xref: /XiangShan/src/main/scala/xiangshan/mem/lsqueue/StoreQueue.scala (revision 84286fdbd1390e2664a748dfa206bf0f5a4b4381)
1/***************************************************************************************
2* Copyright (c) 2020-2021 Institute of Computing Technology, Chinese Academy of Sciences
3* Copyright (c) 2020-2021 Peng Cheng Laboratory
4*
5* XiangShan is licensed under Mulan PSL v2.
6* You can use this software according to the terms and conditions of the Mulan PSL v2.
7* You may obtain a copy of Mulan PSL v2 at:
8*          http://license.coscl.org.cn/MulanPSL2
9*
10* THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND,
11* EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT,
12* MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE.
13*
14* See the Mulan PSL v2 for more details.
15***************************************************************************************/
16
17package xiangshan.mem
18
19import chisel3._
20import chisel3.util._
21import difftest._
22import difftest.common.DifftestMem
23import org.chipsalliance.cde.config.Parameters
24import utility._
25import utils._
26import xiangshan._
27import xiangshan.cache._
28import xiangshan.cache.{DCacheLineIO, DCacheWordIO, MemoryOpConstants}
29import xiangshan.backend._
30import xiangshan.backend.rob.{RobLsqIO, RobPtr}
31import xiangshan.backend.Bundles.{DynInst, MemExuOutput}
32import xiangshan.backend.decode.isa.bitfield.{Riscv32BitInst, XSInstBitFields}
33import xiangshan.backend.fu.FuConfig._
34import xiangshan.backend.fu.FuType
35
36class SqPtr(implicit p: Parameters) extends CircularQueuePtr[SqPtr](
37  p => p(XSCoreParamsKey).StoreQueueSize
38){
39}
40
41object SqPtr {
42  def apply(f: Bool, v: UInt)(implicit p: Parameters): SqPtr = {
43    val ptr = Wire(new SqPtr)
44    ptr.flag := f
45    ptr.value := v
46    ptr
47  }
48}
49
50class SqEnqIO(implicit p: Parameters) extends MemBlockBundle {
51  val canAccept = Output(Bool())
52  val lqCanAccept = Input(Bool())
53  val needAlloc = Vec(LSQEnqWidth, Input(Bool()))
54  val req = Vec(LSQEnqWidth, Flipped(ValidIO(new DynInst)))
55  val resp = Vec(LSQEnqWidth, Output(new SqPtr))
56}
57
58class DataBufferEntry (implicit p: Parameters)  extends DCacheBundle {
59  val addr   = UInt(PAddrBits.W)
60  val vaddr  = UInt(VAddrBits.W)
61  val data   = UInt(VLEN.W)
62  val mask   = UInt((VLEN/8).W)
63  val wline = Bool()
64  val sqPtr  = new SqPtr
65  val prefetch = Bool()
66  val vecValid = Bool()
67}
68
69class StoreExceptionBuffer(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper {
70  val io = IO(new Bundle() {
71    val redirect = Flipped(ValidIO(new Redirect))
72    val storeAddrIn = Vec(StorePipelineWidth + 1, Flipped(ValidIO(new LsPipelineBundle())))
73    val exceptionAddr = new ExceptionAddrIO
74  })
75
76  val req_valid = RegInit(false.B)
77  val req = Reg(new LsPipelineBundle())
78
79  // enqueue
80  // S1:
81  val s1_req = VecInit(io.storeAddrIn.map(_.bits))
82  val s1_valid = VecInit(io.storeAddrIn.map(_.valid))
83
84  // S2: delay 1 cycle
85  val s2_req = RegNext(s1_req)
86  val s2_valid = (0 until StorePipelineWidth + 1).map(i =>
87    RegNext(s1_valid(i)) &&
88      !s2_req(i).uop.robIdx.needFlush(RegNext(io.redirect)) &&
89      !s2_req(i).uop.robIdx.needFlush(io.redirect)
90  )
91  val s2_has_exception = s2_req.map(x => ExceptionNO.selectByFu(x.uop.exceptionVec, StaCfg).asUInt.orR)
92
93  val s2_enqueue = Wire(Vec(StorePipelineWidth + 1, Bool()))
94  for (w <- 0 until StorePipelineWidth + 1) {
95    s2_enqueue(w) := s2_valid(w) && s2_has_exception(w)
96  }
97
98  when (req_valid && req.uop.robIdx.needFlush(io.redirect)) {
99    req_valid := s2_enqueue.asUInt.orR
100  }.elsewhen (s2_enqueue.asUInt.orR) {
101    req_valid := req_valid || true.B
102  }
103
104  def selectOldest[T <: LsPipelineBundle](valid: Seq[Bool], bits: Seq[T]): (Seq[Bool], Seq[T]) = {
105    assert(valid.length == bits.length)
106    if (valid.length == 0 || valid.length == 1) {
107      (valid, bits)
108    } else if (valid.length == 2) {
109      val res = Seq.fill(2)(Wire(Valid(chiselTypeOf(bits(0)))))
110      for (i <- res.indices) {
111        res(i).valid := valid(i)
112        res(i).bits := bits(i)
113      }
114      val oldest = Mux(valid(0) && valid(1),
115        Mux(isAfter(bits(0).uop.robIdx, bits(1).uop.robIdx) ||
116          (isNotBefore(bits(0).uop.robIdx, bits(1).uop.robIdx) && bits(0).uop.uopIdx > bits(1).uop.uopIdx), res(1), res(0)),
117        Mux(valid(0) && !valid(1), res(0), res(1)))
118      (Seq(oldest.valid), Seq(oldest.bits))
119    } else {
120      val left = selectOldest(valid.take(valid.length / 2), bits.take(bits.length / 2))
121      val right = selectOldest(valid.takeRight(valid.length - (valid.length / 2)), bits.takeRight(bits.length - (bits.length / 2)))
122      selectOldest(left._1 ++ right._1, left._2 ++ right._2)
123    }
124  }
125
126  val reqSel = selectOldest(s2_enqueue, s2_req)
127
128  when (req_valid) {
129    req := Mux(reqSel._1(0) && isAfter(req.uop.robIdx, reqSel._2(0).uop.robIdx) ||
130      (isNotBefore(req.uop.robIdx, reqSel._2(0).uop.robIdx) && req.uop.uopIdx > reqSel._2(0).uop.uopIdx), reqSel._2(0), req)
131  } .elsewhen (s2_enqueue.asUInt.orR) {
132    req := reqSel._2(0)
133  }
134
135  io.exceptionAddr.vaddr := req.vaddr
136  io.exceptionAddr.vstart := req.uop.vpu.vstart
137  io.exceptionAddr.vl     := 0.U
138}
139
140// Store Queue
141class StoreQueue(implicit p: Parameters) extends XSModule
142  with HasDCacheParameters
143  with HasCircularQueuePtrHelper
144  with HasPerfEvents
145  with HasVLSUParameters {
146  val io = IO(new Bundle() {
147    val hartId = Input(UInt(8.W))
148    val enq = new SqEnqIO
149    val brqRedirect = Flipped(ValidIO(new Redirect))
150    val vecFeedback = Flipped(ValidIO(new FeedbackToLsqIO))
151    val storeAddrIn = Vec(StorePipelineWidth, Flipped(Valid(new LsPipelineBundle))) // store addr, data is not included
152    val storeAddrInRe = Vec(StorePipelineWidth, Input(new LsPipelineBundle())) // store more mmio and exception
153    val storeDataIn = Vec(StorePipelineWidth, Flipped(Valid(new MemExuOutput(isVector = true)))) // store data, send to sq from rs
154    val storeMaskIn = Vec(StorePipelineWidth, Flipped(Valid(new StoreMaskBundle))) // store mask, send to sq from rs
155    val sbuffer = Vec(EnsbufferWidth, Decoupled(new DCacheWordReqWithVaddrAndPfFlag)) // write committed store to sbuffer
156    val sbufferVecDifftestInfo = Vec(EnsbufferWidth, Decoupled(new DynInst)) // The vector store difftest needs is, write committed store to sbuffer
157    val uncacheOutstanding = Input(Bool())
158    val mmioStout = DecoupledIO(new MemExuOutput) // writeback uncached store
159    val vecmmioStout = DecoupledIO(new MemExuOutput(isVector = true))
160    val forward = Vec(LoadPipelineWidth, Flipped(new PipeLoadForwardQueryIO))
161    // TODO: scommit is only for scalar store
162    val rob = Flipped(new RobLsqIO)
163    val uncache = new UncacheWordIO
164    // val refill = Flipped(Valid(new DCacheLineReq ))
165    val exceptionAddr = new ExceptionAddrIO
166    val sqEmpty = Output(Bool())
167    val stAddrReadySqPtr = Output(new SqPtr)
168    val stAddrReadyVec = Output(Vec(StoreQueueSize, Bool()))
169    val stDataReadySqPtr = Output(new SqPtr)
170    val stDataReadyVec = Output(Vec(StoreQueueSize, Bool()))
171    val stIssuePtr = Output(new SqPtr)
172    val sqDeqPtr = Output(new SqPtr)
173    val sqFull = Output(Bool())
174    val sqCancelCnt = Output(UInt(log2Up(StoreQueueSize + 1).W))
175    val sqDeq = Output(UInt(log2Ceil(EnsbufferWidth + 1).W))
176    val force_write = Output(Bool())
177  })
178
179  println("StoreQueue: size:" + StoreQueueSize)
180
181  // data modules
182  val uop = Reg(Vec(StoreQueueSize, new DynInst))
183  // val data = Reg(Vec(StoreQueueSize, new LsqEntry))
184  val dataModule = Module(new SQDataModule(
185    numEntries = StoreQueueSize,
186    numRead = EnsbufferWidth,
187    numWrite = StorePipelineWidth,
188    numForward = LoadPipelineWidth
189  ))
190  dataModule.io := DontCare
191  val paddrModule = Module(new SQAddrModule(
192    dataWidth = PAddrBits,
193    numEntries = StoreQueueSize,
194    numRead = EnsbufferWidth,
195    numWrite = StorePipelineWidth,
196    numForward = LoadPipelineWidth
197  ))
198  paddrModule.io := DontCare
199  val vaddrModule = Module(new SQAddrModule(
200    dataWidth = VAddrBits,
201    numEntries = StoreQueueSize,
202    numRead = EnsbufferWidth, // sbuffer; badvaddr will be sent from exceptionBuffer
203    numWrite = StorePipelineWidth,
204    numForward = LoadPipelineWidth
205  ))
206  vaddrModule.io := DontCare
207  val dataBuffer = Module(new DatamoduleResultBuffer(new DataBufferEntry))
208  val difftestBuffer = if (env.EnableDifftest) Some(Module(new DatamoduleResultBuffer(new DynInst))) else None
209  val exceptionBuffer = Module(new StoreExceptionBuffer)
210  exceptionBuffer.io.redirect := io.brqRedirect
211  exceptionBuffer.io.exceptionAddr.isStore := DontCare
212  // TODO: implement it!
213  exceptionBuffer.io.storeAddrIn(StorePipelineWidth) := DontCare
214
215  val debug_paddr = Reg(Vec(StoreQueueSize, UInt((PAddrBits).W)))
216  val debug_vaddr = Reg(Vec(StoreQueueSize, UInt((VAddrBits).W)))
217  val debug_data = Reg(Vec(StoreQueueSize, UInt((XLEN).W)))
218
219  // state & misc
220  val allocated = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // sq entry has been allocated
221  val addrvalid = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // non-mmio addr is valid
222  val datavalid = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // non-mmio data is valid
223  val allvalid  = VecInit((0 until StoreQueueSize).map(i => addrvalid(i) && datavalid(i))) // non-mmio data & addr is valid
224  val committed = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // inst has been committed by rob
225  val pending = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // mmio pending: inst is an mmio inst, it will not be executed until it reachs the end of rob
226  val mmio = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // mmio: inst is an mmio inst
227  val atomic = RegInit(VecInit(List.fill(StoreQueueSize)(false.B)))
228  val prefetch = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // need prefetch when committing this store to sbuffer?
229  val isVec = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // vector store instruction
230  //val vec_lastuop = Reg(Vec(StoreQueueSize, Bool())) // last uop of vector store instruction
231  val vecMbCommit = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // vector store committed from merge buffer to rob
232  val vecDataValid = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // vector store need write to sbuffer
233  // val vec_robCommit = Reg(Vec(StoreQueueSize, Bool())) // vector store committed by rob
234  // val vec_secondInv = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // Vector unit-stride, second entry is invalid
235
236  // ptr
237  val enqPtrExt = RegInit(VecInit((0 until io.enq.req.length).map(_.U.asTypeOf(new SqPtr))))
238  val rdataPtrExt = RegInit(VecInit((0 until EnsbufferWidth).map(_.U.asTypeOf(new SqPtr))))
239  val deqPtrExt = RegInit(VecInit((0 until EnsbufferWidth).map(_.U.asTypeOf(new SqPtr))))
240  val cmtPtrExt = RegInit(VecInit((0 until CommitWidth).map(_.U.asTypeOf(new SqPtr))))
241  val addrReadyPtrExt = RegInit(0.U.asTypeOf(new SqPtr))
242  val dataReadyPtrExt = RegInit(0.U.asTypeOf(new SqPtr))
243
244  val enqPtr = enqPtrExt(0).value
245  val deqPtr = deqPtrExt(0).value
246  val cmtPtr = cmtPtrExt(0).value
247
248  val validCount = distanceBetween(enqPtrExt(0), deqPtrExt(0))
249  val allowEnqueue = validCount <= (StoreQueueSize - LSQStEnqWidth).U
250
251  val deqMask = UIntToMask(deqPtr, StoreQueueSize)
252  val enqMask = UIntToMask(enqPtr, StoreQueueSize)
253
254  // TODO: count commit numbers for scalar / vector store separately
255  val scalarCommitCount = RegInit(0.U(log2Ceil(StoreQueueSize + 1).W))
256  val scalarCommitted = WireInit(0.U(log2Ceil(CommitWidth + 1).W))
257  val vecCommitted = WireInit(0.U(log2Ceil(CommitWidth + 1).W))
258  val commitCount = WireInit(0.U(log2Ceil(CommitWidth + 1).W))
259  val scommit = RegNext(io.rob.scommit)
260
261  scalarCommitCount := scalarCommitCount + scommit - scalarCommitted
262
263  // store can be committed by ROB
264  io.rob.mmio := DontCare
265  io.rob.uop := DontCare
266
267  // Read dataModule
268  assert(EnsbufferWidth <= 2)
269  // rdataPtrExtNext and rdataPtrExtNext+1 entry will be read from dataModule
270  val rdataPtrExtNext = WireInit(Mux(dataBuffer.io.enq(1).fire,
271    VecInit(rdataPtrExt.map(_ + 2.U)),
272    Mux(dataBuffer.io.enq(0).fire || io.mmioStout.fire || io.vecmmioStout.fire,
273      VecInit(rdataPtrExt.map(_ + 1.U)),
274      rdataPtrExt
275    )
276  ))
277
278  // deqPtrExtNext traces which inst is about to leave store queue
279  //
280  // io.sbuffer(i).fire is RegNexted, as sbuffer data write takes 2 cycles.
281  // Before data write finish, sbuffer is unable to provide store to load
282  // forward data. As an workaround, deqPtrExt and allocated flag update
283  // is delayed so that load can get the right data from store queue.
284  //
285  // Modify deqPtrExtNext and io.sqDeq with care!
286  val deqPtrExtNext = Mux(RegNext(io.sbuffer(1).fire),
287    VecInit(deqPtrExt.map(_ + 2.U)),
288    Mux((RegNext(io.sbuffer(0).fire)) || io.mmioStout.fire || io.vecmmioStout.fire,
289      VecInit(deqPtrExt.map(_ + 1.U)),
290      deqPtrExt
291    )
292  )
293  io.sqDeq := RegNext(Mux(RegNext(io.sbuffer(1).fire), 2.U,
294    Mux((RegNext(io.sbuffer(0).fire)) || io.mmioStout.fire || io.vecmmioStout.fire, 1.U, 0.U)
295  ))
296  assert(!RegNext(RegNext(io.sbuffer(0).fire) && (io.mmioStout.fire || io.vecmmioStout.fire)))
297
298  for (i <- 0 until EnsbufferWidth) {
299    dataModule.io.raddr(i) := rdataPtrExtNext(i).value
300    paddrModule.io.raddr(i) := rdataPtrExtNext(i).value
301    vaddrModule.io.raddr(i) := rdataPtrExtNext(i).value
302  }
303
304  /**
305    * Enqueue at dispatch
306    *
307    * Currently, StoreQueue only allows enqueue when #emptyEntries > EnqWidth
308    */
309  io.enq.canAccept := allowEnqueue
310  val canEnqueue = io.enq.req.map(_.valid)
311  val enqCancel = io.enq.req.map(_.bits.robIdx.needFlush(io.brqRedirect))
312  val vStoreFlow = io.enq.req.map(_.bits.numLsElem)
313  val validVStoreFlow = vStoreFlow.zipWithIndex.map{case (vLoadFlowNumItem, index) => Mux(!RegNext(io.brqRedirect.valid) && io.enq.canAccept && io.enq.lqCanAccept && canEnqueue(index), vLoadFlowNumItem, 0.U)}
314  val validVStoreOffset = vStoreFlow.zip(io.enq.needAlloc).map{case (flow, needAllocItem) => Mux(needAllocItem, flow, 0.U)}
315  val validVStoreOffsetRShift = 0.U +: validVStoreOffset.take(vStoreFlow.length - 1)
316
317  for (i <- 0 until io.enq.req.length) {
318    val sqIdx = enqPtrExt(0) + validVStoreOffsetRShift.take(i + 1).reduce(_ + _)
319    val index = io.enq.req(i).bits.sqIdx
320    val enqInstr = io.enq.req(i).bits.instr.asTypeOf(new XSInstBitFields)
321    when (canEnqueue(i) && !enqCancel(i)) {
322      for (j <- 0 until VecMemDispatchMaxNumber) {
323        when (j.U < validVStoreOffset(i)) {
324          uop((index + j.U).value) := io.enq.req(i).bits
325          // NOTE: the index will be used when replay
326          uop((index + j.U).value).sqIdx := sqIdx + j.U
327          allocated((index + j.U).value) := true.B
328          datavalid((index + j.U).value) := false.B
329          addrvalid((index + j.U).value) := false.B
330          committed((index + j.U).value) := false.B
331          pending((index + j.U).value) := false.B
332          prefetch((index + j.U).value) := false.B
333          mmio((index + j.U).value) := false.B
334          isVec((index + j.U).value) := enqInstr.isVecStore // check vector store by the encoding of inst
335          vecMbCommit((index + j.U).value) := false.B
336          vecDataValid((index + j.U).value) := false.B
337          XSError(!io.enq.canAccept || !io.enq.lqCanAccept, s"must accept $i\n")
338          XSError(index.value =/= sqIdx.value, s"must be the same entry $i\n")
339        }
340      }
341    }
342    io.enq.resp(i) := sqIdx
343  }
344  XSDebug(p"(ready, valid): ${io.enq.canAccept}, ${Binary(Cat(io.enq.req.map(_.valid)))}\n")
345
346  /**
347    * Update addr/dataReadyPtr when issue from rs
348    */
349  // update issuePtr
350  val IssuePtrMoveStride = 4
351  require(IssuePtrMoveStride >= 2)
352
353  val addrReadyLookupVec = (0 until IssuePtrMoveStride).map(addrReadyPtrExt + _.U)
354  val addrReadyLookup = addrReadyLookupVec.map(ptr => allocated(ptr.value) &&
355   (mmio(ptr.value) || addrvalid(ptr.value) || vecMbCommit(ptr.value))
356    && ptr =/= enqPtrExt(0))
357  val nextAddrReadyPtr = addrReadyPtrExt + PriorityEncoder(VecInit(addrReadyLookup.map(!_) :+ true.B))
358  addrReadyPtrExt := nextAddrReadyPtr
359
360  (0 until StoreQueueSize).map(i => {
361    io.stAddrReadyVec(i) := RegNext(allocated(i) && (mmio(i) || addrvalid(i)))
362  })
363
364  when (io.brqRedirect.valid) {
365    addrReadyPtrExt := Mux(
366      isAfter(cmtPtrExt(0), deqPtrExt(0)),
367      cmtPtrExt(0),
368      deqPtrExtNext(0) // for mmio insts, deqPtr may be ahead of cmtPtr
369    )
370  }
371
372  io.stAddrReadySqPtr := addrReadyPtrExt
373
374  // update
375  val dataReadyLookupVec = (0 until IssuePtrMoveStride).map(dataReadyPtrExt + _.U)
376  val dataReadyLookup = dataReadyLookupVec.map(ptr => allocated(ptr.value) &&
377   (mmio(ptr.value) || datavalid(ptr.value) || vecMbCommit(ptr.value))
378    && ptr =/= enqPtrExt(0))
379  val nextDataReadyPtr = dataReadyPtrExt + PriorityEncoder(VecInit(dataReadyLookup.map(!_) :+ true.B))
380  dataReadyPtrExt := nextDataReadyPtr
381
382  (0 until StoreQueueSize).map(i => {
383    io.stDataReadyVec(i) := RegNext(allocated(i) && (mmio(i) || datavalid(i)))
384  })
385
386  when (io.brqRedirect.valid) {
387    dataReadyPtrExt := Mux(
388      isAfter(cmtPtrExt(0), deqPtrExt(0)),
389      cmtPtrExt(0),
390      deqPtrExtNext(0) // for mmio insts, deqPtr may be ahead of cmtPtr
391    )
392  }
393
394  io.stDataReadySqPtr := dataReadyPtrExt
395  io.stIssuePtr := enqPtrExt(0)
396  io.sqDeqPtr := deqPtrExt(0)
397
398  /**
399    * Writeback store from store units
400    *
401    * Most store instructions writeback to regfile in the previous cycle.
402    * However,
403    *   (1) For an mmio instruction with exceptions, we need to mark it as addrvalid
404    * (in this way it will trigger an exception when it reaches ROB's head)
405    * instead of pending to avoid sending them to lower level.
406    *   (2) For an mmio instruction without exceptions, we mark it as pending.
407    * When the instruction reaches ROB's head, StoreQueue sends it to uncache channel.
408    * Upon receiving the response, StoreQueue writes back the instruction
409    * through arbiter with store units. It will later commit as normal.
410    */
411
412  // Write addr to sq
413  for (i <- 0 until StorePipelineWidth) {
414    paddrModule.io.wen(i) := false.B
415    vaddrModule.io.wen(i) := false.B
416    dataModule.io.mask.wen(i) := false.B
417    val stWbIndex = io.storeAddrIn(i).bits.uop.sqIdx.value
418    exceptionBuffer.io.storeAddrIn(i).valid := io.storeAddrIn(i).fire && !io.storeAddrIn(i).bits.miss && !io.storeAddrIn(i).bits.isvec
419    exceptionBuffer.io.storeAddrIn(i).bits := io.storeAddrIn(i).bits
420
421    when (io.storeAddrIn(i).fire) {
422      val addr_valid = !io.storeAddrIn(i).bits.miss
423      addrvalid(stWbIndex) := addr_valid //!io.storeAddrIn(i).bits.mmio
424      // pending(stWbIndex) := io.storeAddrIn(i).bits.mmio
425
426      paddrModule.io.waddr(i) := stWbIndex
427      paddrModule.io.wdata(i) := io.storeAddrIn(i).bits.paddr
428      paddrModule.io.wmask(i) := io.storeAddrIn(i).bits.mask
429      paddrModule.io.wlineflag(i) := io.storeAddrIn(i).bits.wlineflag
430      paddrModule.io.wen(i) := true.B
431
432      vaddrModule.io.waddr(i) := stWbIndex
433      vaddrModule.io.wdata(i) := io.storeAddrIn(i).bits.vaddr
434      vaddrModule.io.wmask(i) := io.storeAddrIn(i).bits.mask
435      vaddrModule.io.wlineflag(i) := io.storeAddrIn(i).bits.wlineflag
436      vaddrModule.io.wen(i) := true.B
437
438      debug_paddr(paddrModule.io.waddr(i)) := paddrModule.io.wdata(i)
439
440      // mmio(stWbIndex) := io.storeAddrIn(i).bits.mmio
441
442      uop(stWbIndex) := io.storeAddrIn(i).bits.uop
443      uop(stWbIndex).debugInfo := io.storeAddrIn(i).bits.uop.debugInfo
444
445      vecDataValid(stWbIndex) := io.storeAddrIn(i).bits.isvec
446
447      XSInfo("store addr write to sq idx %d pc 0x%x miss:%d vaddr %x paddr %x mmio %x isvec %x\n",
448        io.storeAddrIn(i).bits.uop.sqIdx.value,
449        io.storeAddrIn(i).bits.uop.pc,
450        io.storeAddrIn(i).bits.miss,
451        io.storeAddrIn(i).bits.vaddr,
452        io.storeAddrIn(i).bits.paddr,
453        io.storeAddrIn(i).bits.mmio,
454        io.storeAddrIn(i).bits.isvec
455      )
456    }
457
458    // re-replinish mmio, for pma/pmp will get mmio one cycle later
459    val storeAddrInFireReg = RegNext(io.storeAddrIn(i).fire && !io.storeAddrIn(i).bits.miss)
460    val stWbIndexReg = RegNext(stWbIndex)
461    when (storeAddrInFireReg) {
462      pending(stWbIndexReg) := io.storeAddrInRe(i).mmio
463      mmio(stWbIndexReg) := io.storeAddrInRe(i).mmio
464      atomic(stWbIndexReg) := io.storeAddrInRe(i).atomic
465    }
466    // dcache miss info (one cycle later than storeIn)
467    // if dcache report a miss in sta pipeline, this store will trigger a prefetch when committing to sbuffer (if EnableAtCommitMissTrigger)
468    when (storeAddrInFireReg) {
469      prefetch(stWbIndexReg) := io.storeAddrInRe(i).miss
470    }
471
472    when(vaddrModule.io.wen(i)){
473      debug_vaddr(vaddrModule.io.waddr(i)) := vaddrModule.io.wdata(i)
474    }
475  }
476
477  // Write data to sq
478  // Now store data pipeline is actually 2 stages
479  for (i <- 0 until StorePipelineWidth) {
480    dataModule.io.data.wen(i) := false.B
481    val stWbIndex = io.storeDataIn(i).bits.uop.sqIdx.value
482    val isVec     = FuType.isVStore(io.storeDataIn(i).bits.uop.fuType)
483    // sq data write takes 2 cycles:
484    // sq data write s0
485    when (io.storeDataIn(i).fire) {
486      // send data write req to data module
487      dataModule.io.data.waddr(i) := stWbIndex
488      dataModule.io.data.wdata(i) := Mux(io.storeDataIn(i).bits.uop.fuOpType === LSUOpType.cbo_zero,
489        0.U,
490        Mux(isVec,
491          io.storeDataIn(i).bits.data,
492          genVWdata(io.storeDataIn(i).bits.data, io.storeDataIn(i).bits.uop.fuOpType(2,0)))
493      )
494      dataModule.io.data.wen(i) := true.B
495
496      debug_data(dataModule.io.data.waddr(i)) := dataModule.io.data.wdata(i)
497
498      XSInfo("store data write to sq idx %d pc 0x%x data %x -> %x\n",
499        io.storeDataIn(i).bits.uop.sqIdx.value,
500        io.storeDataIn(i).bits.uop.pc,
501        io.storeDataIn(i).bits.data,
502        dataModule.io.data.wdata(i)
503      )
504    }
505    // sq data write s1
506    when (
507      RegNext(io.storeDataIn(i).fire)
508      // && !RegNext(io.storeDataIn(i).bits.uop).robIdx.needFlush(io.brqRedirect)
509    ) {
510      datavalid(RegNext(stWbIndex)) := true.B
511    }
512  }
513
514  // Write mask to sq
515  for (i <- 0 until StorePipelineWidth) {
516    // sq mask write s0
517    when (io.storeMaskIn(i).fire) {
518      // send data write req to data module
519      dataModule.io.mask.waddr(i) := io.storeMaskIn(i).bits.sqIdx.value
520      dataModule.io.mask.wdata(i) := io.storeMaskIn(i).bits.mask
521      dataModule.io.mask.wen(i) := true.B
522    }
523  }
524
525  /**
526    * load forward query
527    *
528    * Check store queue for instructions that is older than the load.
529    * The response will be valid at the next cycle after req.
530    */
531  // check over all lq entries and forward data from the first matched store
532  for (i <- 0 until LoadPipelineWidth) {
533    // Compare deqPtr (deqPtr) and forward.sqIdx, we have two cases:
534    // (1) if they have the same flag, we need to check range(tail, sqIdx)
535    // (2) if they have different flags, we need to check range(tail, VirtualLoadQueueSize) and range(0, sqIdx)
536    // Forward1: Mux(same_flag, range(tail, sqIdx), range(tail, VirtualLoadQueueSize))
537    // Forward2: Mux(same_flag, 0.U,                   range(0, sqIdx)    )
538    // i.e. forward1 is the target entries with the same flag bits and forward2 otherwise
539    val differentFlag = deqPtrExt(0).flag =/= io.forward(i).sqIdx.flag
540    val forwardMask = io.forward(i).sqIdxMask
541    // all addrvalid terms need to be checked
542    // Real Vaild: all scalar stores, and vector store with (!inactive && !secondInvalid)
543    val addrRealValidVec = WireInit(VecInit((0 until StoreQueueSize).map(j => addrvalid(j) && allocated(j))))
544    // vector store will consider all inactive || secondInvalid flows as valid
545    val addrValidVec = WireInit(VecInit((0 until StoreQueueSize).map(j => addrvalid(j) && allocated(j))))
546    val dataValidVec = WireInit(VecInit((0 until StoreQueueSize).map(j => datavalid(j))))
547    val allValidVec  = WireInit(VecInit((0 until StoreQueueSize).map(j => addrvalid(j) && datavalid(j) && allocated(j))))
548
549    val lfstEnable = Constantin.createRecord("LFSTEnable", LFSTEnable.B).orR
550    val storeSetHitVec = Mux(lfstEnable,
551      WireInit(VecInit((0 until StoreQueueSize).map(j => io.forward(i).uop.loadWaitBit && uop(j).robIdx === io.forward(i).uop.waitForRobIdx))),
552      WireInit(VecInit((0 until StoreQueueSize).map(j => uop(j).storeSetHit && uop(j).ssid === io.forward(i).uop.ssid)))
553    )
554
555    val forwardMask1 = Mux(differentFlag, ~deqMask, deqMask ^ forwardMask)
556    val forwardMask2 = Mux(differentFlag, forwardMask, 0.U(StoreQueueSize.W))
557    val canForward1 = forwardMask1 & allValidVec.asUInt
558    val canForward2 = forwardMask2 & allValidVec.asUInt
559    val needForward = Mux(differentFlag, ~deqMask | forwardMask, deqMask ^ forwardMask)
560
561    XSDebug(p"$i f1 ${Binary(canForward1)} f2 ${Binary(canForward2)} " +
562      p"sqIdx ${io.forward(i).sqIdx} pa ${Hexadecimal(io.forward(i).paddr)}\n"
563    )
564
565    // do real fwd query (cam lookup in load_s1)
566    dataModule.io.needForward(i)(0) := canForward1 & vaddrModule.io.forwardMmask(i).asUInt
567    dataModule.io.needForward(i)(1) := canForward2 & vaddrModule.io.forwardMmask(i).asUInt
568
569    vaddrModule.io.forwardMdata(i) := io.forward(i).vaddr
570    vaddrModule.io.forwardDataMask(i) := io.forward(i).mask
571    paddrModule.io.forwardMdata(i) := io.forward(i).paddr
572    paddrModule.io.forwardDataMask(i) := io.forward(i).mask
573
574
575    // vaddr cam result does not equal to paddr cam result
576    // replay needed
577    // val vpmaskNotEqual = ((paddrModule.io.forwardMmask(i).asUInt ^ vaddrModule.io.forwardMmask(i).asUInt) & needForward) =/= 0.U
578    // val vaddrMatchFailed = vpmaskNotEqual && io.forward(i).valid
579    val vpmaskNotEqual = (
580      (RegNext(paddrModule.io.forwardMmask(i).asUInt) ^ RegNext(vaddrModule.io.forwardMmask(i).asUInt)) &
581      RegNext(needForward) &
582      RegNext(addrRealValidVec.asUInt)
583    ) =/= 0.U
584    val vaddrMatchFailed = vpmaskNotEqual && RegNext(io.forward(i).valid)
585    when (vaddrMatchFailed) {
586      XSInfo("vaddrMatchFailed: pc %x pmask %x vmask %x\n",
587        RegNext(io.forward(i).uop.pc),
588        RegNext(needForward & paddrModule.io.forwardMmask(i).asUInt),
589        RegNext(needForward & vaddrModule.io.forwardMmask(i).asUInt)
590      );
591    }
592    XSPerfAccumulate("vaddr_match_failed", vpmaskNotEqual)
593    XSPerfAccumulate("vaddr_match_really_failed", vaddrMatchFailed)
594
595    // Fast forward mask will be generated immediately (load_s1)
596    io.forward(i).forwardMaskFast := dataModule.io.forwardMaskFast(i)
597
598    // Forward result will be generated 1 cycle later (load_s2)
599    io.forward(i).forwardMask := dataModule.io.forwardMask(i)
600    io.forward(i).forwardData := dataModule.io.forwardData(i)
601    // If addr match, data not ready, mark it as dataInvalid
602    // load_s1: generate dataInvalid in load_s1 to set fastUop
603    val dataInvalidMask1 = (addrValidVec.asUInt & ~dataValidVec.asUInt & vaddrModule.io.forwardMmask(i).asUInt & forwardMask1.asUInt)
604    val dataInvalidMask2 = (addrValidVec.asUInt & ~dataValidVec.asUInt & vaddrModule.io.forwardMmask(i).asUInt & forwardMask2.asUInt)
605    val dataInvalidMask = dataInvalidMask1 | dataInvalidMask2
606    io.forward(i).dataInvalidFast := dataInvalidMask.orR
607
608    // make chisel happy
609    val dataInvalidMask1Reg = Wire(UInt(StoreQueueSize.W))
610    dataInvalidMask1Reg := RegNext(dataInvalidMask1)
611    // make chisel happy
612    val dataInvalidMask2Reg = Wire(UInt(StoreQueueSize.W))
613    dataInvalidMask2Reg := RegNext(dataInvalidMask2)
614    val dataInvalidMaskReg = dataInvalidMask1Reg | dataInvalidMask2Reg
615
616    // If SSID match, address not ready, mark it as addrInvalid
617    // load_s2: generate addrInvalid
618    val addrInvalidMask1 = (~addrValidVec.asUInt & storeSetHitVec.asUInt & forwardMask1.asUInt)
619    val addrInvalidMask2 = (~addrValidVec.asUInt & storeSetHitVec.asUInt & forwardMask2.asUInt)
620    // make chisel happy
621    val addrInvalidMask1Reg = Wire(UInt(StoreQueueSize.W))
622    addrInvalidMask1Reg := RegNext(addrInvalidMask1)
623    // make chisel happy
624    val addrInvalidMask2Reg = Wire(UInt(StoreQueueSize.W))
625    addrInvalidMask2Reg := RegNext(addrInvalidMask2)
626    val addrInvalidMaskReg = addrInvalidMask1Reg | addrInvalidMask2Reg
627
628    // load_s2
629    io.forward(i).dataInvalid := RegNext(io.forward(i).dataInvalidFast)
630    // check if vaddr forward mismatched
631    io.forward(i).matchInvalid := vaddrMatchFailed
632
633    // data invalid sq index
634    // check whether false fail
635    // check flag
636    val s2_differentFlag = RegNext(differentFlag)
637    val s2_enqPtrExt = RegNext(enqPtrExt(0))
638    val s2_deqPtrExt = RegNext(deqPtrExt(0))
639
640    // addr invalid sq index
641    // make chisel happy
642    val addrInvalidMaskRegWire = Wire(UInt(StoreQueueSize.W))
643    addrInvalidMaskRegWire := addrInvalidMaskReg
644    val addrInvalidFlag = addrInvalidMaskRegWire.orR
645    val hasInvalidAddr = (~addrValidVec.asUInt & needForward).orR
646
647    val addrInvalidSqIdx1 = OHToUInt(Reverse(PriorityEncoderOH(Reverse(addrInvalidMask1Reg))))
648    val addrInvalidSqIdx2 = OHToUInt(Reverse(PriorityEncoderOH(Reverse(addrInvalidMask2Reg))))
649    val addrInvalidSqIdx = Mux(addrInvalidMask2Reg.orR, addrInvalidSqIdx2, addrInvalidSqIdx1)
650
651    // store-set content management
652    //                +-----------------------+
653    //                | Search a SSID for the |
654    //                |    load operation     |
655    //                +-----------------------+
656    //                           |
657    //                           V
658    //                 +-------------------+
659    //                 | load wait strict? |
660    //                 +-------------------+
661    //                           |
662    //                           V
663    //               +----------------------+
664    //            Set|                      |Clean
665    //               V                      V
666    //  +------------------------+   +------------------------------+
667    //  | Waiting for all older  |   | Wait until the corresponding |
668    //  |   stores operations    |   | older store operations       |
669    //  +------------------------+   +------------------------------+
670
671
672
673    when (RegNext(io.forward(i).uop.loadWaitStrict)) {
674      io.forward(i).addrInvalidSqIdx := RegNext(io.forward(i).uop.sqIdx - 1.U)
675    } .elsewhen (addrInvalidFlag) {
676      io.forward(i).addrInvalidSqIdx.flag := Mux(!s2_differentFlag || addrInvalidSqIdx >= s2_deqPtrExt.value, s2_deqPtrExt.flag, s2_enqPtrExt.flag)
677      io.forward(i).addrInvalidSqIdx.value := addrInvalidSqIdx
678    } .otherwise {
679      // may be store inst has been written to sbuffer already.
680      io.forward(i).addrInvalidSqIdx := RegNext(io.forward(i).uop.sqIdx)
681    }
682    io.forward(i).addrInvalid := Mux(RegNext(io.forward(i).uop.loadWaitStrict), RegNext(hasInvalidAddr), addrInvalidFlag)
683
684    // data invalid sq index
685    // make chisel happy
686    val dataInvalidMaskRegWire = Wire(UInt(StoreQueueSize.W))
687    dataInvalidMaskRegWire := dataInvalidMaskReg
688    val dataInvalidFlag = dataInvalidMaskRegWire.orR
689
690    val dataInvalidSqIdx1 = OHToUInt(Reverse(PriorityEncoderOH(Reverse(dataInvalidMask1Reg))))
691    val dataInvalidSqIdx2 = OHToUInt(Reverse(PriorityEncoderOH(Reverse(dataInvalidMask2Reg))))
692    val dataInvalidSqIdx = Mux(dataInvalidMask2Reg.orR, dataInvalidSqIdx2, dataInvalidSqIdx1)
693
694    when (dataInvalidFlag) {
695      io.forward(i).dataInvalidSqIdx.flag := Mux(!s2_differentFlag || dataInvalidSqIdx >= s2_deqPtrExt.value, s2_deqPtrExt.flag, s2_enqPtrExt.flag)
696      io.forward(i).dataInvalidSqIdx.value := dataInvalidSqIdx
697    } .otherwise {
698      // may be store inst has been written to sbuffer already.
699      io.forward(i).dataInvalidSqIdx := RegNext(io.forward(i).uop.sqIdx)
700    }
701  }
702
703  /**
704    * Memory mapped IO / other uncached operations
705    *
706    * States:
707    * (1) writeback from store units: mark as pending
708    * (2) when they reach ROB's head, they can be sent to uncache channel
709    * (3) response from uncache channel: mark as datavalidmask.wen
710    * (4) writeback to ROB (and other units): mark as writebacked
711    * (5) ROB commits the instruction: same as normal instructions
712    */
713  //(2) when they reach ROB's head, they can be sent to uncache channel
714  // TODO: CAN NOT deal with vector mmio now!
715  val s_idle :: s_req :: s_resp :: s_wb :: s_wait :: Nil = Enum(5)
716  val uncacheState = RegInit(s_idle)
717  switch(uncacheState) {
718    is(s_idle) {
719      when(RegNext(io.rob.pendingst && pending(deqPtr) && allocated(deqPtr) && datavalid(deqPtr) && addrvalid(deqPtr))) {
720        uncacheState := s_req
721      }
722    }
723    is(s_req) {
724      when (io.uncache.req.fire) {
725        when (io.uncacheOutstanding) {
726          uncacheState := s_wb
727        } .otherwise {
728          uncacheState := s_resp
729        }
730      }
731    }
732    is(s_resp) {
733      when(io.uncache.resp.fire) {
734        uncacheState := s_wb
735      }
736    }
737    is(s_wb) {
738      when (io.mmioStout.fire || io.vecmmioStout.fire) {
739        uncacheState := s_wait
740      }
741    }
742    is(s_wait) {
743      // A MMIO store can always move cmtPtrExt as it must be ROB head
744      when(scommit > 0.U) {
745        uncacheState := s_idle // ready for next mmio
746      }
747    }
748  }
749  io.uncache.req.valid := uncacheState === s_req
750
751  io.uncache.req.bits := DontCare
752  io.uncache.req.bits.cmd  := MemoryOpConstants.M_XWR
753  io.uncache.req.bits.addr := paddrModule.io.rdata(0) // data(deqPtr) -> rdata(0)
754  io.uncache.req.bits.data := shiftDataToLow(paddrModule.io.rdata(0), dataModule.io.rdata(0).data)
755  io.uncache.req.bits.mask := shiftMaskToLow(paddrModule.io.rdata(0), dataModule.io.rdata(0).mask)
756
757  // CBO op type check can be delayed for 1 cycle,
758  // as uncache op will not start in s_idle
759  val cbo_mmio_addr = paddrModule.io.rdata(0) >> 2 << 2 // clear lowest 2 bits for op
760  val cbo_mmio_op = 0.U //TODO
761  val cbo_mmio_data = cbo_mmio_addr | cbo_mmio_op
762  when(RegNext(LSUOpType.isCbo(uop(deqPtr).fuOpType))){
763    io.uncache.req.bits.addr := DontCare // TODO
764    io.uncache.req.bits.data := paddrModule.io.rdata(0)
765    io.uncache.req.bits.mask := DontCare // TODO
766  }
767
768  io.uncache.req.bits.atomic := atomic(RegNext(rdataPtrExtNext(0)).value)
769
770  when(io.uncache.req.fire){
771    // mmio store should not be committed until uncache req is sent
772    pending(deqPtr) := false.B
773
774    XSDebug(
775      p"uncache req: pc ${Hexadecimal(uop(deqPtr).pc)} " +
776      p"addr ${Hexadecimal(io.uncache.req.bits.addr)} " +
777      p"data ${Hexadecimal(io.uncache.req.bits.data)} " +
778      p"op ${Hexadecimal(io.uncache.req.bits.cmd)} " +
779      p"mask ${Hexadecimal(io.uncache.req.bits.mask)}\n"
780    )
781  }
782
783  // (3) response from uncache channel: mark as datavalid
784  io.uncache.resp.ready := true.B
785
786  // (4) scalar store: writeback to ROB (and other units): mark as writebacked
787  io.mmioStout.valid := uncacheState === s_wb && !isVec(deqPtr)
788  io.mmioStout.bits.uop := uop(deqPtr)
789  io.mmioStout.bits.uop.sqIdx := deqPtrExt(0)
790  io.mmioStout.bits.data := shiftDataToLow(paddrModule.io.rdata(0), dataModule.io.rdata(0).data) // dataModule.io.rdata.read(deqPtr)
791  io.mmioStout.bits.debug.isMMIO := true.B
792  io.mmioStout.bits.debug.paddr := DontCare
793  io.mmioStout.bits.debug.isPerfCnt := false.B
794  io.mmioStout.bits.debug.vaddr := DontCare
795  // Remove MMIO inst from store queue after MMIO request is being sent
796  // That inst will be traced by uncache state machine
797  when (io.mmioStout.fire) {
798    allocated(deqPtr) := false.B
799  }
800
801  // (4) or vector store:
802  // TODO: implement it!
803  io.vecmmioStout := DontCare
804  io.vecmmioStout.valid := uncacheState === s_wb && isVec(deqPtr)
805  io.vecmmioStout.bits.uop := uop(deqPtr)
806  io.vecmmioStout.bits.uop.sqIdx := deqPtrExt(0)
807  io.vecmmioStout.bits.data := shiftDataToLow(paddrModule.io.rdata(0), dataModule.io.rdata(0).data) // dataModule.io.rdata.read(deqPtr)
808  io.vecmmioStout.bits.debug.isMMIO := true.B
809  io.vecmmioStout.bits.debug.paddr := DontCare
810  io.vecmmioStout.bits.debug.isPerfCnt := false.B
811  io.vecmmioStout.bits.debug.vaddr := DontCare
812  // Remove MMIO inst from store queue after MMIO request is being sent
813  // That inst will be traced by uncache state machine
814  when (io.vecmmioStout.fire) {
815    allocated(deqPtr) := false.B
816  }
817
818  /**
819    * ROB commits store instructions (mark them as committed)
820    *
821    * (1) When store commits, mark it as committed.
822    * (2) They will not be cancelled and can be sent to lower level.
823    */
824  XSError(uncacheState =/= s_idle && uncacheState =/= s_wait && commitCount > 0.U,
825   "should not commit instruction when MMIO has not been finished\n")
826
827  val scalarcommitVec = WireInit(VecInit(Seq.fill(CommitWidth)(false.B)))
828  val veccommitVec = WireInit(VecInit(Seq.fill(CommitWidth)(false.B)))
829  // TODO: Deal with vector store mmio
830  for (i <- 0 until CommitWidth) {
831    val veccount = PopCount(veccommitVec.take(i))
832    when (allocated(cmtPtrExt(i).value) && isVec(cmtPtrExt(i).value) && isNotAfter(uop(cmtPtrExt(i).value).robIdx, io.rob.pendingPtr) && vecMbCommit(cmtPtrExt(i).value)) {
833      if (i == 0){
834        // TODO: fixme for vector mmio
835        when ((uncacheState === s_idle) || (uncacheState === s_wait && scommit > 0.U)){
836          committed(cmtPtrExt(0).value) := true.B
837          veccommitVec(i) := true.B
838        }
839      } else {
840        committed(cmtPtrExt(i).value) := true.B
841        veccommitVec(i) := veccommitVec(i - 1) || scalarcommitVec(i - 1)
842      }
843    } .elsewhen (scalarCommitCount > i.U - veccount) {
844      if (i == 0){
845        when ((uncacheState === s_idle) || (uncacheState === s_wait && scommit > 0.U)){
846          committed(cmtPtrExt(0).value) := true.B
847          scalarcommitVec(i) := true.B
848        }
849      } else {
850        committed(cmtPtrExt(i).value) := true.B
851        scalarcommitVec(i) := veccommitVec(i - 1) || scalarcommitVec(i - 1)
852      }
853    }
854  }
855
856  scalarCommitted := PopCount(scalarcommitVec)
857  vecCommitted := PopCount(veccommitVec)
858  commitCount := scalarCommitted + vecCommitted
859
860  cmtPtrExt := cmtPtrExt.map(_ + commitCount)
861
862  // committed stores will not be cancelled and can be sent to lower level.
863  // remove retired insts from sq, add retired store to sbuffer
864
865  // Read data from data module
866  // As store queue grows larger and larger, time needed to read data from data
867  // module keeps growing higher. Now we give data read a whole cycle.
868  val mmioStall = mmio(rdataPtrExt(0).value)
869  for (i <- 0 until EnsbufferWidth) {
870    val ptr = rdataPtrExt(i).value
871    dataBuffer.io.enq(i).valid := allocated(ptr) && committed(ptr) && (!isVec(ptr) || vecMbCommit(ptr)) && !mmioStall
872    // Note that store data/addr should both be valid after store's commit
873    assert(!dataBuffer.io.enq(i).valid || allvalid(ptr) || (allocated(ptr) && vecMbCommit(ptr)))
874    dataBuffer.io.enq(i).bits.addr     := paddrModule.io.rdata(i)
875    dataBuffer.io.enq(i).bits.vaddr    := vaddrModule.io.rdata(i)
876    dataBuffer.io.enq(i).bits.data     := dataModule.io.rdata(i).data
877    dataBuffer.io.enq(i).bits.mask     := dataModule.io.rdata(i).mask
878    dataBuffer.io.enq(i).bits.wline    := paddrModule.io.rlineflag(i)
879    dataBuffer.io.enq(i).bits.sqPtr    := rdataPtrExt(i)
880    dataBuffer.io.enq(i).bits.prefetch := prefetch(ptr)
881    dataBuffer.io.enq(i).bits.vecValid := !isVec(ptr) || vecDataValid(ptr) // scalar is always valid
882  }
883
884  // Send data stored in sbufferReqBitsReg to sbuffer
885  for (i <- 0 until EnsbufferWidth) {
886    io.sbuffer(i).valid := dataBuffer.io.deq(i).valid
887    dataBuffer.io.deq(i).ready := io.sbuffer(i).ready
888    // Write line request should have all 1 mask
889    assert(!(io.sbuffer(i).valid && io.sbuffer(i).bits.wline && io.sbuffer(i).bits.vecValid && !io.sbuffer(i).bits.mask.andR))
890    io.sbuffer(i).bits := DontCare
891    io.sbuffer(i).bits.cmd   := MemoryOpConstants.M_XWR
892    io.sbuffer(i).bits.addr  := dataBuffer.io.deq(i).bits.addr
893    io.sbuffer(i).bits.vaddr := dataBuffer.io.deq(i).bits.vaddr
894    io.sbuffer(i).bits.data  := dataBuffer.io.deq(i).bits.data
895    io.sbuffer(i).bits.mask  := dataBuffer.io.deq(i).bits.mask
896    io.sbuffer(i).bits.wline := dataBuffer.io.deq(i).bits.wline
897    io.sbuffer(i).bits.prefetch := dataBuffer.io.deq(i).bits.prefetch
898    io.sbuffer(i).bits.vecValid := dataBuffer.io.deq(i).bits.vecValid
899    // io.sbuffer(i).fire is RegNexted, as sbuffer data write takes 2 cycles.
900    // Before data write finish, sbuffer is unable to provide store to load
901    // forward data. As an workaround, deqPtrExt and allocated flag update
902    // is delayed so that load can get the right data from store queue.
903    val ptr = dataBuffer.io.deq(i).bits.sqPtr.value
904    when (RegNext(io.sbuffer(i).fire)) {
905      allocated(RegEnable(ptr, io.sbuffer(i).fire)) := false.B
906      XSDebug("sbuffer "+i+" fire: ptr %d\n", ptr)
907    }
908  }
909
910  // Consistent with the logic above, only the vectore difftest required signal is separated from the rtl code
911  if (env.EnableDifftest) {
912    for (i <- 0 until EnsbufferWidth) {
913      val ptr = rdataPtrExt(i).value
914      difftestBuffer.get.io.enq(i).valid := allocated(ptr) && committed(ptr) && (!isVec(ptr) || vecMbCommit(ptr)) && !mmioStall
915      difftestBuffer.get.io.enq(i).bits := uop(ptr)
916    }
917    for (i <- 0 until EnsbufferWidth) {
918      io.sbufferVecDifftestInfo(i).valid := difftestBuffer.get.io.deq(i).valid
919      difftestBuffer.get.io.deq(i).ready := io.sbufferVecDifftestInfo(i).ready
920
921      io.sbufferVecDifftestInfo(i).bits := difftestBuffer.get.io.deq(i).bits
922    }
923  }
924
925  (1 until EnsbufferWidth).foreach(i => when(io.sbuffer(i).fire) { assert(io.sbuffer(i - 1).fire) })
926  if (coreParams.dcacheParametersOpt.isEmpty) {
927    for (i <- 0 until EnsbufferWidth) {
928      val ptr = deqPtrExt(i).value
929      val ram = DifftestMem(64L * 1024 * 1024 * 1024, 8)
930      val wen = allocated(ptr) && committed(ptr) && !mmio(ptr)
931      val waddr = ((paddrModule.io.rdata(i) - "h80000000".U) >> 3).asUInt
932      val wdata = Mux(paddrModule.io.rdata(i)(3), dataModule.io.rdata(i).data(127, 64), dataModule.io.rdata(i).data(63, 0))
933      val wmask = Mux(paddrModule.io.rdata(i)(3), dataModule.io.rdata(i).mask(15, 8), dataModule.io.rdata(i).mask(7, 0))
934      when (wen) {
935        ram.write(waddr, wdata.asTypeOf(Vec(8, UInt(8.W))), wmask.asBools)
936      }
937    }
938  }
939
940  // Read vaddr for mem exception
941  io.exceptionAddr.vaddr := exceptionBuffer.io.exceptionAddr.vaddr
942  io.exceptionAddr.vstart := exceptionBuffer.io.exceptionAddr.vstart
943  io.exceptionAddr.vl     := exceptionBuffer.io.exceptionAddr.vl
944
945  // vector commit or replay from
946  val vecCommit = Wire(Vec(StoreQueueSize, Bool()))
947  for (i <- 0 until StoreQueueSize) {
948    val fbk = io.vecFeedback
949    vecCommit(i) := fbk.valid && fbk.bits.isCommit && uop(i).robIdx === fbk.bits.robidx && uop(i).uopIdx === fbk.bits.uopidx
950    when (vecCommit(i)) {
951      vecMbCommit(i) := true.B
952    }
953  }
954
955  // misprediction recovery / exception redirect
956  // invalidate sq term using robIdx
957  val needCancel = Wire(Vec(StoreQueueSize, Bool()))
958  for (i <- 0 until StoreQueueSize) {
959    needCancel(i) := uop(i).robIdx.needFlush(io.brqRedirect) && allocated(i) && !committed(i)
960    when (needCancel(i)) {
961      allocated(i) := false.B
962    }
963  }
964
965 /**
966* update pointers
967**/
968  val enqCancelValid = canEnqueue.zip(io.enq.req).map{case (v , x) =>
969    v && x.bits.robIdx.needFlush(io.brqRedirect)
970  }
971  val enqCancelNum = enqCancelValid.zip(io.enq.req).map{case (v, req) =>
972    Mux(v, req.bits.numLsElem, 0.U)
973  }
974  val lastEnqCancel = RegNext(enqCancelNum.reduce(_ + _)) // 1 cycle after redirect
975
976  val lastCycleCancelCount = PopCount(RegNext(needCancel)) // 1 cycle after redirect
977  val lastCycleRedirect = RegNext(io.brqRedirect.valid) // 1 cycle after redirect
978  val enqNumber = validVStoreFlow.reduce(_ + _)
979
980  val lastlastCycleRedirect=RegNext(lastCycleRedirect)// 2 cycle after redirect
981  val redirectCancelCount = RegEnable(lastCycleCancelCount + lastEnqCancel, lastCycleRedirect) // 2 cycle after redirect
982
983  when (lastlastCycleRedirect) {
984    // we recover the pointers in 2 cycle after redirect for better timing
985    enqPtrExt := VecInit(enqPtrExt.map(_ - redirectCancelCount))
986  }.otherwise {
987    // lastCycleRedirect.valid or nornal case
988    // when lastCycleRedirect.valid, enqNumber === 0.U, enqPtrExt will not change
989    enqPtrExt := VecInit(enqPtrExt.map(_ + enqNumber))
990  }
991  assert(!(lastCycleRedirect && enqNumber =/= 0.U))
992
993  deqPtrExt := deqPtrExtNext
994  rdataPtrExt := rdataPtrExtNext
995
996  // val dequeueCount = Mux(io.sbuffer(1).fire, 2.U, Mux(io.sbuffer(0).fire || io.mmioStout.fire, 1.U, 0.U))
997
998  // If redirect at T0, sqCancelCnt is at T2
999  io.sqCancelCnt := redirectCancelCount
1000  val ForceWriteUpper = Wire(UInt(log2Up(StoreQueueSize + 1).W))
1001  ForceWriteUpper := Constantin.createRecord("ForceWriteUpper_"+p(XSCoreParamsKey).HartId.toString(), initValue = 60.U)
1002  val ForceWriteLower = Wire(UInt(log2Up(StoreQueueSize + 1).W))
1003  ForceWriteLower := Constantin.createRecord("ForceWriteLower_"+p(XSCoreParamsKey).HartId.toString(), initValue = 55.U)
1004
1005  val valid_cnt = PopCount(allocated)
1006  io.force_write := RegNext(Mux(valid_cnt >= ForceWriteUpper, true.B, valid_cnt >= ForceWriteLower && io.force_write), init = false.B)
1007
1008  // io.sqempty will be used by sbuffer
1009  // We delay it for 1 cycle for better timing
1010  // When sbuffer need to check if it is empty, the pipeline is blocked, which means delay io.sqempty
1011  // for 1 cycle will also promise that sq is empty in that cycle
1012  io.sqEmpty := RegNext(
1013    enqPtrExt(0).value === deqPtrExt(0).value &&
1014    enqPtrExt(0).flag === deqPtrExt(0).flag
1015  )
1016  // perf counter
1017  QueuePerf(StoreQueueSize, validCount, !allowEnqueue)
1018  val vecValidVec = WireInit(VecInit((0 until StoreQueueSize).map(i => allocated(i) && isVec(i))))
1019  QueuePerf(StoreQueueSize, PopCount(vecValidVec), !allowEnqueue)
1020  io.sqFull := !allowEnqueue
1021  XSPerfAccumulate("mmioCycle", uncacheState =/= s_idle) // lq is busy dealing with uncache req
1022  XSPerfAccumulate("mmioCnt", io.uncache.req.fire)
1023  XSPerfAccumulate("mmio_wb_success", io.mmioStout.fire || io.vecmmioStout.fire)
1024  XSPerfAccumulate("mmio_wb_blocked", (io.mmioStout.valid && !io.mmioStout.ready) || (io.vecmmioStout.valid && !io.vecmmioStout.ready))
1025  XSPerfAccumulate("validEntryCnt", distanceBetween(enqPtrExt(0), deqPtrExt(0)))
1026  XSPerfAccumulate("cmtEntryCnt", distanceBetween(cmtPtrExt(0), deqPtrExt(0)))
1027  XSPerfAccumulate("nCmtEntryCnt", distanceBetween(enqPtrExt(0), cmtPtrExt(0)))
1028
1029  val perfValidCount = distanceBetween(enqPtrExt(0), deqPtrExt(0))
1030  val perfEvents = Seq(
1031    ("mmioCycle      ", uncacheState =/= s_idle),
1032    ("mmioCnt        ", io.uncache.req.fire),
1033    ("mmio_wb_success", io.mmioStout.fire || io.vecmmioStout.fire),
1034    ("mmio_wb_blocked", (io.mmioStout.valid && !io.mmioStout.ready) || (io.vecmmioStout.valid && !io.vecmmioStout.ready)),
1035    ("stq_1_4_valid  ", (perfValidCount < (StoreQueueSize.U/4.U))),
1036    ("stq_2_4_valid  ", (perfValidCount > (StoreQueueSize.U/4.U)) & (perfValidCount <= (StoreQueueSize.U/2.U))),
1037    ("stq_3_4_valid  ", (perfValidCount > (StoreQueueSize.U/2.U)) & (perfValidCount <= (StoreQueueSize.U*3.U/4.U))),
1038    ("stq_4_4_valid  ", (perfValidCount > (StoreQueueSize.U*3.U/4.U))),
1039  )
1040  generatePerfEvent()
1041
1042  // debug info
1043  XSDebug("enqPtrExt %d:%d deqPtrExt %d:%d\n", enqPtrExt(0).flag, enqPtr, deqPtrExt(0).flag, deqPtr)
1044
1045  def PrintFlag(flag: Bool, name: String): Unit = {
1046    when(flag) {
1047      XSDebug(false, true.B, name)
1048    }.otherwise {
1049      XSDebug(false, true.B, " ")
1050    }
1051  }
1052
1053  for (i <- 0 until StoreQueueSize) {
1054    XSDebug(i + ": pc %x va %x pa %x data %x ",
1055      uop(i).pc,
1056      debug_vaddr(i),
1057      debug_paddr(i),
1058      debug_data(i)
1059    )
1060    PrintFlag(allocated(i), "a")
1061    PrintFlag(allocated(i) && addrvalid(i), "a")
1062    PrintFlag(allocated(i) && datavalid(i), "d")
1063    PrintFlag(allocated(i) && committed(i), "c")
1064    PrintFlag(allocated(i) && pending(i), "p")
1065    PrintFlag(allocated(i) && mmio(i), "m")
1066    XSDebug(false, true.B, "\n")
1067  }
1068
1069}
1070