xref: /XiangShan/src/main/scala/xiangshan/mem/lsqueue/StoreQueue.scala (revision 870f462d572cd0ef6bf86c91dcda5a5fab6e99d3)
1/***************************************************************************************
2* Copyright (c) 2020-2021 Institute of Computing Technology, Chinese Academy of Sciences
3* Copyright (c) 2020-2021 Peng Cheng Laboratory
4*
5* XiangShan is licensed under Mulan PSL v2.
6* You can use this software according to the terms and conditions of the Mulan PSL v2.
7* You may obtain a copy of Mulan PSL v2 at:
8*          http://license.coscl.org.cn/MulanPSL2
9*
10* THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND,
11* EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT,
12* MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE.
13*
14* See the Mulan PSL v2 for more details.
15***************************************************************************************/
16
17package xiangshan.mem
18
19import chipsalliance.rocketchip.config.Parameters
20import chisel3._
21import chisel3.util._
22import utils._
23import utility._
24import xiangshan._
25import xiangshan.cache._
26import xiangshan.cache.{DCacheLineIO, DCacheWordIO, MemoryOpConstants}
27import xiangshan.backend.rob.{RobLsqIO, RobPtr}
28import difftest._
29import device.RAMHelper
30import xiangshan.backend.Bundles.{DynInst, MemExuOutput}
31
32class SqPtr(implicit p: Parameters) extends CircularQueuePtr[SqPtr](
33  p => p(XSCoreParamsKey).StoreQueueSize
34){
35}
36
37object SqPtr {
38  def apply(f: Bool, v: UInt)(implicit p: Parameters): SqPtr = {
39    val ptr = Wire(new SqPtr)
40    ptr.flag := f
41    ptr.value := v
42    ptr
43  }
44}
45
46class SqEnqIO(implicit p: Parameters) extends XSBundle {
47  val canAccept = Output(Bool())
48  val lqCanAccept = Input(Bool())
49  val needAlloc = Vec(backendParams.LsExuCnt, Input(Bool()))
50  val req = Vec(backendParams.LsExuCnt, Flipped(ValidIO(new DynInst)))
51  val resp = Vec(backendParams.LsExuCnt, Output(new SqPtr))
52}
53
54class DataBufferEntry (implicit p: Parameters)  extends DCacheBundle {
55  val addr   = UInt(PAddrBits.W)
56  val vaddr  = UInt(VAddrBits.W)
57  val data   = UInt(VLEN.W)
58  val mask   = UInt((VLEN/8).W)
59  val wline = Bool()
60  val sqPtr  = new SqPtr
61}
62
63// Store Queue
64class StoreQueue(implicit p: Parameters) extends XSModule
65  with HasDCacheParameters with HasCircularQueuePtrHelper with HasPerfEvents {
66  val io = IO(new Bundle() {
67    val hartId = Input(UInt(8.W))
68    val enq = new SqEnqIO
69    val brqRedirect = Flipped(ValidIO(new Redirect))
70    val storeAddrIn = Vec(StorePipelineWidth, Flipped(Valid(new LsPipelineBundle))) // store addr, data is not included
71    val storeAddrInRe = Vec(StorePipelineWidth, Input(new LsPipelineBundle())) // store more mmio and exception
72    val storeDataIn = Vec(StorePipelineWidth, Flipped(Valid(new MemExuOutput))) // store data, send to sq from rs
73    val storeMaskIn = Vec(StorePipelineWidth, Flipped(Valid(new StoreMaskBundle))) // store mask, send to sq from rs
74    val sbuffer = Vec(EnsbufferWidth, Decoupled(new DCacheWordReqWithVaddr)) // write committed store to sbuffer
75    val uncacheOutstanding = Input(Bool())
76    val mmioStout = DecoupledIO(new MemExuOutput) // writeback uncached store
77    val forward = Vec(LoadPipelineWidth, Flipped(new PipeLoadForwardQueryIO))
78    val rob = Flipped(new RobLsqIO)
79    val uncache = new UncacheWordIO
80    // val refill = Flipped(Valid(new DCacheLineReq ))
81    val exceptionAddr = new ExceptionAddrIO
82    val sqEmpty = Output(Bool())
83    val stAddrReadySqPtr = Output(new SqPtr)
84    val stAddrReadyVec = Output(Vec(StoreQueueSize, Bool()))
85    val stDataReadySqPtr = Output(new SqPtr)
86    val stDataReadyVec = Output(Vec(StoreQueueSize, Bool()))
87    val stIssuePtr = Output(new SqPtr)
88    val sqDeqPtr = Output(new SqPtr)
89    val sqFull = Output(Bool())
90    val sqCancelCnt = Output(UInt(log2Up(StoreQueueSize + 1).W))
91    val sqDeq = Output(UInt(log2Ceil(EnsbufferWidth + 1).W))
92    val force_write = Output(Bool())
93  })
94
95  println("StoreQueue: size:" + StoreQueueSize)
96
97  // data modules
98  val uop = Reg(Vec(StoreQueueSize, new DynInst))
99  // val data = Reg(Vec(StoreQueueSize, new LsqEntry))
100  val dataModule = Module(new SQDataModule(
101    numEntries = StoreQueueSize,
102    numRead = EnsbufferWidth,
103    numWrite = StorePipelineWidth,
104    numForward = StorePipelineWidth
105  ))
106  dataModule.io := DontCare
107  val paddrModule = Module(new SQAddrModule(
108    dataWidth = PAddrBits,
109    numEntries = StoreQueueSize,
110    numRead = EnsbufferWidth,
111    numWrite = StorePipelineWidth,
112    numForward = StorePipelineWidth
113  ))
114  paddrModule.io := DontCare
115  val vaddrModule = Module(new SQAddrModule(
116    dataWidth = VAddrBits,
117    numEntries = StoreQueueSize,
118    numRead = EnsbufferWidth + 1, // sbuffer + badvaddr 1 (TODO)
119    numWrite = StorePipelineWidth,
120    numForward = StorePipelineWidth
121  ))
122  vaddrModule.io := DontCare
123  val dataBuffer = Module(new DatamoduleResultBuffer(new DataBufferEntry))
124  val debug_paddr = Reg(Vec(StoreQueueSize, UInt((PAddrBits).W)))
125  val debug_vaddr = Reg(Vec(StoreQueueSize, UInt((VAddrBits).W)))
126  val debug_data = Reg(Vec(StoreQueueSize, UInt((XLEN).W)))
127
128  // state & misc
129  val allocated = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // sq entry has been allocated
130  val addrvalid = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // non-mmio addr is valid
131  val datavalid = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // non-mmio data is valid
132  val allvalid  = VecInit((0 until StoreQueueSize).map(i => addrvalid(i) && datavalid(i))) // non-mmio data & addr is valid
133  val committed = Reg(Vec(StoreQueueSize, Bool())) // inst has been committed by rob
134  val pending = Reg(Vec(StoreQueueSize, Bool())) // mmio pending: inst is an mmio inst, it will not be executed until it reachs the end of rob
135  val mmio = Reg(Vec(StoreQueueSize, Bool())) // mmio: inst is an mmio inst
136  val atomic = Reg(Vec(StoreQueueSize, Bool()))
137
138  // ptr
139  val enqPtrExt = RegInit(VecInit((0 until io.enq.req.length).map(_.U.asTypeOf(new SqPtr))))
140  val rdataPtrExt = RegInit(VecInit((0 until EnsbufferWidth).map(_.U.asTypeOf(new SqPtr))))
141  val deqPtrExt = RegInit(VecInit((0 until EnsbufferWidth).map(_.U.asTypeOf(new SqPtr))))
142  val cmtPtrExt = RegInit(VecInit((0 until CommitWidth).map(_.U.asTypeOf(new SqPtr))))
143  val addrReadyPtrExt = RegInit(0.U.asTypeOf(new SqPtr))
144  val dataReadyPtrExt = RegInit(0.U.asTypeOf(new SqPtr))
145  val validCounter = RegInit(0.U(log2Ceil(VirtualLoadQueueSize + 1).W))
146
147  val enqPtr = enqPtrExt(0).value
148  val deqPtr = deqPtrExt(0).value
149  val cmtPtr = cmtPtrExt(0).value
150
151  val validCount = distanceBetween(enqPtrExt(0), deqPtrExt(0))
152  val allowEnqueue = validCount <= (StoreQueueSize - StorePipelineWidth).U
153
154  val deqMask = UIntToMask(deqPtr, StoreQueueSize)
155  val enqMask = UIntToMask(enqPtr, StoreQueueSize)
156
157  val commitCount = RegNext(io.rob.scommit)
158
159  // store can be committed by ROB
160  io.rob.mmio := DontCare
161  io.rob.uop := DontCare
162
163  // Read dataModule
164  assert(EnsbufferWidth <= 2)
165  // rdataPtrExtNext and rdataPtrExtNext+1 entry will be read from dataModule
166  val rdataPtrExtNext = WireInit(Mux(dataBuffer.io.enq(1).fire(),
167    VecInit(rdataPtrExt.map(_ + 2.U)),
168    Mux(dataBuffer.io.enq(0).fire() || io.mmioStout.fire(),
169      VecInit(rdataPtrExt.map(_ + 1.U)),
170      rdataPtrExt
171    )
172  ))
173
174  // deqPtrExtNext traces which inst is about to leave store queue
175  //
176  // io.sbuffer(i).fire() is RegNexted, as sbuffer data write takes 2 cycles.
177  // Before data write finish, sbuffer is unable to provide store to load
178  // forward data. As an workaround, deqPtrExt and allocated flag update
179  // is delayed so that load can get the right data from store queue.
180  //
181  // Modify deqPtrExtNext and io.sqDeq with care!
182  val deqPtrExtNext = Mux(RegNext(io.sbuffer(1).fire()),
183    VecInit(deqPtrExt.map(_ + 2.U)),
184    Mux(RegNext(io.sbuffer(0).fire()) || io.mmioStout.fire(),
185      VecInit(deqPtrExt.map(_ + 1.U)),
186      deqPtrExt
187    )
188  )
189  io.sqDeq := RegNext(Mux(RegNext(io.sbuffer(1).fire()), 2.U,
190    Mux(RegNext(io.sbuffer(0).fire()) || io.mmioStout.fire(), 1.U, 0.U)
191  ))
192  assert(!RegNext(RegNext(io.sbuffer(0).fire()) && io.mmioStout.fire()))
193
194  for (i <- 0 until EnsbufferWidth) {
195    dataModule.io.raddr(i) := rdataPtrExtNext(i).value
196    paddrModule.io.raddr(i) := rdataPtrExtNext(i).value
197    vaddrModule.io.raddr(i) := rdataPtrExtNext(i).value
198  }
199
200  // no inst will be committed 1 cycle before tval update
201  vaddrModule.io.raddr(EnsbufferWidth) := (cmtPtrExt(0) + commitCount).value
202
203  /**
204    * Enqueue at dispatch
205    *
206    * Currently, StoreQueue only allows enqueue when #emptyEntries > EnqWidth
207    */
208  io.enq.canAccept := allowEnqueue
209  val canEnqueue = io.enq.req.map(_.valid)
210  val enqCancel = io.enq.req.map(_.bits.robIdx.needFlush(io.brqRedirect))
211  for (i <- 0 until io.enq.req.length) {
212    val offset = if (i == 0) 0.U else PopCount(io.enq.needAlloc.take(i))
213    val sqIdx = enqPtrExt(offset)
214    val index = io.enq.req(i).bits.sqIdx.value
215    when (canEnqueue(i) && !enqCancel(i)) {
216      uop(index) := io.enq.req(i).bits
217      // NOTE: the index will be used when replay
218      uop(index).sqIdx := sqIdx
219      allocated(index) := true.B
220      datavalid(index) := false.B
221      addrvalid(index) := false.B
222      committed(index) := false.B
223      pending(index) := false.B
224      mmio(index) := false.B
225
226      XSError(!io.enq.canAccept || !io.enq.lqCanAccept, s"must accept $i\n")
227      XSError(index =/= sqIdx.value, s"must be the same entry $i\n")
228    }
229    io.enq.resp(i) := sqIdx
230  }
231  XSDebug(p"(ready, valid): ${io.enq.canAccept}, ${Binary(Cat(io.enq.req.map(_.valid)))}\n")
232
233  /**
234    * Update addr/dataReadyPtr when issue from rs
235    */
236  // update issuePtr
237  val IssuePtrMoveStride = 4
238  require(IssuePtrMoveStride >= 2)
239
240  val addrReadyLookupVec = (0 until IssuePtrMoveStride).map(addrReadyPtrExt + _.U)
241  val addrReadyLookup = addrReadyLookupVec.map(ptr => allocated(ptr.value) && (mmio(ptr.value) || addrvalid(ptr.value)) && ptr =/= enqPtrExt(0))
242  val nextAddrReadyPtr = addrReadyPtrExt + PriorityEncoder(VecInit(addrReadyLookup.map(!_) :+ true.B))
243  addrReadyPtrExt := nextAddrReadyPtr
244
245  (0 until StoreQueueSize).map(i => {
246    io.stAddrReadyVec(i) := RegNext(allocated(i) && (mmio(i) || addrvalid(i)))
247  })
248
249  when (io.brqRedirect.valid) {
250    addrReadyPtrExt := Mux(
251      isAfter(cmtPtrExt(0), deqPtrExt(0)),
252      cmtPtrExt(0),
253      deqPtrExtNext(0) // for mmio insts, deqPtr may be ahead of cmtPtr
254    )
255  }
256
257  io.stAddrReadySqPtr := addrReadyPtrExt
258
259  // update
260  val dataReadyLookupVec = (0 until IssuePtrMoveStride).map(dataReadyPtrExt + _.U)
261  val dataReadyLookup = dataReadyLookupVec.map(ptr => allocated(ptr.value) && (mmio(ptr.value) || datavalid(ptr.value)) && ptr =/= enqPtrExt(0))
262  val nextDataReadyPtr = dataReadyPtrExt + PriorityEncoder(VecInit(dataReadyLookup.map(!_) :+ true.B))
263  dataReadyPtrExt := nextDataReadyPtr
264
265  (0 until StoreQueueSize).map(i => {
266    io.stDataReadyVec(i) := RegNext(allocated(i) && (mmio(i) || datavalid(i)))
267  })
268
269  when (io.brqRedirect.valid) {
270    dataReadyPtrExt := Mux(
271      isAfter(cmtPtrExt(0), deqPtrExt(0)),
272      cmtPtrExt(0),
273      deqPtrExtNext(0) // for mmio insts, deqPtr may be ahead of cmtPtr
274    )
275  }
276
277  io.stDataReadySqPtr := dataReadyPtrExt
278  io.stIssuePtr := enqPtrExt(0)
279  io.sqDeqPtr := deqPtrExt(0)
280
281  /**
282    * Writeback store from store units
283    *
284    * Most store instructions writeback to regfile in the previous cycle.
285    * However,
286    *   (1) For an mmio instruction with exceptions, we need to mark it as addrvalid
287    * (in this way it will trigger an exception when it reaches ROB's head)
288    * instead of pending to avoid sending them to lower level.
289    *   (2) For an mmio instruction without exceptions, we mark it as pending.
290    * When the instruction reaches ROB's head, StoreQueue sends it to uncache channel.
291    * Upon receiving the response, StoreQueue writes back the instruction
292    * through arbiter with store units. It will later commit as normal.
293    */
294
295  // Write addr to sq
296  for (i <- 0 until StorePipelineWidth) {
297    paddrModule.io.wen(i) := false.B
298    vaddrModule.io.wen(i) := false.B
299    dataModule.io.mask.wen(i) := false.B
300    val stWbIndex = io.storeAddrIn(i).bits.uop.sqIdx.value
301    when (io.storeAddrIn(i).fire()) {
302      val addr_valid = !io.storeAddrIn(i).bits.miss
303      addrvalid(stWbIndex) := addr_valid //!io.storeAddrIn(i).bits.mmio
304      // pending(stWbIndex) := io.storeAddrIn(i).bits.mmio
305
306      paddrModule.io.waddr(i) := stWbIndex
307      paddrModule.io.wdata(i) := io.storeAddrIn(i).bits.paddr
308      paddrModule.io.wmask(i) := io.storeAddrIn(i).bits.mask
309      paddrModule.io.wlineflag(i) := io.storeAddrIn(i).bits.wlineflag
310      paddrModule.io.wen(i) := true.B
311
312      vaddrModule.io.waddr(i) := stWbIndex
313      vaddrModule.io.wdata(i) := io.storeAddrIn(i).bits.vaddr
314      vaddrModule.io.wmask(i) := io.storeAddrIn(i).bits.mask
315      vaddrModule.io.wlineflag(i) := io.storeAddrIn(i).bits.wlineflag
316      vaddrModule.io.wen(i) := true.B
317
318      debug_paddr(paddrModule.io.waddr(i)) := paddrModule.io.wdata(i)
319
320      // mmio(stWbIndex) := io.storeAddrIn(i).bits.mmio
321
322      uop(stWbIndex) := io.storeAddrIn(i).bits.uop
323      uop(stWbIndex).debugInfo := io.storeAddrIn(i).bits.uop.debugInfo
324      XSInfo("store addr write to sq idx %d pc 0x%x miss:%d vaddr %x paddr %x mmio %x\n",
325        io.storeAddrIn(i).bits.uop.sqIdx.value,
326        io.storeAddrIn(i).bits.uop.pc,
327        io.storeAddrIn(i).bits.miss,
328        io.storeAddrIn(i).bits.vaddr,
329        io.storeAddrIn(i).bits.paddr,
330        io.storeAddrIn(i).bits.mmio
331      )
332    }
333
334    // re-replinish mmio, for pma/pmp will get mmio one cycle later
335    val storeAddrInFireReg = RegNext(io.storeAddrIn(i).fire() && !io.storeAddrIn(i).bits.miss)
336    val stWbIndexReg = RegNext(stWbIndex)
337    when (storeAddrInFireReg) {
338      pending(stWbIndexReg) := io.storeAddrInRe(i).mmio
339      mmio(stWbIndexReg) := io.storeAddrInRe(i).mmio
340      atomic(stWbIndexReg) := io.storeAddrInRe(i).atomic
341    }
342
343    when(vaddrModule.io.wen(i)){
344      debug_vaddr(vaddrModule.io.waddr(i)) := vaddrModule.io.wdata(i)
345    }
346  }
347
348  // Write data to sq
349  // Now store data pipeline is actually 2 stages
350  for (i <- 0 until StorePipelineWidth) {
351    dataModule.io.data.wen(i) := false.B
352    val stWbIndex = io.storeDataIn(i).bits.uop.sqIdx.value
353    // sq data write takes 2 cycles:
354    // sq data write s0
355    when (io.storeDataIn(i).fire()) {
356      // send data write req to data module
357      dataModule.io.data.waddr(i) := stWbIndex
358      dataModule.io.data.wdata(i) := Mux(io.storeDataIn(i).bits.uop.fuOpType === LSUOpType.cbo_zero,
359        0.U,
360        genWdata(io.storeDataIn(i).bits.data, io.storeDataIn(i).bits.uop.fuOpType(1,0))
361      )
362      dataModule.io.data.wen(i) := true.B
363
364      debug_data(dataModule.io.data.waddr(i)) := dataModule.io.data.wdata(i)
365
366      XSInfo("store data write to sq idx %d pc 0x%x data %x -> %x\n",
367        io.storeDataIn(i).bits.uop.sqIdx.value,
368        io.storeDataIn(i).bits.uop.pc,
369        io.storeDataIn(i).bits.data,
370        dataModule.io.data.wdata(i)
371      )
372    }
373    // sq data write s1
374    when (
375      RegNext(io.storeDataIn(i).fire())
376      // && !RegNext(io.storeDataIn(i).bits.uop).robIdx.needFlush(io.brqRedirect)
377    ) {
378      datavalid(RegNext(stWbIndex)) := true.B
379    }
380  }
381
382  // Write mask to sq
383  for (i <- 0 until StorePipelineWidth) {
384    // sq mask write s0
385    when (io.storeMaskIn(i).fire()) {
386      // send data write req to data module
387      dataModule.io.mask.waddr(i) := io.storeMaskIn(i).bits.sqIdx.value
388      dataModule.io.mask.wdata(i) := io.storeMaskIn(i).bits.mask
389      dataModule.io.mask.wen(i) := true.B
390    }
391  }
392
393  /**
394    * load forward query
395    *
396    * Check store queue for instructions that is older than the load.
397    * The response will be valid at the next cycle after req.
398    */
399  // check over all lq entries and forward data from the first matched store
400  for (i <- 0 until LoadPipelineWidth) {
401    // Compare deqPtr (deqPtr) and forward.sqIdx, we have two cases:
402    // (1) if they have the same flag, we need to check range(tail, sqIdx)
403    // (2) if they have different flags, we need to check range(tail, VirtualLoadQueueSize) and range(0, sqIdx)
404    // Forward1: Mux(same_flag, range(tail, sqIdx), range(tail, VirtualLoadQueueSize))
405    // Forward2: Mux(same_flag, 0.U,                   range(0, sqIdx)    )
406    // i.e. forward1 is the target entries with the same flag bits and forward2 otherwise
407    val differentFlag = deqPtrExt(0).flag =/= io.forward(i).sqIdx.flag
408    val forwardMask = io.forward(i).sqIdxMask
409    // all addrvalid terms need to be checked
410    val addrValidVec = WireInit(VecInit((0 until StoreQueueSize).map(i => addrvalid(i) && allocated(i))))
411    val dataValidVec = WireInit(VecInit((0 until StoreQueueSize).map(i => datavalid(i))))
412    val allValidVec  = WireInit(VecInit((0 until StoreQueueSize).map(i => addrvalid(i) && datavalid(i) && allocated(i))))
413
414    val storeSetHitVec =
415      if (LFSTEnable) {
416        WireInit(VecInit((0 until StoreQueueSize).map(j => io.forward(i).uop.loadWaitBit && uop(j).robIdx === io.forward(i).uop.waitForRobIdx)))
417      } else {
418        WireInit(VecInit((0 until StoreQueueSize).map(j => uop(j).storeSetHit && uop(j).ssid === io.forward(i).uop.ssid)))
419      }
420
421    val forwardMask1 = Mux(differentFlag, ~deqMask, deqMask ^ forwardMask)
422    val forwardMask2 = Mux(differentFlag, forwardMask, 0.U(StoreQueueSize.W))
423    val canForward1 = forwardMask1 & allValidVec.asUInt
424    val canForward2 = forwardMask2 & allValidVec.asUInt
425    val needForward = Mux(differentFlag, ~deqMask | forwardMask, deqMask ^ forwardMask)
426
427    XSDebug(p"$i f1 ${Binary(canForward1)} f2 ${Binary(canForward2)} " +
428      p"sqIdx ${io.forward(i).sqIdx} pa ${Hexadecimal(io.forward(i).paddr)}\n"
429    )
430
431    // do real fwd query (cam lookup in load_s1)
432    dataModule.io.needForward(i)(0) := canForward1 & vaddrModule.io.forwardMmask(i).asUInt
433    dataModule.io.needForward(i)(1) := canForward2 & vaddrModule.io.forwardMmask(i).asUInt
434
435    vaddrModule.io.forwardMdata(i) := io.forward(i).vaddr
436    vaddrModule.io.forwardDataMask(i) := io.forward(i).mask
437    paddrModule.io.forwardMdata(i) := io.forward(i).paddr
438    paddrModule.io.forwardDataMask(i) := io.forward(i).mask
439
440
441    // vaddr cam result does not equal to paddr cam result
442    // replay needed
443    // val vpmaskNotEqual = ((paddrModule.io.forwardMmask(i).asUInt ^ vaddrModule.io.forwardMmask(i).asUInt) & needForward) =/= 0.U
444    // val vaddrMatchFailed = vpmaskNotEqual && io.forward(i).valid
445    val vpmaskNotEqual = (
446      (RegNext(paddrModule.io.forwardMmask(i).asUInt) ^ RegNext(vaddrModule.io.forwardMmask(i).asUInt)) &
447      RegNext(needForward) &
448      RegNext(addrValidVec.asUInt)
449    ) =/= 0.U
450    val vaddrMatchFailed = vpmaskNotEqual && RegNext(io.forward(i).valid)
451    when (vaddrMatchFailed) {
452      XSInfo("vaddrMatchFailed: pc %x pmask %x vmask %x\n",
453        RegNext(io.forward(i).uop.pc),
454        RegNext(needForward & paddrModule.io.forwardMmask(i).asUInt),
455        RegNext(needForward & vaddrModule.io.forwardMmask(i).asUInt)
456      );
457    }
458    XSPerfAccumulate("vaddr_match_failed", vpmaskNotEqual)
459    XSPerfAccumulate("vaddr_match_really_failed", vaddrMatchFailed)
460
461    // Fast forward mask will be generated immediately (load_s1)
462    io.forward(i).forwardMaskFast := dataModule.io.forwardMaskFast(i)
463
464    // Forward result will be generated 1 cycle later (load_s2)
465    io.forward(i).forwardMask := dataModule.io.forwardMask(i)
466    io.forward(i).forwardData := dataModule.io.forwardData(i)
467    // If addr match, data not ready, mark it as dataInvalid
468    // load_s1: generate dataInvalid in load_s1 to set fastUop
469    val dataInvalidMask1 = (addrValidVec.asUInt & ~dataValidVec.asUInt & vaddrModule.io.forwardMmask(i).asUInt & forwardMask1.asUInt)
470    val dataInvalidMask2 = (addrValidVec.asUInt & ~dataValidVec.asUInt & vaddrModule.io.forwardMmask(i).asUInt & forwardMask2.asUInt)
471    val dataInvalidMask = dataInvalidMask1 | dataInvalidMask2
472    io.forward(i).dataInvalidFast := dataInvalidMask.orR
473
474    // make chisel happy
475    val dataInvalidMask1Reg = Wire(UInt(StoreQueueSize.W))
476    dataInvalidMask1Reg := RegNext(dataInvalidMask1)
477    // make chisel happy
478    val dataInvalidMask2Reg = Wire(UInt(StoreQueueSize.W))
479    dataInvalidMask2Reg := RegNext(dataInvalidMask2)
480    val dataInvalidMaskReg = dataInvalidMask1Reg | dataInvalidMask2Reg
481
482    // If SSID match, address not ready, mark it as addrInvalid
483    // load_s2: generate addrInvalid
484    val addrInvalidMask1 = (~addrValidVec.asUInt & storeSetHitVec.asUInt & forwardMask1.asUInt)
485    val addrInvalidMask2 = (~addrValidVec.asUInt & storeSetHitVec.asUInt & forwardMask2.asUInt)
486    // make chisel happy
487    val addrInvalidMask1Reg = Wire(UInt(StoreQueueSize.W))
488    addrInvalidMask1Reg := RegNext(addrInvalidMask1)
489    // make chisel happy
490    val addrInvalidMask2Reg = Wire(UInt(StoreQueueSize.W))
491    addrInvalidMask2Reg := RegNext(addrInvalidMask2)
492    val addrInvalidMaskReg = addrInvalidMask1Reg | addrInvalidMask2Reg
493
494    // load_s2
495    io.forward(i).dataInvalid := RegNext(io.forward(i).dataInvalidFast)
496    // check if vaddr forward mismatched
497    io.forward(i).matchInvalid := vaddrMatchFailed
498
499    // data invalid sq index
500    // check whether false fail
501    // check flag
502    val s2_differentFlag = RegNext(differentFlag)
503    val s2_enqPtrExt = RegNext(enqPtrExt(0))
504    val s2_deqPtrExt = RegNext(deqPtrExt(0))
505
506    // addr invalid sq index
507    // make chisel happy
508    val addrInvalidMaskRegWire = Wire(UInt(StoreQueueSize.W))
509    addrInvalidMaskRegWire := addrInvalidMaskReg
510    val addrInvalidFlag = addrInvalidMaskRegWire.orR
511    val hasInvalidAddr = (~addrValidVec.asUInt & needForward).orR
512
513    val addrInvalidSqIdx1 = OHToUInt(Reverse(PriorityEncoderOH(Reverse(addrInvalidMask1Reg))))
514    val addrInvalidSqIdx2 = OHToUInt(Reverse(PriorityEncoderOH(Reverse(addrInvalidMask2Reg))))
515    val addrInvalidSqIdx = Mux(addrInvalidMask2Reg.orR, addrInvalidSqIdx2, addrInvalidSqIdx1)
516
517    // store-set content management
518    //                +-----------------------+
519    //                | Search a SSID for the |
520    //                |    load operation     |
521    //                +-----------------------+
522    //                           |
523    //                           V
524    //                 +-------------------+
525    //                 | load wait strict? |
526    //                 +-------------------+
527    //                           |
528    //                           V
529    //               +----------------------+
530    //            Set|                      |Clean
531    //               V                      V
532    //  +------------------------+   +------------------------------+
533    //  | Waiting for all older  |   | Wait until the corresponding |
534    //  |   stores operations    |   | older store operations       |
535    //  +------------------------+   +------------------------------+
536
537
538
539    when (RegNext(io.forward(i).uop.loadWaitStrict)) {
540      io.forward(i).addrInvalidSqIdx := RegNext(io.forward(i).uop.sqIdx - 1.U)
541    } .elsewhen (addrInvalidFlag) {
542      io.forward(i).addrInvalidSqIdx.flag := Mux(!s2_differentFlag || addrInvalidSqIdx >= s2_deqPtrExt.value, s2_deqPtrExt.flag, s2_enqPtrExt.flag)
543      io.forward(i).addrInvalidSqIdx.value := addrInvalidSqIdx
544    } .otherwise {
545      // may be store inst has been written to sbuffer already.
546      io.forward(i).addrInvalidSqIdx := RegNext(io.forward(i).uop.sqIdx)
547    }
548    io.forward(i).addrInvalid := Mux(RegNext(io.forward(i).uop.loadWaitStrict), RegNext(hasInvalidAddr), addrInvalidFlag)
549
550    // data invalid sq index
551    // make chisel happy
552    val dataInvalidMaskRegWire = Wire(UInt(StoreQueueSize.W))
553    dataInvalidMaskRegWire := dataInvalidMaskReg
554    val dataInvalidFlag = dataInvalidMaskRegWire.orR
555
556    val dataInvalidSqIdx1 = OHToUInt(Reverse(PriorityEncoderOH(Reverse(dataInvalidMask1Reg))))
557    val dataInvalidSqIdx2 = OHToUInt(Reverse(PriorityEncoderOH(Reverse(dataInvalidMask2Reg))))
558    val dataInvalidSqIdx = Mux(dataInvalidMask2Reg.orR, dataInvalidSqIdx2, dataInvalidSqIdx1)
559
560    when (dataInvalidFlag) {
561      io.forward(i).dataInvalidSqIdx.flag := Mux(!s2_differentFlag || dataInvalidSqIdx >= s2_deqPtrExt.value, s2_deqPtrExt.flag, s2_enqPtrExt.flag)
562      io.forward(i).dataInvalidSqIdx.value := dataInvalidSqIdx
563    } .otherwise {
564      // may be store inst has been written to sbuffer already.
565      io.forward(i).dataInvalidSqIdx := RegNext(io.forward(i).uop.sqIdx)
566    }
567  }
568
569  /**
570    * Memory mapped IO / other uncached operations
571    *
572    * States:
573    * (1) writeback from store units: mark as pending
574    * (2) when they reach ROB's head, they can be sent to uncache channel
575    * (3) response from uncache channel: mark as datavalidmask.wen
576    * (4) writeback to ROB (and other units): mark as writebacked
577    * (5) ROB commits the instruction: same as normal instructions
578    */
579  //(2) when they reach ROB's head, they can be sent to uncache channel
580  val s_idle :: s_req :: s_resp :: s_wb :: s_wait :: Nil = Enum(5)
581  val uncacheState = RegInit(s_idle)
582  switch(uncacheState) {
583    is(s_idle) {
584      when(RegNext(io.rob.pendingst && pending(deqPtr) && allocated(deqPtr) && datavalid(deqPtr) && addrvalid(deqPtr))) {
585        uncacheState := s_req
586      }
587    }
588    is(s_req) {
589      when (io.uncache.req.fire) {
590        when (io.uncacheOutstanding) {
591          uncacheState := s_wb
592        } .otherwise {
593          uncacheState := s_resp
594        }
595      }
596    }
597    is(s_resp) {
598      when(io.uncache.resp.fire()) {
599        uncacheState := s_wb
600      }
601    }
602    is(s_wb) {
603      when (io.mmioStout.fire()) {
604        uncacheState := s_wait
605      }
606    }
607    is(s_wait) {
608      when(commitCount > 0.U) {
609        uncacheState := s_idle // ready for next mmio
610      }
611    }
612  }
613  io.uncache.req.valid := uncacheState === s_req
614
615  io.uncache.req.bits := DontCare
616  io.uncache.req.bits.cmd  := MemoryOpConstants.M_XWR
617  io.uncache.req.bits.addr := paddrModule.io.rdata(0) // data(deqPtr) -> rdata(0)
618  io.uncache.req.bits.data := shiftDataToLow(paddrModule.io.rdata(0), dataModule.io.rdata(0).data)
619  io.uncache.req.bits.mask := shiftMaskToLow(paddrModule.io.rdata(0), dataModule.io.rdata(0).mask)
620
621  // CBO op type check can be delayed for 1 cycle,
622  // as uncache op will not start in s_idle
623  val cbo_mmio_addr = paddrModule.io.rdata(0) >> 2 << 2 // clear lowest 2 bits for op
624  val cbo_mmio_op = 0.U //TODO
625  val cbo_mmio_data = cbo_mmio_addr | cbo_mmio_op
626  when(RegNext(LSUOpType.isCbo(uop(deqPtr).fuOpType))){
627    io.uncache.req.bits.addr := DontCare // TODO
628    io.uncache.req.bits.data := paddrModule.io.rdata(0)
629    io.uncache.req.bits.mask := DontCare // TODO
630  }
631
632  io.uncache.req.bits.atomic := atomic(RegNext(rdataPtrExtNext(0)).value)
633
634  when(io.uncache.req.fire){
635    // mmio store should not be committed until uncache req is sent
636    pending(deqPtr) := false.B
637
638    XSDebug(
639      p"uncache req: pc ${Hexadecimal(uop(deqPtr).pc)} " +
640      p"addr ${Hexadecimal(io.uncache.req.bits.addr)} " +
641      p"data ${Hexadecimal(io.uncache.req.bits.data)} " +
642      p"op ${Hexadecimal(io.uncache.req.bits.cmd)} " +
643      p"mask ${Hexadecimal(io.uncache.req.bits.mask)}\n"
644    )
645  }
646
647  // (3) response from uncache channel: mark as datavalid
648  io.uncache.resp.ready := true.B
649
650  // (4) writeback to ROB (and other units): mark as writebacked
651  io.mmioStout.valid := uncacheState === s_wb
652  io.mmioStout.bits.uop := uop(deqPtr)
653  io.mmioStout.bits.uop.sqIdx := deqPtrExt(0)
654  io.mmioStout.bits.data := shiftDataToLow(paddrModule.io.rdata(0), dataModule.io.rdata(0).data) // dataModule.io.rdata.read(deqPtr)
655  io.mmioStout.bits.debug.isMMIO := true.B
656  io.mmioStout.bits.debug.paddr := DontCare
657  io.mmioStout.bits.debug.isPerfCnt := false.B
658  io.mmioStout.bits.debug.vaddr := DontCare
659  // Remove MMIO inst from store queue after MMIO request is being sent
660  // That inst will be traced by uncache state machine
661  when (io.mmioStout.fire()) {
662    allocated(deqPtr) := false.B
663  }
664
665  /**
666    * ROB commits store instructions (mark them as committed)
667    *
668    * (1) When store commits, mark it as committed.
669    * (2) They will not be cancelled and can be sent to lower level.
670    */
671  XSError(uncacheState =/= s_idle && uncacheState =/= s_wait && commitCount > 0.U,
672   "should not commit instruction when MMIO has not been finished\n")
673  for (i <- 0 until CommitWidth) {
674    when (commitCount > i.U) { // MMIO inst is not in progress
675      if(i == 0){
676        // MMIO inst should not update committed flag
677        // Note that commit count has been delayed for 1 cycle
678        when(uncacheState === s_idle){
679          committed(cmtPtrExt(0).value) := true.B
680        }
681      } else {
682        committed(cmtPtrExt(i).value) := true.B
683      }
684    }
685  }
686  cmtPtrExt := cmtPtrExt.map(_ + commitCount)
687
688  // committed stores will not be cancelled and can be sent to lower level.
689  // remove retired insts from sq, add retired store to sbuffer
690
691  // Read data from data module
692  // As store queue grows larger and larger, time needed to read data from data
693  // module keeps growing higher. Now we give data read a whole cycle.
694
695  val mmioStall = mmio(rdataPtrExt(0).value)
696  for (i <- 0 until EnsbufferWidth) {
697    val ptr = rdataPtrExt(i).value
698    dataBuffer.io.enq(i).valid := allocated(ptr) && committed(ptr) && !mmioStall
699    // Note that store data/addr should both be valid after store's commit
700    assert(!dataBuffer.io.enq(i).valid || allvalid(ptr))
701    dataBuffer.io.enq(i).bits.addr  := paddrModule.io.rdata(i)
702    dataBuffer.io.enq(i).bits.vaddr := vaddrModule.io.rdata(i)
703    dataBuffer.io.enq(i).bits.data  := dataModule.io.rdata(i).data
704    dataBuffer.io.enq(i).bits.mask  := dataModule.io.rdata(i).mask
705    dataBuffer.io.enq(i).bits.wline := paddrModule.io.rlineflag(i)
706    dataBuffer.io.enq(i).bits.sqPtr := rdataPtrExt(i)
707  }
708
709  // Send data stored in sbufferReqBitsReg to sbuffer
710  for (i <- 0 until EnsbufferWidth) {
711    io.sbuffer(i).valid := dataBuffer.io.deq(i).valid
712    dataBuffer.io.deq(i).ready := io.sbuffer(i).ready
713    // Write line request should have all 1 mask
714    assert(!(io.sbuffer(i).valid && io.sbuffer(i).bits.wline && !io.sbuffer(i).bits.mask.andR))
715    io.sbuffer(i).bits := DontCare
716    io.sbuffer(i).bits.cmd   := MemoryOpConstants.M_XWR
717    io.sbuffer(i).bits.addr  := dataBuffer.io.deq(i).bits.addr
718    io.sbuffer(i).bits.vaddr := dataBuffer.io.deq(i).bits.vaddr
719    io.sbuffer(i).bits.data  := dataBuffer.io.deq(i).bits.data
720    io.sbuffer(i).bits.mask  := dataBuffer.io.deq(i).bits.mask
721    io.sbuffer(i).bits.wline := dataBuffer.io.deq(i).bits.wline
722
723    // io.sbuffer(i).fire() is RegNexted, as sbuffer data write takes 2 cycles.
724    // Before data write finish, sbuffer is unable to provide store to load
725    // forward data. As an workaround, deqPtrExt and allocated flag update
726    // is delayed so that load can get the right data from store queue.
727    val ptr = dataBuffer.io.deq(i).bits.sqPtr.value
728    when (RegNext(io.sbuffer(i).fire())) {
729      allocated(RegEnable(ptr, io.sbuffer(i).fire())) := false.B
730      XSDebug("sbuffer "+i+" fire: ptr %d\n", ptr)
731    }
732  }
733  (1 until EnsbufferWidth).foreach(i => when(io.sbuffer(i).fire) { assert(io.sbuffer(i - 1).fire) })
734  if (coreParams.dcacheParametersOpt.isEmpty) {
735    for (i <- 0 until EnsbufferWidth) {
736      val ptr = deqPtrExt(i).value
737      val fakeRAM = Module(new RAMHelper(64L * 1024 * 1024 * 1024))
738      fakeRAM.clk   := clock
739      fakeRAM.en    := allocated(ptr) && committed(ptr) && !mmio(ptr)
740      fakeRAM.rIdx  := 0.U
741      fakeRAM.wIdx  := (paddrModule.io.rdata(i) - "h80000000".U) >> 3
742      fakeRAM.wdata := Mux(paddrModule.io.rdata(i)(3), dataModule.io.rdata(i).data(127,64), dataModule.io.rdata(i).data(63,0))
743      fakeRAM.wmask := Mux(paddrModule.io.rdata(i)(3), MaskExpand(dataModule.io.rdata(i).mask(15,8)), MaskExpand(dataModule.io.rdata(i).mask(7,0)))
744      fakeRAM.wen   := allocated(ptr) && committed(ptr) && !mmio(ptr)
745    }
746  }
747
748  if (env.EnableDifftest) {
749    for (i <- 0 until EnsbufferWidth) {
750      val storeCommit = io.sbuffer(i).fire()
751      val waddr = SignExt(io.sbuffer(i).bits.addr, 64)
752      val sbufferMask = shiftMaskToLow(io.sbuffer(i).bits.addr, io.sbuffer(i).bits.mask)
753      val sbufferData = shiftDataToLow(io.sbuffer(i).bits.addr, io.sbuffer(i).bits.data)
754      val wmask = sbufferMask
755      val wdata = sbufferData & MaskExpand(sbufferMask)
756
757      val difftest = Module(new DifftestStoreEvent)
758      difftest.io.clock       := clock
759      difftest.io.coreid      := io.hartId
760      difftest.io.index       := i.U
761      difftest.io.valid       := RegNext(RegNext(storeCommit))
762      difftest.io.storeAddr   := RegNext(RegNext(waddr))
763      difftest.io.storeData   := RegNext(RegNext(wdata))
764      difftest.io.storeMask   := RegNext(RegNext(wmask))
765    }
766  }
767
768  // Read vaddr for mem exception
769  io.exceptionAddr.vaddr := vaddrModule.io.rdata(EnsbufferWidth)
770
771  // misprediction recovery / exception redirect
772  // invalidate sq term using robIdx
773  val needCancel = Wire(Vec(StoreQueueSize, Bool()))
774  for (i <- 0 until StoreQueueSize) {
775    needCancel(i) := uop(i).robIdx.needFlush(io.brqRedirect) && allocated(i) && !committed(i)
776    when (needCancel(i)) {
777      allocated(i) := false.B
778    }
779  }
780
781 /**
782* update pointers
783**/
784  val lastEnqCancel = PopCount(RegNext(VecInit(canEnqueue.zip(enqCancel).map(x => x._1 && x._2)))) // 1 cycle after redirect
785  val lastCycleCancelCount = PopCount(RegNext(needCancel)) // 1 cycle after redirect
786  val lastCycleRedirect = RegNext(io.brqRedirect.valid) // 1 cycle after redirect
787  val enqNumber = Mux(!lastCycleRedirect&&io.enq.canAccept && io.enq.lqCanAccept, PopCount(io.enq.req.map(_.valid)), 0.U) // 1 cycle after redirect
788
789  val lastlastCycleRedirect=RegNext(lastCycleRedirect)// 2 cycle after redirect
790  val redirectCancelCount = RegEnable(lastCycleCancelCount + lastEnqCancel, lastCycleRedirect) // 2 cycle after redirect
791
792  when (lastlastCycleRedirect) {
793    // we recover the pointers in 2 cycle after redirect for better timing
794    enqPtrExt := VecInit(enqPtrExt.map(_ - redirectCancelCount))
795  }.otherwise {
796    // lastCycleRedirect.valid or nornal case
797    // when lastCycleRedirect.valid, enqNumber === 0.U, enqPtrExt will not change
798    enqPtrExt := VecInit(enqPtrExt.map(_ + enqNumber))
799  }
800  assert(!(lastCycleRedirect && enqNumber =/= 0.U))
801
802  deqPtrExt := deqPtrExtNext
803  rdataPtrExt := rdataPtrExtNext
804
805  // val dequeueCount = Mux(io.sbuffer(1).fire(), 2.U, Mux(io.sbuffer(0).fire() || io.mmioStout.fire(), 1.U, 0.U))
806
807  // If redirect at T0, sqCancelCnt is at T2
808  io.sqCancelCnt := redirectCancelCount
809  val ForceWriteUpper = Wire(UInt(log2Up(StoreQueueSize + 1).W))
810  ForceWriteUpper := Constantin.createRecord("ForceWriteUpper_"+p(XSCoreParamsKey).HartId.toString(), initValue = 60.U)
811  val ForceWriteLower = Wire(UInt(log2Up(StoreQueueSize + 1).W))
812  ForceWriteLower := Constantin.createRecord("ForceWriteLower_"+p(XSCoreParamsKey).HartId.toString(), initValue = 55.U)
813
814  val valid_cnt = PopCount(allocated)
815  io.force_write := RegNext(Mux(valid_cnt >= ForceWriteUpper, true.B, valid_cnt >= ForceWriteLower && io.force_write), init = false.B)
816
817  // io.sqempty will be used by sbuffer
818  // We delay it for 1 cycle for better timing
819  // When sbuffer need to check if it is empty, the pipeline is blocked, which means delay io.sqempty
820  // for 1 cycle will also promise that sq is empty in that cycle
821  io.sqEmpty := RegNext(
822    enqPtrExt(0).value === deqPtrExt(0).value &&
823    enqPtrExt(0).flag === deqPtrExt(0).flag
824  )
825  // perf counter
826  QueuePerf(StoreQueueSize, validCount, !allowEnqueue)
827  io.sqFull := !allowEnqueue
828  XSPerfAccumulate("mmioCycle", uncacheState =/= s_idle) // lq is busy dealing with uncache req
829  XSPerfAccumulate("mmioCnt", io.uncache.req.fire())
830  XSPerfAccumulate("mmio_wb_success", io.mmioStout.fire())
831  XSPerfAccumulate("mmio_wb_blocked", io.mmioStout.valid && !io.mmioStout.ready)
832  XSPerfAccumulate("validEntryCnt", distanceBetween(enqPtrExt(0), deqPtrExt(0)))
833  XSPerfAccumulate("cmtEntryCnt", distanceBetween(cmtPtrExt(0), deqPtrExt(0)))
834  XSPerfAccumulate("nCmtEntryCnt", distanceBetween(enqPtrExt(0), cmtPtrExt(0)))
835
836  val perfValidCount = distanceBetween(enqPtrExt(0), deqPtrExt(0))
837  val perfEvents = Seq(
838    ("mmioCycle      ", uncacheState =/= s_idle),
839    ("mmioCnt        ", io.uncache.req.fire()),
840    ("mmio_wb_success", io.mmioStout.fire()),
841    ("mmio_wb_blocked", io.mmioStout.valid && !io.mmioStout.ready),
842    ("stq_1_4_valid  ", (perfValidCount < (StoreQueueSize.U/4.U))),
843    ("stq_2_4_valid  ", (perfValidCount > (StoreQueueSize.U/4.U)) & (perfValidCount <= (StoreQueueSize.U/2.U))),
844    ("stq_3_4_valid  ", (perfValidCount > (StoreQueueSize.U/2.U)) & (perfValidCount <= (StoreQueueSize.U*3.U/4.U))),
845    ("stq_4_4_valid  ", (perfValidCount > (StoreQueueSize.U*3.U/4.U))),
846  )
847  generatePerfEvent()
848
849  // debug info
850  XSDebug("enqPtrExt %d:%d deqPtrExt %d:%d\n", enqPtrExt(0).flag, enqPtr, deqPtrExt(0).flag, deqPtr)
851
852  def PrintFlag(flag: Bool, name: String): Unit = {
853    when(flag) {
854      XSDebug(false, true.B, name)
855    }.otherwise {
856      XSDebug(false, true.B, " ")
857    }
858  }
859
860  for (i <- 0 until StoreQueueSize) {
861    XSDebug(i + ": pc %x va %x pa %x data %x ",
862      uop(i).pc,
863      debug_vaddr(i),
864      debug_paddr(i),
865      debug_data(i)
866    )
867    PrintFlag(allocated(i), "a")
868    PrintFlag(allocated(i) && addrvalid(i), "a")
869    PrintFlag(allocated(i) && datavalid(i), "d")
870    PrintFlag(allocated(i) && committed(i), "c")
871    PrintFlag(allocated(i) && pending(i), "p")
872    PrintFlag(allocated(i) && mmio(i), "m")
873    XSDebug(false, true.B, "\n")
874  }
875
876}
877