSqIdx.flag := Mux(!s2_differentFlag || addrInvalidSqIdx >= s2_deqPtrExt.value, s2_deqPtrExt.flag, s2_enqPtrExt.flag) 543 io.forward(i).addrInvalidSqIdx.value := addrInvalidSqIdx 544 } .otherwise { 545 // may be store inst has been written to sbuffer already. 546 io.forward(i).addrInvalidSqIdx := RegNext(io.forward(i).uop.sqIdx) 547 } 548 io.forward(i).addrInvalid := Mux(RegNext(io.forward(i).uop.loadWaitStrict), RegNext(hasInvalidAddr), addrInvalidFlag) 549 550 // data invalid sq index 551 // make chisel happy 552 val dataInvalidMaskRegWire = Wire(UInt(StoreQueueSize.W)) 553 dataInvalidMaskRegWire := dataInvalidMaskReg 554 val dataInvalidFlag = dataInvalidMaskRegWire.orR 555 556 val dataInvalidSqIdx1 = OHToUInt(Reverse(PriorityEncoderOH(Reverse(dataInvalidMask1Reg)))) 557 val dataInvalidSqIdx2 = OHToUInt(Reverse(PriorityEncoderOH(Reverse(dataInvalidMask2Reg)))) 558 val dataInvalidSqIdx = Mux(dataInvalidMask2Reg.orR, dataInvalidSqIdx2, dataInvalidSqIdx1) 559 560 when (dataInvalidFlag) { 561 io.forward(i).dataInvalidSqIdx.flag := Mux(!s2_differentFlag || dataInvalidSqIdx >= s2_deqPtrExt.value, s2_deqPtrExt.flag, s2_enqPtrExt.flag) 562 io.forward(i).dataInvalidSqIdx.value := dataInvalidSqIdx 563 } .otherwise { 564 // may be store inst has been written to sbuffer already. 565 io.forward(i).dataInvalidSqIdx := RegNext(io.forward(i).uop.sqIdx) 566 } 567 } 568 569 /** 570 * Memory mapped IO / other uncached operations 571 * 572 * States: 573 * (1) writeback from store units: mark as pending 574 * (2) when they reach ROB's head, they can be sent to uncache channel 575 * (3) response from uncache channel: mark as datavalidmask.wen 576 * (4) writeback to ROB (and other units): mark as writebacked 577 * (5) ROB commits the instruction: same as normal instructions 578 */ 579 //(2) when they reach ROB's head, they can be sent to uncache channel 580 val s_idle :: s_req :: s_resp :: s_wb :: s_wait :: Nil = Enum(5) 581 val uncacheState = RegInit(s_idle) 582 switch(uncacheState) { 583 is(s_idle) { 584 when(RegNext(io.rob.pendingst && pending(deqPtr) && allocated(deqPtr) && datavalid(deqPtr) && addrvalid(deqPtr))) { 585 uncacheState := s_req 586 } 587 } 588 is(s_req) { 589 when (io.uncache.req.fire) { 590 when (io.uncacheOutstanding) { 591 uncacheState := s_wb 592 } .otherwise { 593 uncacheState := s_resp 594 } 595 } 596 } 597 is(s_resp) { 598 when(io.uncache.resp.fire()) { 599 uncacheState := s_wb 600 } 601 } 602 is(s_wb) { 603 when (io.mmioStout.fire()) { 604 uncacheState := s_wait 605 } 606 } 607 is(s_wait) { 608 when(commitCount > 0.U) { 609 uncacheState := s_idle // ready for next mmio 610 } 611 } 612 } 613 io.uncache.req.valid := uncacheState === s_req 614 615 io.uncache.req.bits := DontCare 616 io.uncache.req.bits.cmd := MemoryOpConstants.M_XWR 617 io.uncache.req.bits.addr := paddrModule.io.rdata(0) // data(deqPtr) -> rdata(0) 618 io.uncache.req.bits.data := shiftDataToLow(paddrModule.io.rdata(0), dataModule.io.rdata(0).data) 619 io.uncache.req.bits.mask := shiftMaskToLow(paddrModule.io.rdata(0), dataModule.io.rdata(0).mask) 620 621 // CBO op type check can be delayed for 1 cycle, 622 // as uncache op will not start in s_idle 623 val cbo_mmio_addr = paddrModule.io.rdata(0) >> 2 << 2 // clear lowest 2 bits for op 624 val cbo_mmio_op = 0.U //TODO 625 val cbo_mmio_data = cbo_mmio_addr | cbo_mmio_op 626 when(RegNext(LSUOpType.isCbo(uop(deqPtr).fuOpType))){ 627 io.uncache.req.bits.addr := DontCare // TODO 628 io.uncache.req.bits.data := paddrModule.io.rdata(0) 629 io.uncache.req.bits.mask := DontCare // TODO 630 } 631 632 io.uncache.req.bits.atomic := atomic(RegNext(rdataPtrExtNext(0)).value) 633 634 when(io.uncache.req.fire){ 635 // mmio store should not be committed until uncache req is sent 636 pending(deqPtr) := false.B 637 638 XSDebug( 639 p"uncache req: pc ${Hexadecimal(uop(deqPtr).pc)} " + 640 p"addr ${Hexadecimal(io.uncache.req.bits.addr)} " + 641 p"data ${Hexadecimal(io.uncache.req.bits.data)} " + 642 p"op ${Hexadecimal(io.uncache.req.bits.cmd)} " + 643 p"mask ${Hexadecimal(io.uncache.req.bits.mask)}\n" 644 ) 645 } 646 647 // (3) response from uncache channel: mark as datavalid 648 io.uncache.resp.ready := true.B 649 650 // (4) writeback to ROB (and other units): mark as writebacked 651 io.mmioStout.valid := uncacheState === s_wb 652 io.mmioStout.bits.uop := uop(deqPtr) 653 io.mmioStout.bits.uop.sqIdx := deqPtrExt(0) 654 io.mmioStout.bits.data := shiftDataToLow(paddrModule.io.rdata(0), dataModule.io.rdata(0).data) // dataModule.io.rdata.read(deqPtr) 655 io.mmioStout.bits.debug.isMMIO := true.B 656 io.mmioStout.bits.debug.paddr := DontCare 657 io.mmioStout.bits.debug.isPerfCnt := false.B 658 io.mmioStout.bits.debug.vaddr := DontCare 659 // Remove MMIO inst from store queue after MMIO request is being sent 660 // That inst will be traced by uncache state machine 661 when (io.mmioStout.fire()) { 662 allocated(deqPtr) := false.B 663 } 664 665 /** 666 * ROB commits store instructions (mark them as committed) 667 * 668 * (1) When store commits, mark it as committed. 669 * (2) They will not be cancelled and can be sent to lower level. 670 */ 671 XSError(uncacheState =/= s_idle && uncacheState =/= s_wait && commitCount > 0.U, 672 "should not commit instruction when MMIO has not been finished\n") 673 for (i <- 0 until CommitWidth) { 674 when (commitCount > i.U) { // MMIO inst is not in progress 675 if(i == 0){ 676 // MMIO inst should not update committed flag 677 // Note that commit count has been delayed for 1 cycle 678 when(uncacheState === s_idle){ 679 committed(cmtPtrExt(0).value) := true.B 680 } 681 } else { 682 committed(cmtPtrExt(i).value) := true.B 683 } 684 } 685 } 686 cmtPtrExt := cmtPtrExt.map(_ + commitCount) 687 688 // committed stores will not be cancelled and can be sent to lower level. 689 // remove retired insts from sq, add retired store to sbuffer 690 691 // Read data from data module 692 // As store queue grows larger and larger, time needed to read data from data 693 // module keeps growing higher. Now we give data read a whole cycle. 694 695 val mmioStall = mmio(rdataPtrExt(0).value) 696 for (i <- 0 until EnsbufferWidth) { 697 val ptr = rdataPtrExt(i).value 698 dataBuffer.io.enq(i).valid := allocated(ptr) && committed(ptr) && !mmioStall 699 // Note that store data/addr should both be valid after store's commit 700 assert(!dataBuffer.io.enq(i).valid || allvalid(ptr)) 701 dataBuffer.io.enq(i).bits.addr := paddrModule.io.rdata(i) 702 dataBuffer.io.enq(i).bits.vaddr := vaddrModule.io.rdata(i) 703 dataBuffer.io.enq(i).bits.data := dataModule.io.rdata(i).data 704 dataBuffer.io.enq(i).bits.mask := dataModule.io.rdata(i).mask 705 dataBuffer.io.enq(i).bits.wline := paddrModule.io.rlineflag(i) 706 dataBuffer.io.enq(i).bits.sqPtr := rdataPtrExt(i) 707 } 708 709 // Send data stored in sbufferReqBitsReg to sbuffer 710 for (i <- 0 until EnsbufferWidth) { 711 io.sbuffer(i).valid := dataBuffer.io.deq(i).valid 712 dataBuffer.io.deq(i).ready := io.sbuffer(i).ready 713 // Write line request should have all 1 mask 714 assert(!(io.sbuffer(i).valid && io.sbuffer(i).bits.wline && !io.sbuffer(i).bits.mask.andR)) 715 io.sbuffer(i).bits := DontCare 716 io.sbuffer(i).bits.cmd := MemoryOpConstants.M_XWR 717 io.sbuffer(i).bits.addr := dataBuffer.io.deq(i).bits.addr 718 io.sbuffer(i).bits.vaddr := dataBuffer.io.deq(i).bits.vaddr 719 io.sbuffer(i).bits.data := dataBuffer.io.deq(i).bits.data 720 io.sbuffer(i).bits.mask := dataBuffer.io.deq(i).bits.mask 721 io.sbuffer(i).bits.wline := dataBuffer.io.deq(i).bits.wline 722 723 // io.sbuffer(i).fire() is RegNexted, as sbuffer data write takes 2 cycles. 724 // Before data write finish, sbuffer is unable to provide store to load 725 // forward data. As an workaround, deqPtrExt and allocated flag update 726 // is delayed so that load can get the right data from store queue. 727 val ptr = dataBuffer.io.deq(i).bits.sqPtr.value 728 when (RegNext(io.sbuffer(i).fire())) { 729 allocated(RegEnable(ptr, io.sbuffer(i).fire())) := false.B 730 XSDebug("sbuffer "+i+" fire: ptr %d\n", ptr) 731 } 732 } 733 (1 until EnsbufferWidth).foreach(i => when(io.sbuffer(i).fire) { assert(io.sbuffer(i - 1).fire) }) 734 if (coreParams.dcacheParametersOpt.isEmpty) { 735 for (i <- 0 until EnsbufferWidth) { 736 val ptr = deqPtrExt(i).value 737 val fakeRAM = Module(new RAMHelper(64L * 1024 * 1024 * 1024)) 738 fakeRAM.clk := clock 739 fakeRAM.en := allocated(ptr) && committed(ptr) && !mmio(ptr) 740 fakeRAM.rIdx := 0.U 741 fakeRAM.wIdx := (paddrModule.io.rdata(i) - "h80000000".U) >> 3 742 fakeRAM.wdata := Mux(paddrModule.io.rdata(i)(3), dataModule.io.rdata(i).data(127,64), dataModule.io.rdata(i).data(63,0)) 743 fakeRAM.wmask := Mux(paddrModule.io.rdata(i)(3), MaskExpand(dataModule.io.rdata(i).mask(15,8)), MaskExpand(dataModule.io.rdata(i).mask(7,0))) 744 fakeRAM.wen := allocated(ptr) && committed(ptr) && !mmio(ptr) 745 } 746 } 747 748 if (env.EnableDifftest) { 749 for (i <- 0 until EnsbufferWidth) { 750 val storeCommit = io.sbuffer(i).fire() 751 val waddr = SignExt(io.sbuffer(i).bits.addr, 64) 752 val sbufferMask = shiftMaskToLow(io.sbuffer(i).bits.addr, io.sbuffer(i).bits.mask) 753 val sbufferData = shiftDataToLow(io.sbuffer(i).bits.addr, io.sbuffer(i).bits.data) 754 val wmask = sbufferMask 755 val wdata = sbufferData & MaskExpand(sbufferMask) 756 757 val difftest = Module(new DifftestStoreEvent) 758 difftest.io.clock := clock 759 difftest.io.coreid := io.hartId 760 difftest.io.index := i.U 761 difftest.io.valid := RegNext(RegNext(storeCommit)) 762 difftest.io.storeAddr := RegNext(RegNext(waddr)) 763 difftest.io.storeData := RegNext(RegNext(wdata)) 764 difftest.io.storeMask := RegNext(RegNext(wmask)) 765 } 766 } 767 768 // Read vaddr for mem exception 769 io.exceptionAddr.vaddr := vaddrModule.io.rdata(EnsbufferWidth) 770 771 // misprediction recovery / exception redirect 772 // invalidate sq term using robIdx 773 val needCancel = Wire(Vec(StoreQueueSize, Bool())) 774 for (i <- 0 until StoreQueueSize) { 775 needCancel(i) := uop(i).robIdx.needFlush(io.brqRedirect) && allocated(i) && !committed(i) 776 when (needCancel(i)) { 777 allocated(i) := false.B 778 } 779 } 780 781 /** 782* update pointers 783**/ 784 val lastEnqCancel = PopCount(RegNext(VecInit(canEnqueue.zip(enqCancel).map(x => x._1 && x._2)))) // 1 cycle after redirect 785 val lastCycleCancelCount = PopCount(RegNext(needCancel)) // 1 cycle after redirect 786 val lastCycleRedirect = RegNext(io.brqRedirect.valid) // 1 cycle after redirect 787 val enqNumber = Mux(!lastCycleRedirect&&io.enq.canAccept && io.enq.lqCanAccept, PopCount(io.enq.req.map(_.valid)), 0.U) // 1 cycle after redirect 788 789 val lastlastCycleRedirect=RegNext(lastCycleRedirect)// 2 cycle after redirect 790 val redirectCancelCount = RegEnable(lastCycleCancelCount + lastEnqCancel, lastCycleRedirect) // 2 cycle after redirect 791 792 when (lastlastCycleRedirect) { 793 // we recover the pointers in 2 cycle after redirect for better timing 794 enqPtrExt := VecInit(enqPtrExt.map(_ - redirectCancelCount)) 795 }.otherwise { 796 // lastCycleRedirect.valid or nornal case 797 // when lastCycleRedirect.valid, enqNumber === 0.U, enqPtrExt will not change 798 enqPtrExt := VecInit(enqPtrExt.map(_ + enqNumber)) 799 } 800 assert(!(lastCycleRedirect && enqNumber =/= 0.U)) 801 802 deqPtrExt := deqPtrExtNext 803 rdataPtrExt := rdataPtrExtNext 804 805 // val dequeueCount = Mux(io.sbuffer(1).fire(), 2.U, Mux(io.sbuffer(0).fire() || io.mmioStout.fire(), 1.U, 0.U)) 806 807 // If redirect at T0, sqCancelCnt is at T2 808 io.sqCancelCnt := redirectCancelCount 809 val ForceWriteUpper = Wire(UInt(log2Up(StoreQueueSize + 1).W)) 810 ForceWriteUpper := Constantin.createRecord("ForceWriteUpper_"+p(XSCoreParamsKey).HartId.toString(), initValue = 60.U) 811 val ForceWriteLower = Wire(UInt(log2Up(StoreQueueSize + 1).W)) 812 ForceWriteLower := Constantin.createRecord("ForceWriteLower_"+p(XSCoreParamsKey).HartId.toString(), initValue = 55.U) 813 814 val valid_cnt = PopCount(allocated) 815 io.force_write := RegNext(Mux(valid_cnt >= ForceWriteUpper, true.B, valid_cnt >= ForceWriteLower && io.force_write), init = false.B) 816 817 // io.sqempty will be used by sbuffer 818 // We delay it for 1 cycle for better timing 819 // When sbuffer need to check if it is empty, the pipeline is blocked, which means delay io.sqempty 820 // for 1 cycle will also promise that sq is empty in that cycle 821 io.sqEmpty := RegNext( 822 enqPtrExt(0).value === deqPtrExt(0).value && 823 enqPtrExt(0).flag === deqPtrExt(0).flag 824 ) 825 // perf counter 826 QueuePerf(StoreQueueSize, validCount, !allowEnqueue) 827 io.sqFull := !allowEnqueue 828 XSPerfAccumulate("mmioCycle", uncacheState =/= s_idle) // lq is busy dealing with uncache req 829 XSPerfAccumulate("mmioCnt", io.uncache.req.fire()) 830 XSPerfAccumulate("mmio_wb_success", io.mmioStout.fire()) 831 XSPerfAccumulate("mmio_wb_blocked", io.mmioStout.valid && !io.mmioStout.ready) 832 XSPerfAccumulate("validEntryCnt", distanceBetween(enqPtrExt(0), deqPtrExt(0))) 833 XSPerfAccumulate("cmtEntryCnt", distanceBetween(cmtPtrExt(0), deqPtrExt(0))) 834 XSPerfAccumulate("nCmtEntryCnt", distanceBetween(enqPtrExt(0), cmtPtrExt(0))) 835 836 val perfValidCount = distanceBetween(enqPtrExt(0), deqPtrExt(0)) 837 val perfEvents = Seq( 838 ("mmioCycle ", uncacheState =/= s_idle), 839 ("mmioCnt ", io.uncache.req.fire()), 840 ("mmio_wb_success", io.mmioStout.fire()), 841 ("mmio_wb_blocked", io.mmioStout.valid && !io.mmioStout.ready), 842 ("stq_1_4_valid ", (perfValidCount < (StoreQueueSize.U/4.U))), 843 ("stq_2_4_valid ", (perfValidCount > (StoreQueueSize.U/4.U)) & (perfValidCount <= (StoreQueueSize.U/2.U))), 844 ("stq_3_4_valid ", (perfValidCount > (StoreQueueSize.U/2.U)) & (perfValidCount <= (StoreQueueSize.U*3.U/4.U))), 845 ("stq_4_4_valid ", (perfValidCount > (StoreQueueSize.U*3.U/4.U))), 846 ) 847 generatePerfEvent() 848 849 // debug info 850 XSDebug("enqPtrExt %d:%d deqPtrExt %d:%d\n", enqPtrExt(0).flag, enqPtr, deqPtrExt(0).flag, deqPtr) 851 852 def PrintFlag(flag: Bool, name: String): Unit = { 853 when(flag) { 854 XSDebug(false, true.B, name) 855 }.otherwise { 856 XSDebug(false, true.B, " ") 857 } 858 } 859 860 for (i <- 0 until StoreQueueSize) { 861 XSDebug(i + ": pc %x va %x pa %x data %x ", 862 uop(i).pc, 863 debug_vaddr(i), 864 debug_paddr(i), 865 debug_data(i) 866 ) 867 PrintFlag(allocated(i), "a") 868 PrintFlag(allocated(i) && addrvalid(i), "a") 869 PrintFlag(allocated(i) && datavalid(i), "d") 870 PrintFlag(allocated(i) && committed(i), "c") 871 PrintFlag(allocated(i) && pending(i), "p") 872 PrintFlag(allocated(i) && mmio(i), "m") 873 XSDebug(false, true.B, "\n") 874 } 875 876} 877