1/*************************************************************************************** 2* Copyright (c) 2020-2021 Institute of Computing Technology, Chinese Academy of Sciences 3* Copyright (c) 2020-2021 Peng Cheng Laboratory 4* 5* XiangShan is licensed under Mulan PSL v2. 6* You can use this software according to the terms and conditions of the Mulan PSL v2. 7* You may obtain a copy of Mulan PSL v2 at: 8* http://license.coscl.org.cn/MulanPSL2 9* 10* THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND, 11* EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT, 12* MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE. 13* 14* See the Mulan PSL v2 for more details. 15***************************************************************************************/ 16 17package xiangshan.mem 18 19import org.chipsalliance.cde.config.Parameters 20import chisel3._ 21import chisel3.util._ 22import utils._ 23import utility._ 24import xiangshan._ 25import xiangshan.cache._ 26import xiangshan.cache.{DCacheLineIO, DCacheWordIO, MemoryOpConstants} 27import xiangshan.backend.rob.{RobLsqIO, RobPtr} 28import difftest._ 29import device.RAMHelper 30import xiangshan.backend.Bundles.{DynInst, MemExuOutput} 31 32class SqPtr(implicit p: Parameters) extends CircularQueuePtr[SqPtr]( 33 p => p(XSCoreParamsKey).StoreQueueSize 34){ 35} 36 37object SqPtr { 38 def apply(f: Bool, v: UInt)(implicit p: Parameters): SqPtr = { 39 val ptr = Wire(new SqPtr) 40 ptr.flag := f 41 ptr.value := v 42 ptr 43 } 44} 45 46class SqEnqIO(implicit p: Parameters) extends XSBundle { 47 val canAccept = Output(Bool()) 48 val lqCanAccept = Input(Bool()) 49 val needAlloc = Vec(backendParams.LsExuCnt, Input(Bool())) 50 val req = Vec(backendParams.LsExuCnt, Flipped(ValidIO(new DynInst))) 51 val resp = Vec(backendParams.LsExuCnt, Output(new SqPtr)) 52} 53 54class DataBufferEntry (implicit p: Parameters) extends DCacheBundle { 55 val addr = UInt(PAddrBits.W) 56 val vaddr = UInt(VAddrBits.W) 57 val data = UInt(VLEN.W) 58 val mask = UInt((VLEN/8).W) 59 val wline = Bool() 60 val sqPtr = new SqPtr 61 val prefetch = Bool() 62} 63 64// Store Queue 65class StoreQueue(implicit p: Parameters) extends XSModule 66 with HasDCacheParameters with HasCircularQueuePtrHelper with HasPerfEvents { 67 val io = IO(new Bundle() { 68 val hartId = Input(UInt(8.W)) 69 val enq = new SqEnqIO 70 val brqRedirect = Flipped(ValidIO(new Redirect)) 71 val storeAddrIn = Vec(StorePipelineWidth, Flipped(Valid(new LsPipelineBundle))) // store addr, data is not included 72 val storeAddrInRe = Vec(StorePipelineWidth, Input(new LsPipelineBundle())) // store more mmio and exception 73 val storeDataIn = Vec(StorePipelineWidth, Flipped(Valid(new MemExuOutput))) // store data, send to sq from rs 74 val storeMaskIn = Vec(StorePipelineWidth, Flipped(Valid(new StoreMaskBundle))) // store mask, send to sq from rs 75 val sbuffer = Vec(EnsbufferWidth, Decoupled(new DCacheWordReqWithVaddrAndPfFlag)) // write committed store to sbuffer 76 val uncacheOutstanding = Input(Bool()) 77 val mmioStout = DecoupledIO(new MemExuOutput) // writeback uncached store 78 val forward = Vec(LoadPipelineWidth, Flipped(new PipeLoadForwardQueryIO)) 79 val rob = Flipped(new RobLsqIO) 80 val uncache = new UncacheWordIO 81 // val refill = Flipped(Valid(new DCacheLineReq )) 82 val exceptionAddr = new ExceptionAddrIO 83 val sqEmpty = Output(Bool()) 84 val stAddrReadySqPtr = Output(new SqPtr) 85 val stAddrReadyVec = Output(Vec(StoreQueueSize, Bool())) 86 val stDataReadySqPtr = Output(new SqPtr) 87 val stDataReadyVec = Output(Vec(StoreQueueSize, Bool())) 88 val stIssuePtr = Output(new SqPtr) 89 val sqDeqPtr = Output(new SqPtr) 90 val sqFull = Output(Bool()) 91 val sqCancelCnt = Output(UInt(log2Up(StoreQueueSize + 1).W)) 92 val sqDeq = Output(UInt(log2Ceil(EnsbufferWidth + 1).W)) 93 val force_write = Output(Bool()) 94 }) 95 96 println("StoreQueue: size:" + StoreQueueSize) 97 98 // data modules 99 val uop = Reg(Vec(StoreQueueSize, new DynInst)) 100 // val data = Reg(Vec(StoreQueueSize, new LsqEntry)) 101 val dataModule = Module(new SQDataModule( 102 numEntries = StoreQueueSize, 103 numRead = EnsbufferWidth, 104 numWrite = StorePipelineWidth, 105 numForward = StorePipelineWidth 106 )) 107 dataModule.io := DontCare 108 val paddrModule = Module(new SQAddrModule( 109 dataWidth = PAddrBits, 110 numEntries = StoreQueueSize, 111 numRead = EnsbufferWidth, 112 numWrite = StorePipelineWidth, 113 numForward = StorePipelineWidth 114 )) 115 paddrModule.io := DontCare 116 val vaddrModule = Module(new SQAddrModule( 117 dataWidth = VAddrBits, 118 numEntries = StoreQueueSize, 119 numRead = EnsbufferWidth + 1, // sbuffer + badvaddr 1 (TODO) 120 numWrite = StorePipelineWidth, 121 numForward = StorePipelineWidth 122 )) 123 vaddrModule.io := DontCare 124 val dataBuffer = Module(new DatamoduleResultBuffer(new DataBufferEntry)) 125 val debug_paddr = Reg(Vec(StoreQueueSize, UInt((PAddrBits).W))) 126 val debug_vaddr = Reg(Vec(StoreQueueSize, UInt((VAddrBits).W))) 127 val debug_data = Reg(Vec(StoreQueueSize, UInt((XLEN).W))) 128 129 // state & misc 130 val allocated = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // sq entry has been allocated 131 val addrvalid = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // non-mmio addr is valid 132 val datavalid = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // non-mmio data is valid 133 val allvalid = VecInit((0 until StoreQueueSize).map(i => addrvalid(i) && datavalid(i))) // non-mmio data & addr is valid 134 val committed = Reg(Vec(StoreQueueSize, Bool())) // inst has been committed by rob 135 val pending = Reg(Vec(StoreQueueSize, Bool())) // mmio pending: inst is an mmio inst, it will not be executed until it reachs the end of rob 136 val mmio = Reg(Vec(StoreQueueSize, Bool())) // mmio: inst is an mmio inst 137 val atomic = Reg(Vec(StoreQueueSize, Bool())) 138 val prefetch = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // need prefetch when committing this store to sbuffer? 139 140 // ptr 141 val enqPtrExt = RegInit(VecInit((0 until io.enq.req.length).map(_.U.asTypeOf(new SqPtr)))) 142 val rdataPtrExt = RegInit(VecInit((0 until EnsbufferWidth).map(_.U.asTypeOf(new SqPtr)))) 143 val deqPtrExt = RegInit(VecInit((0 until EnsbufferWidth).map(_.U.asTypeOf(new SqPtr)))) 144 val cmtPtrExt = RegInit(VecInit((0 until CommitWidth).map(_.U.asTypeOf(new SqPtr)))) 145 val addrReadyPtrExt = RegInit(0.U.asTypeOf(new SqPtr)) 146 val dataReadyPtrExt = RegInit(0.U.asTypeOf(new SqPtr)) 147 val validCounter = RegInit(0.U(log2Ceil(VirtualLoadQueueSize + 1).W)) 148 149 val enqPtr = enqPtrExt(0).value 150 val deqPtr = deqPtrExt(0).value 151 val cmtPtr = cmtPtrExt(0).value 152 153 val validCount = distanceBetween(enqPtrExt(0), deqPtrExt(0)) 154 val allowEnqueue = validCount <= (StoreQueueSize - StorePipelineWidth).U 155 156 val deqMask = UIntToMask(deqPtr, StoreQueueSize) 157 val enqMask = UIntToMask(enqPtr, StoreQueueSize) 158 159 val commitCount = RegNext(io.rob.scommit) 160 161 // store can be committed by ROB 162 io.rob.mmio := DontCare 163 io.rob.uop := DontCare 164 165 // Read dataModule 166 assert(EnsbufferWidth <= 2) 167 // rdataPtrExtNext and rdataPtrExtNext+1 entry will be read from dataModule 168 val rdataPtrExtNext = WireInit(Mux(dataBuffer.io.enq(1).fire, 169 VecInit(rdataPtrExt.map(_ + 2.U)), 170 Mux(dataBuffer.io.enq(0).fire || io.mmioStout.fire, 171 VecInit(rdataPtrExt.map(_ + 1.U)), 172 rdataPtrExt 173 ) 174 )) 175 176 // deqPtrExtNext traces which inst is about to leave store queue 177 // 178 // io.sbuffer(i).fire is RegNexted, as sbuffer data write takes 2 cycles. 179 // Before data write finish, sbuffer is unable to provide store to load 180 // forward data. As an workaround, deqPtrExt and allocated flag update 181 // is delayed so that load can get the right data from store queue. 182 // 183 // Modify deqPtrExtNext and io.sqDeq with care! 184 val deqPtrExtNext = Mux(RegNext(io.sbuffer(1).fire), 185 VecInit(deqPtrExt.map(_ + 2.U)), 186 Mux(RegNext(io.sbuffer(0).fire) || io.mmioStout.fire, 187 VecInit(deqPtrExt.map(_ + 1.U)), 188 deqPtrExt 189 ) 190 ) 191 io.sqDeq := RegNext(Mux(RegNext(io.sbuffer(1).fire), 2.U, 192 Mux(RegNext(io.sbuffer(0).fire) || io.mmioStout.fire, 1.U, 0.U) 193 )) 194 assert(!RegNext(RegNext(io.sbuffer(0).fire) && io.mmioStout.fire)) 195 196 for (i <- 0 until EnsbufferWidth) { 197 dataModule.io.raddr(i) := rdataPtrExtNext(i).value 198 paddrModule.io.raddr(i) := rdataPtrExtNext(i).value 199 vaddrModule.io.raddr(i) := rdataPtrExtNext(i).value 200 } 201 202 // no inst will be committed 1 cycle before tval update 203 vaddrModule.io.raddr(EnsbufferWidth) := (cmtPtrExt(0) + commitCount).value 204 205 /** 206 * Enqueue at dispatch 207 * 208 * Currently, StoreQueue only allows enqueue when #emptyEntries > EnqWidth 209 */ 210 io.enq.canAccept := allowEnqueue 211 val canEnqueue = io.enq.req.map(_.valid) 212 val enqCancel = io.enq.req.map(_.bits.robIdx.needFlush(io.brqRedirect)) 213 for (i <- 0 until io.enq.req.length) { 214 val offset = if (i == 0) 0.U else PopCount(io.enq.needAlloc.take(i)) 215 val sqIdx = enqPtrExt(offset) 216 val index = io.enq.req(i).bits.sqIdx.value 217 when (canEnqueue(i) && !enqCancel(i)) { 218 uop(index) := io.enq.req(i).bits 219 // NOTE: the index will be used when replay 220 uop(index).sqIdx := sqIdx 221 allocated(index) := true.B 222 datavalid(index) := false.B 223 addrvalid(index) := false.B 224 committed(index) := false.B 225 pending(index) := false.B 226 prefetch(index) := false.B 227 mmio(index) := false.B 228 229 XSError(!io.enq.canAccept || !io.enq.lqCanAccept, s"must accept $i\n") 230 XSError(index =/= sqIdx.value, s"must be the same entry $i\n") 231 } 232 io.enq.resp(i) := sqIdx 233 } 234 XSDebug(p"(ready, valid): ${io.enq.canAccept}, ${Binary(Cat(io.enq.req.map(_.valid)))}\n") 235 236 /** 237 * Update addr/dataReadyPtr when issue from rs 238 */ 239 // update issuePtr 240 val IssuePtrMoveStride = 4 241 require(IssuePtrMoveStride >= 2) 242 243 val addrReadyLookupVec = (0 until IssuePtrMoveStride).map(addrReadyPtrExt + _.U) 244 val addrReadyLookup = addrReadyLookupVec.map(ptr => allocated(ptr.value) && (mmio(ptr.value) || addrvalid(ptr.value)) && ptr =/= enqPtrExt(0)) 245 val nextAddrReadyPtr = addrReadyPtrExt + PriorityEncoder(VecInit(addrReadyLookup.map(!_) :+ true.B)) 246 addrReadyPtrExt := nextAddrReadyPtr 247 248 (0 until StoreQueueSize).map(i => { 249 io.stAddrReadyVec(i) := RegNext(allocated(i) && (mmio(i) || addrvalid(i))) 250 }) 251 252 when (io.brqRedirect.valid) { 253 addrReadyPtrExt := Mux( 254 isAfter(cmtPtrExt(0), deqPtrExt(0)), 255 cmtPtrExt(0), 256 deqPtrExtNext(0) // for mmio insts, deqPtr may be ahead of cmtPtr 257 ) 258 } 259 260 io.stAddrReadySqPtr := addrReadyPtrExt 261 262 // update 263 val dataReadyLookupVec = (0 until IssuePtrMoveStride).map(dataReadyPtrExt + _.U) 264 val dataReadyLookup = dataReadyLookupVec.map(ptr => allocated(ptr.value) && (mmio(ptr.value) || datavalid(ptr.value)) && ptr =/= enqPtrExt(0)) 265 val nextDataReadyPtr = dataReadyPtrExt + PriorityEncoder(VecInit(dataReadyLookup.map(!_) :+ true.B)) 266 dataReadyPtrExt := nextDataReadyPtr 267 268 (0 until StoreQueueSize).map(i => { 269 io.stDataReadyVec(i) := RegNext(allocated(i) && (mmio(i) || datavalid(i))) 270 }) 271 272 when (io.brqRedirect.valid) { 273 dataReadyPtrExt := Mux( 274 isAfter(cmtPtrExt(0), deqPtrExt(0)), 275 cmtPtrExt(0), 276 deqPtrExtNext(0) // for mmio insts, deqPtr may be ahead of cmtPtr 277 ) 278 } 279 280 io.stDataReadySqPtr := dataReadyPtrExt 281 io.stIssuePtr := enqPtrExt(0) 282 io.sqDeqPtr := deqPtrExt(0) 283 284 /** 285 * Writeback store from store units 286 * 287 * Most store instructions writeback to regfile in the previous cycle. 288 * However, 289 * (1) For an mmio instruction with exceptions, we need to mark it as addrvalid 290 * (in this way it will trigger an exception when it reaches ROB's head) 291 * instead of pending to avoid sending them to lower level. 292 * (2) For an mmio instruction without exceptions, we mark it as pending. 293 * When the instruction reaches ROB's head, StoreQueue sends it to uncache channel. 294 * Upon receiving the response, StoreQueue writes back the instruction 295 * through arbiter with store units. It will later commit as normal. 296 */ 297 298 // Write addr to sq 299 for (i <- 0 until StorePipelineWidth) { 300 paddrModule.io.wen(i) := false.B 301 vaddrModule.io.wen(i) := false.B 302 dataModule.io.mask.wen(i) := false.B 303 val stWbIndex = io.storeAddrIn(i).bits.uop.sqIdx.value 304 when (io.storeAddrIn(i).fire) { 305 val addr_valid = !io.storeAddrIn(i).bits.miss 306 addrvalid(stWbIndex) := addr_valid //!io.storeAddrIn(i).bits.mmio 307 // pending(stWbIndex) := io.storeAddrIn(i).bits.mmio 308 309 paddrModule.io.waddr(i) := stWbIndex 310 paddrModule.io.wdata(i) := io.storeAddrIn(i).bits.paddr 311 paddrModule.io.wmask(i) := io.storeAddrIn(i).bits.mask 312 paddrModule.io.wlineflag(i) := io.storeAddrIn(i).bits.wlineflag 313 paddrModule.io.wen(i) := true.B 314 315 vaddrModule.io.waddr(i) := stWbIndex 316 vaddrModule.io.wdata(i) := io.storeAddrIn(i).bits.vaddr 317 vaddrModule.io.wmask(i) := io.storeAddrIn(i).bits.mask 318 vaddrModule.io.wlineflag(i) := io.storeAddrIn(i).bits.wlineflag 319 vaddrModule.io.wen(i) := true.B 320 321 debug_paddr(paddrModule.io.waddr(i)) := paddrModule.io.wdata(i) 322 323 // mmio(stWbIndex) := io.storeAddrIn(i).bits.mmio 324 325 uop(stWbIndex) := io.storeAddrIn(i).bits.uop 326 uop(stWbIndex).debugInfo := io.storeAddrIn(i).bits.uop.debugInfo 327 XSInfo("store addr write to sq idx %d pc 0x%x miss:%d vaddr %x paddr %x mmio %x\n", 328 io.storeAddrIn(i).bits.uop.sqIdx.value, 329 io.storeAddrIn(i).bits.uop.pc, 330 io.storeAddrIn(i).bits.miss, 331 io.storeAddrIn(i).bits.vaddr, 332 io.storeAddrIn(i).bits.paddr, 333 io.storeAddrIn(i).bits.mmio 334 ) 335 } 336 337 // re-replinish mmio, for pma/pmp will get mmio one cycle later 338 val storeAddrInFireReg = RegNext(io.storeAddrIn(i).fire && !io.storeAddrIn(i).bits.miss) 339 val stWbIndexReg = RegNext(stWbIndex) 340 when (storeAddrInFireReg) { 341 pending(stWbIndexReg) := io.storeAddrInRe(i).mmio 342 mmio(stWbIndexReg) := io.storeAddrInRe(i).mmio 343 atomic(stWbIndexReg) := io.storeAddrInRe(i).atomic 344 } 345 // dcache miss info (one cycle later than storeIn) 346 // if dcache report a miss in sta pipeline, this store will trigger a prefetch when committing to sbuffer (if EnableAtCommitMissTrigger) 347 when (storeAddrInFireReg) { 348 prefetch(stWbIndexReg) := io.storeAddrInRe(i).miss 349 } 350 351 when(vaddrModule.io.wen(i)){ 352 debug_vaddr(vaddrModule.io.waddr(i)) := vaddrModule.io.wdata(i) 353 } 354 } 355 356 // Write data to sq 357 // Now store data pipeline is actually 2 stages 358 for (i <- 0 until StorePipelineWidth) { 359 dataModule.io.data.wen(i) := false.B 360 val stWbIndex = io.storeDataIn(i).bits.uop.sqIdx.value 361 // sq data write takes 2 cycles: 362 // sq data write s0 363 when (io.storeDataIn(i).fire) { 364 // send data write req to data module 365 dataModule.io.data.waddr(i) := stWbIndex 366 dataModule.io.data.wdata(i) := Mux(io.storeDataIn(i).bits.uop.fuOpType === LSUOpType.cbo_zero, 367 0.U, 368 genWdata(io.storeDataIn(i).bits.data, io.storeDataIn(i).bits.uop.fuOpType(1,0)) 369 ) 370 dataModule.io.data.wen(i) := true.B 371 372 debug_data(dataModule.io.data.waddr(i)) := dataModule.io.data.wdata(i) 373 374 XSInfo("store data write to sq idx %d pc 0x%x data %x -> %x\n", 375 io.storeDataIn(i).bits.uop.sqIdx.value, 376 io.storeDataIn(i).bits.uop.pc, 377 io.storeDataIn(i).bits.data, 378 dataModule.io.data.wdata(i) 379 ) 380 } 381 // sq data write s1 382 when ( 383 RegNext(io.storeDataIn(i).fire) 384 // && !RegNext(io.storeDataIn(i).bits.uop).robIdx.needFlush(io.brqRedirect) 385 ) { 386 datavalid(RegNext(stWbIndex)) := true.B 387 } 388 } 389 390 // Write mask to sq 391 for (i <- 0 until StorePipelineWidth) { 392 // sq mask write s0 393 when (io.storeMaskIn(i).fire) { 394 // send data write req to data module 395 dataModule.io.mask.waddr(i) := io.storeMaskIn(i).bits.sqIdx.value 396 dataModule.io.mask.wdata(i) := io.storeMaskIn(i).bits.mask 397 dataModule.io.mask.wen(i) := true.B 398 } 399 } 400 401 /** 402 * load forward query 403 * 404 * Check store queue for instructions that is older than the load. 405 * The response will be valid at the next cycle after req. 406 */ 407 // check over all lq entries and forward data from the first matched store 408 for (i <- 0 until LoadPipelineWidth) { 409 // Compare deqPtr (deqPtr) and forward.sqIdx, we have two cases: 410 // (1) if they have the same flag, we need to check range(tail, sqIdx) 411 // (2) if they have different flags, we need to check range(tail, VirtualLoadQueueSize) and range(0, sqIdx) 412 // Forward1: Mux(same_flag, range(tail, sqIdx), range(tail, VirtualLoadQueueSize)) 413 // Forward2: Mux(same_flag, 0.U, range(0, sqIdx) ) 414 // i.e. forward1 is the target entries with the same flag bits and forward2 otherwise 415 val differentFlag = deqPtrExt(0).flag =/= io.forward(i).sqIdx.flag 416 val forwardMask = io.forward(i).sqIdxMask 417 // all addrvalid terms need to be checked 418 val addrValidVec = WireInit(VecInit((0 until StoreQueueSize).map(i => addrvalid(i) && allocated(i)))) 419 val dataValidVec = WireInit(VecInit((0 until StoreQueueSize).map(i => datavalid(i)))) 420 val allValidVec = WireInit(VecInit((0 until StoreQueueSize).map(i => addrvalid(i) && datavalid(i) && allocated(i)))) 421 422 val storeSetHitVec = 423 if (LFSTEnable) { 424 WireInit(VecInit((0 until StoreQueueSize).map(j => io.forward(i).uop.loadWaitBit && uop(j).robIdx === io.forward(i).uop.waitForRobIdx))) 425 } else { 426 WireInit(VecInit((0 until StoreQueueSize).map(j => uop(j).storeSetHit && uop(j).ssid === io.forward(i).uop.ssid))) 427 } 428 429 val forwardMask1 = Mux(differentFlag, ~deqMask, deqMask ^ forwardMask) 430 val forwardMask2 = Mux(differentFlag, forwardMask, 0.U(StoreQueueSize.W)) 431 val canForward1 = forwardMask1 & allValidVec.asUInt 432 val canForward2 = forwardMask2 & allValidVec.asUInt 433 val needForward = Mux(differentFlag, ~deqMask | forwardMask, deqMask ^ forwardMask) 434 435 XSDebug(p"$i f1 ${Binary(canForward1)} f2 ${Binary(canForward2)} " + 436 p"sqIdx ${io.forward(i).sqIdx} pa ${Hexadecimal(io.forward(i).paddr)}\n" 437 ) 438 439 // do real fwd query (cam lookup in load_s1) 440 dataModule.io.needForward(i)(0) := canForward1 & vaddrModule.io.forwardMmask(i).asUInt 441 dataModule.io.needForward(i)(1) := canForward2 & vaddrModule.io.forwardMmask(i).asUInt 442 443 vaddrModule.io.forwardMdata(i) := io.forward(i).vaddr 444 vaddrModule.io.forwardDataMask(i) := io.forward(i).mask 445 paddrModule.io.forwardMdata(i) := io.forward(i).paddr 446 paddrModule.io.forwardDataMask(i) := io.forward(i).mask 447 448 449 // vaddr cam result does not equal to paddr cam result 450 // replay needed 451 // val vpmaskNotEqual = ((paddrModule.io.forwardMmask(i).asUInt ^ vaddrModule.io.forwardMmask(i).asUInt) & needForward) =/= 0.U 452 // val vaddrMatchFailed = vpmaskNotEqual && io.forward(i).valid 453 val vpmaskNotEqual = ( 454 (RegNext(paddrModule.io.forwardMmask(i).asUInt) ^ RegNext(vaddrModule.io.forwardMmask(i).asUInt)) & 455 RegNext(needForward) & 456 RegNext(addrValidVec.asUInt) 457 ) =/= 0.U 458 val vaddrMatchFailed = vpmaskNotEqual && RegNext(io.forward(i).valid) 459 when (vaddrMatchFailed) { 460 XSInfo("vaddrMatchFailed: pc %x pmask %x vmask %x\n", 461 RegNext(io.forward(i).uop.pc), 462 RegNext(needForward & paddrModule.io.forwardMmask(i).asUInt), 463 RegNext(needForward & vaddrModule.io.forwardMmask(i).asUInt) 464 ); 465 } 466 XSPerfAccumulate("vaddr_match_failed", vpmaskNotEqual) 467 XSPerfAccumulate("vaddr_match_really_failed", vaddrMatchFailed) 468 469 // Fast forward mask will be generated immediately (load_s1) 470 io.forward(i).forwardMaskFast := dataModule.io.forwardMaskFast(i) 471 472 // Forward result will be generated 1 cycle later (load_s2) 473 io.forward(i).forwardMask := dataModule.io.forwardMask(i) 474 io.forward(i).forwardData := dataModule.io.forwardData(i) 475 // If addr match, data not ready, mark it as dataInvalid 476 // load_s1: generate dataInvalid in load_s1 to set fastUop 477 val dataInvalidMask1 = (addrValidVec.asUInt & ~dataValidVec.asUInt & vaddrModule.io.forwardMmask(i).asUInt & forwardMask1.asUInt) 478 val dataInvalidMask2 = (addrValidVec.asUInt & ~dataValidVec.asUInt & vaddrModule.io.forwardMmask(i).asUInt & forwardMask2.asUInt) 479 val dataInvalidMask = dataInvalidMask1 | dataInvalidMask2 480 io.forward(i).dataInvalidFast := dataInvalidMask.orR 481 482 // make chisel happy 483 val dataInvalidMask1Reg = Wire(UInt(StoreQueueSize.W)) 484 dataInvalidMask1Reg := RegNext(dataInvalidMask1) 485 // make chisel happy 486 val dataInvalidMask2Reg = Wire(UInt(StoreQueueSize.W)) 487 dataInvalidMask2Reg := RegNext(dataInvalidMask2) 488 val dataInvalidMaskReg = dataInvalidMask1Reg | dataInvalidMask2Reg 489 490 // If SSID match, address not ready, mark it as addrInvalid 491 // load_s2: generate addrInvalid 492 val addrInvalidMask1 = (~addrValidVec.asUInt & storeSetHitVec.asUInt & forwardMask1.asUInt) 493 val addrInvalidMask2 = (~addrValidVec.asUInt & storeSetHitVec.asUInt & forwardMask2.asUInt) 494 // make chisel happy 495 val addrInvalidMask1Reg = Wire(UInt(StoreQueueSize.W)) 496 addrInvalidMask1Reg := RegNext(addrInvalidMask1) 497 // make chisel happy 498 val addrInvalidMask2Reg = Wire(UInt(StoreQueueSize.W)) 499 addrInvalidMask2Reg := RegNext(addrInvalidMask2) 500 val addrInvalidMaskReg = addrInvalidMask1Reg | addrInvalidMask2Reg 501 502 // load_s2 503 io.forward(i).dataInvalid := RegNext(io.forward(i).dataInvalidFast) 504 // check if vaddr forward mismatched 505 io.forward(i).matchInvalid := vaddrMatchFailed 506 507 // data invalid sq index 508 // check whether false fail 509 // check flag 510 val s2_differentFlag = RegNext(differentFlag) 511 val s2_enqPtrExt = RegNext(enqPtrExt(0)) 512 val s2_deqPtrExt = RegNext(deqPtrExt(0)) 513 514 // addr invalid sq index 515 // make chisel happy 516 val addrInvalidMaskRegWire = Wire(UInt(StoreQueueSize.W)) 517 addrInvalidMaskRegWire := addrInvalidMaskReg 518 val addrInvalidFlag = addrInvalidMaskRegWire.orR 519 val hasInvalidAddr = (~addrValidVec.asUInt & needForward).orR 520 521 val addrInvalidSqIdx1 = OHToUInt(Reverse(PriorityEncoderOH(Reverse(addrInvalidMask1Reg)))) 522 val addrInvalidSqIdx2 = OHToUInt(Reverse(PriorityEncoderOH(Reverse(addrInvalidMask2Reg)))) 523 val addrInvalidSqIdx = Mux(addrInvalidMask2Reg.orR, addrInvalidSqIdx2, addrInvalidSqIdx1) 524 525 // store-set content management 526 // +-----------------------+ 527 // | Search a SSID for the | 528 // | load operation | 529 // +-----------------------+ 530 // | 531 // V 532 // +-------------------+ 533 // | load wait strict? | 534 // +-------------------+ 535 // | 536 // V 537 // +----------------------+ 538 // Set| |Clean 539 // V V 540 // +------------------------+ +------------------------------+ 541 // | Waiting for all older | | Wait until the corresponding | 542 // | stores operations | | older store operations | 543 // +------------------------+ +------------------------------+ 544 545 546 547 when (RegNext(io.forward(i).uop.loadWaitStrict)) { 548 io.forward(i).addrInvalidSqIdx := RegNext(io.forward(i).uop.sqIdx - 1.U) 549 } .elsewhen (addrInvalidFlag) { 550 io.forward(i).addrInvalidSqIdx.flag := Mux(!s2_differentFlag || addrInvalidSqIdx >= s2_deqPtrExt.value, s2_deqPtrExt.flag, s2_enqPtrExt.flag) 551 io.forward(i).addrInvalidSqIdx.value := addrInvalidSqIdx 552 } .otherwise { 553 // may be store inst has been written to sbuffer already. 554 io.forward(i).addrInvalidSqIdx := RegNext(io.forward(i).uop.sqIdx) 555 } 556 io.forward(i).addrInvalid := Mux(RegNext(io.forward(i).uop.loadWaitStrict), RegNext(hasInvalidAddr), addrInvalidFlag) 557 558 // data invalid sq index 559 // make chisel happy 560 val dataInvalidMaskRegWire = Wire(UInt(StoreQueueSize.W)) 561 dataInvalidMaskRegWire := dataInvalidMaskReg 562 val dataInvalidFlag = dataInvalidMaskRegWire.orR 563 564 val dataInvalidSqIdx1 = OHToUInt(Reverse(PriorityEncoderOH(Reverse(dataInvalidMask1Reg)))) 565 val dataInvalidSqIdx2 = OHToUInt(Reverse(PriorityEncoderOH(Reverse(dataInvalidMask2Reg)))) 566 val dataInvalidSqIdx = Mux(dataInvalidMask2Reg.orR, dataInvalidSqIdx2, dataInvalidSqIdx1) 567 568 when (dataInvalidFlag) { 569 io.forward(i).dataInvalidSqIdx.flag := Mux(!s2_differentFlag || dataInvalidSqIdx >= s2_deqPtrExt.value, s2_deqPtrExt.flag, s2_enqPtrExt.flag) 570 io.forward(i).dataInvalidSqIdx.value := dataInvalidSqIdx 571 } .otherwise { 572 // may be store inst has been written to sbuffer already. 573 io.forward(i).dataInvalidSqIdx := RegNext(io.forward(i).uop.sqIdx) 574 } 575 } 576 577 /** 578 * Memory mapped IO / other uncached operations 579 * 580 * States: 581 * (1) writeback from store units: mark as pending 582 * (2) when they reach ROB's head, they can be sent to uncache channel 583 * (3) response from uncache channel: mark as datavalidmask.wen 584 * (4) writeback to ROB (and other units): mark as writebacked 585 * (5) ROB commits the instruction: same as normal instructions 586 */ 587 //(2) when they reach ROB's head, they can be sent to uncache channel 588 val s_idle :: s_req :: s_resp :: s_wb :: s_wait :: Nil = Enum(5) 589 val uncacheState = RegInit(s_idle) 590 switch(uncacheState) { 591 is(s_idle) { 592 when(RegNext(io.rob.pendingst && pending(deqPtr) && allocated(deqPtr) && datavalid(deqPtr) && addrvalid(deqPtr))) { 593 uncacheState := s_req 594 } 595 } 596 is(s_req) { 597 when (io.uncache.req.fire) { 598 when (io.uncacheOutstanding) { 599 uncacheState := s_wb 600 } .otherwise { 601 uncacheState := s_resp 602 } 603 } 604 } 605 is(s_resp) { 606 when(io.uncache.resp.fire) { 607 uncacheState := s_wb 608 } 609 } 610 is(s_wb) { 611 when (io.mmioStout.fire) { 612 uncacheState := s_wait 613 } 614 } 615 is(s_wait) { 616 when(commitCount > 0.U) { 617 uncacheState := s_idle // ready for next mmio 618 } 619 } 620 } 621 io.uncache.req.valid := uncacheState === s_req 622 623 io.uncache.req.bits := DontCare 624 io.uncache.req.bits.cmd := MemoryOpConstants.M_XWR 625 io.uncache.req.bits.addr := paddrModule.io.rdata(0) // data(deqPtr) -> rdata(0) 626 io.uncache.req.bits.data := shiftDataToLow(paddrModule.io.rdata(0), dataModule.io.rdata(0).data) 627 io.uncache.req.bits.mask := shiftMaskToLow(paddrModule.io.rdata(0), dataModule.io.rdata(0).mask) 628 629 // CBO op type check can be delayed for 1 cycle, 630 // as uncache op will not start in s_idle 631 val cbo_mmio_addr = paddrModule.io.rdata(0) >> 2 << 2 // clear lowest 2 bits for op 632 val cbo_mmio_op = 0.U //TODO 633 val cbo_mmio_data = cbo_mmio_addr | cbo_mmio_op 634 when(RegNext(LSUOpType.isCbo(uop(deqPtr).fuOpType))){ 635 io.uncache.req.bits.addr := DontCare // TODO 636 io.uncache.req.bits.data := paddrModule.io.rdata(0) 637 io.uncache.req.bits.mask := DontCare // TODO 638 } 639 640 io.uncache.req.bits.atomic := atomic(RegNext(rdataPtrExtNext(0)).value) 641 642 when(io.uncache.req.fire){ 643 // mmio store should not be committed until uncache req is sent 644 pending(deqPtr) := false.B 645 646 XSDebug( 647 p"uncache req: pc ${Hexadecimal(uop(deqPtr).pc)} " + 648 p"addr ${Hexadecimal(io.uncache.req.bits.addr)} " + 649 p"data ${Hexadecimal(io.uncache.req.bits.data)} " + 650 p"op ${Hexadecimal(io.uncache.req.bits.cmd)} " + 651 p"mask ${Hexadecimal(io.uncache.req.bits.mask)}\n" 652 ) 653 } 654 655 // (3) response from uncache channel: mark as datavalid 656 io.uncache.resp.ready := true.B 657 658 // (4) writeback to ROB (and other units): mark as writebacked 659 io.mmioStout.valid := uncacheState === s_wb 660 io.mmioStout.bits.uop := uop(deqPtr) 661 io.mmioStout.bits.uop.sqIdx := deqPtrExt(0) 662 io.mmioStout.bits.data := shiftDataToLow(paddrModule.io.rdata(0), dataModule.io.rdata(0).data) // dataModule.io.rdata.read(deqPtr) 663 io.mmioStout.bits.debug.isMMIO := true.B 664 io.mmioStout.bits.debug.paddr := DontCare 665 io.mmioStout.bits.debug.isPerfCnt := false.B 666 io.mmioStout.bits.debug.vaddr := DontCare 667 // Remove MMIO inst from store queue after MMIO request is being sent 668 // That inst will be traced by uncache state machine 669 when (io.mmioStout.fire) { 670 allocated(deqPtr) := false.B 671 } 672 673 /** 674 * ROB commits store instructions (mark them as committed) 675 * 676 * (1) When store commits, mark it as committed. 677 * (2) They will not be cancelled and can be sent to lower level. 678 */ 679 XSError(uncacheState =/= s_idle && uncacheState =/= s_wait && commitCount > 0.U, 680 "should not commit instruction when MMIO has not been finished\n") 681 for (i <- 0 until CommitWidth) { 682 when (commitCount > i.U) { // MMIO inst is not in progress 683 if(i == 0){ 684 // MMIO inst should not update committed flag 685 // Note that commit count has been delayed for 1 cycle 686 when(uncacheState === s_idle){ 687 committed(cmtPtrExt(0).value) := true.B 688 } 689 } else { 690 committed(cmtPtrExt(i).value) := true.B 691 } 692 } 693 } 694 cmtPtrExt := cmtPtrExt.map(_ + commitCount) 695 696 // committed stores will not be cancelled and can be sent to lower level. 697 // remove retired insts from sq, add retired store to sbuffer 698 699 // Read data from data module 700 // As store queue grows larger and larger, time needed to read data from data 701 // module keeps growing higher. Now we give data read a whole cycle. 702 703 val mmioStall = mmio(rdataPtrExt(0).value) 704 for (i <- 0 until EnsbufferWidth) { 705 val ptr = rdataPtrExt(i).value 706 dataBuffer.io.enq(i).valid := allocated(ptr) && committed(ptr) && !mmioStall 707 // Note that store data/addr should both be valid after store's commit 708 assert(!dataBuffer.io.enq(i).valid || allvalid(ptr)) 709 dataBuffer.io.enq(i).bits.addr := paddrModule.io.rdata(i) 710 dataBuffer.io.enq(i).bits.vaddr := vaddrModule.io.rdata(i) 711 dataBuffer.io.enq(i).bits.data := dataModule.io.rdata(i).data 712 dataBuffer.io.enq(i).bits.mask := dataModule.io.rdata(i).mask 713 dataBuffer.io.enq(i).bits.wline := paddrModule.io.rlineflag(i) 714 dataBuffer.io.enq(i).bits.sqPtr := rdataPtrExt(i) 715 dataBuffer.io.enq(i).bits.prefetch := prefetch(ptr) 716 } 717 718 // Send data stored in sbufferReqBitsReg to sbuffer 719 for (i <- 0 until EnsbufferWidth) { 720 io.sbuffer(i).valid := dataBuffer.io.deq(i).valid 721 dataBuffer.io.deq(i).ready := io.sbuffer(i).ready 722 // Write line request should have all 1 mask 723 assert(!(io.sbuffer(i).valid && io.sbuffer(i).bits.wline && !io.sbuffer(i).bits.mask.andR)) 724 io.sbuffer(i).bits := DontCare 725 io.sbuffer(i).bits.cmd := MemoryOpConstants.M_XWR 726 io.sbuffer(i).bits.addr := dataBuffer.io.deq(i).bits.addr 727 io.sbuffer(i).bits.vaddr := dataBuffer.io.deq(i).bits.vaddr 728 io.sbuffer(i).bits.data := dataBuffer.io.deq(i).bits.data 729 io.sbuffer(i).bits.mask := dataBuffer.io.deq(i).bits.mask 730 io.sbuffer(i).bits.wline := dataBuffer.io.deq(i).bits.wline 731 io.sbuffer(i).bits.prefetch := dataBuffer.io.deq(i).bits.prefetch 732 733 // io.sbuffer(i).fire is RegNexted, as sbuffer data write takes 2 cycles. 734 // Before data write finish, sbuffer is unable to provide store to load 735 // forward data. As an workaround, deqPtrExt and allocated flag update 736 // is delayed so that load can get the right data from store queue. 737 val ptr = dataBuffer.io.deq(i).bits.sqPtr.value 738 when (RegNext(io.sbuffer(i).fire)) { 739 allocated(RegEnable(ptr, io.sbuffer(i).fire)) := false.B 740 XSDebug("sbuffer "+i+" fire: ptr %d\n", ptr) 741 } 742 } 743 (1 until EnsbufferWidth).foreach(i => when(io.sbuffer(i).fire) { assert(io.sbuffer(i - 1).fire) }) 744 if (coreParams.dcacheParametersOpt.isEmpty) { 745 for (i <- 0 until EnsbufferWidth) { 746 val ptr = deqPtrExt(i).value 747 val fakeRAM = Module(new RAMHelper(64L * 1024 * 1024 * 1024)) 748 fakeRAM.clk := clock 749 fakeRAM.en := allocated(ptr) && committed(ptr) && !mmio(ptr) 750 fakeRAM.rIdx := 0.U 751 fakeRAM.wIdx := (paddrModule.io.rdata(i) - "h80000000".U) >> 3 752 fakeRAM.wdata := Mux(paddrModule.io.rdata(i)(3), dataModule.io.rdata(i).data(127,64), dataModule.io.rdata(i).data(63,0)) 753 fakeRAM.wmask := Mux(paddrModule.io.rdata(i)(3), MaskExpand(dataModule.io.rdata(i).mask(15,8)), MaskExpand(dataModule.io.rdata(i).mask(7,0))) 754 fakeRAM.wen := allocated(ptr) && committed(ptr) && !mmio(ptr) 755 } 756 } 757 758 if (env.EnableDifftest) { 759 for (i <- 0 until EnsbufferWidth) { 760 val storeCommit = io.sbuffer(i).fire 761 val waddr = ZeroExt(Cat(io.sbuffer(i).bits.addr(PAddrBits - 1, 3), 0.U(3.W)), 64) 762 val sbufferMask = shiftMaskToLow(io.sbuffer(i).bits.addr, io.sbuffer(i).bits.mask) 763 val sbufferData = shiftDataToLow(io.sbuffer(i).bits.addr, io.sbuffer(i).bits.data) 764 val wmask = sbufferMask 765 val wdata = sbufferData & MaskExpand(sbufferMask) 766 767 val difftest = DifftestModule(new DiffStoreEvent, delay = 2) 768 difftest.coreid := io.hartId 769 difftest.index := i.U 770 difftest.valid := storeCommit 771 difftest.addr := waddr 772 difftest.data := wdata 773 difftest.mask := wmask 774 } 775 } 776 777 // Read vaddr for mem exception 778 io.exceptionAddr.vaddr := vaddrModule.io.rdata(EnsbufferWidth) 779 780 // misprediction recovery / exception redirect 781 // invalidate sq term using robIdx 782 val needCancel = Wire(Vec(StoreQueueSize, Bool())) 783 for (i <- 0 until StoreQueueSize) { 784 needCancel(i) := uop(i).robIdx.needFlush(io.brqRedirect) && allocated(i) && !committed(i) 785 when (needCancel(i)) { 786 allocated(i) := false.B 787 } 788 } 789 790 /** 791* update pointers 792**/ 793 val lastEnqCancel = PopCount(RegNext(VecInit(canEnqueue.zip(enqCancel).map(x => x._1 && x._2)))) // 1 cycle after redirect 794 val lastCycleCancelCount = PopCount(RegNext(needCancel)) // 1 cycle after redirect 795 val lastCycleRedirect = RegNext(io.brqRedirect.valid) // 1 cycle after redirect 796 val enqNumber = Mux(!lastCycleRedirect&&io.enq.canAccept && io.enq.lqCanAccept, PopCount(io.enq.req.map(_.valid)), 0.U) // 1 cycle after redirect 797 798 val lastlastCycleRedirect=RegNext(lastCycleRedirect)// 2 cycle after redirect 799 val redirectCancelCount = RegEnable(lastCycleCancelCount + lastEnqCancel, lastCycleRedirect) // 2 cycle after redirect 800 801 when (lastlastCycleRedirect) { 802 // we recover the pointers in 2 cycle after redirect for better timing 803 enqPtrExt := VecInit(enqPtrExt.map(_ - redirectCancelCount)) 804 }.otherwise { 805 // lastCycleRedirect.valid or nornal case 806 // when lastCycleRedirect.valid, enqNumber === 0.U, enqPtrExt will not change 807 enqPtrExt := VecInit(enqPtrExt.map(_ + enqNumber)) 808 } 809 assert(!(lastCycleRedirect && enqNumber =/= 0.U)) 810 811 deqPtrExt := deqPtrExtNext 812 rdataPtrExt := rdataPtrExtNext 813 814 // val dequeueCount = Mux(io.sbuffer(1).fire, 2.U, Mux(io.sbuffer(0).fire || io.mmioStout.fire, 1.U, 0.U)) 815 816 // If redirect at T0, sqCancelCnt is at T2 817 io.sqCancelCnt := redirectCancelCount 818 val ForceWriteUpper = Wire(UInt(log2Up(StoreQueueSize + 1).W)) 819 ForceWriteUpper := Constantin.createRecord("ForceWriteUpper_"+p(XSCoreParamsKey).HartId.toString(), initValue = 60.U) 820 val ForceWriteLower = Wire(UInt(log2Up(StoreQueueSize + 1).W)) 821 ForceWriteLower := Constantin.createRecord("ForceWriteLower_"+p(XSCoreParamsKey).HartId.toString(), initValue = 55.U) 822 823 val valid_cnt = PopCount(allocated) 824 io.force_write := RegNext(Mux(valid_cnt >= ForceWriteUpper, true.B, valid_cnt >= ForceWriteLower && io.force_write), init = false.B) 825 826 // io.sqempty will be used by sbuffer 827 // We delay it for 1 cycle for better timing 828 // When sbuffer need to check if it is empty, the pipeline is blocked, which means delay io.sqempty 829 // for 1 cycle will also promise that sq is empty in that cycle 830 io.sqEmpty := RegNext( 831 enqPtrExt(0).value === deqPtrExt(0).value && 832 enqPtrExt(0).flag === deqPtrExt(0).flag 833 ) 834 // perf counter 835 QueuePerf(StoreQueueSize, validCount, !allowEnqueue) 836 io.sqFull := !allowEnqueue 837 XSPerfAccumulate("mmioCycle", uncacheState =/= s_idle) // lq is busy dealing with uncache req 838 XSPerfAccumulate("mmioCnt", io.uncache.req.fire) 839 XSPerfAccumulate("mmio_wb_success", io.mmioStout.fire) 840 XSPerfAccumulate("mmio_wb_blocked", io.mmioStout.valid && !io.mmioStout.ready) 841 XSPerfAccumulate("validEntryCnt", distanceBetween(enqPtrExt(0), deqPtrExt(0))) 842 XSPerfAccumulate("cmtEntryCnt", distanceBetween(cmtPtrExt(0), deqPtrExt(0))) 843 XSPerfAccumulate("nCmtEntryCnt", distanceBetween(enqPtrExt(0), cmtPtrExt(0))) 844 845 val perfValidCount = distanceBetween(enqPtrExt(0), deqPtrExt(0)) 846 val perfEvents = Seq( 847 ("mmioCycle ", uncacheState =/= s_idle), 848 ("mmioCnt ", io.uncache.req.fire), 849 ("mmio_wb_success", io.mmioStout.fire), 850 ("mmio_wb_blocked", io.mmioStout.valid && !io.mmioStout.ready), 851 ("stq_1_4_valid ", (perfValidCount < (StoreQueueSize.U/4.U))), 852 ("stq_2_4_valid ", (perfValidCount > (StoreQueueSize.U/4.U)) & (perfValidCount <= (StoreQueueSize.U/2.U))), 853 ("stq_3_4_valid ", (perfValidCount > (StoreQueueSize.U/2.U)) & (perfValidCount <= (StoreQueueSize.U*3.U/4.U))), 854 ("stq_4_4_valid ", (perfValidCount > (StoreQueueSize.U*3.U/4.U))), 855 ) 856 generatePerfEvent() 857 858 // debug info 859 XSDebug("enqPtrExt %d:%d deqPtrExt %d:%d\n", enqPtrExt(0).flag, enqPtr, deqPtrExt(0).flag, deqPtr) 860 861 def PrintFlag(flag: Bool, name: String): Unit = { 862 when(flag) { 863 XSDebug(false, true.B, name) 864 }.otherwise { 865 XSDebug(false, true.B, " ") 866 } 867 } 868 869 for (i <- 0 until StoreQueueSize) { 870 XSDebug(i + ": pc %x va %x pa %x data %x ", 871 uop(i).pc, 872 debug_vaddr(i), 873 debug_paddr(i), 874 debug_data(i) 875 ) 876 PrintFlag(allocated(i), "a") 877 PrintFlag(allocated(i) && addrvalid(i), "a") 878 PrintFlag(allocated(i) && datavalid(i), "d") 879 PrintFlag(allocated(i) && committed(i), "c") 880 PrintFlag(allocated(i) && pending(i), "p") 881 PrintFlag(allocated(i) && mmio(i), "m") 882 XSDebug(false, true.B, "\n") 883 } 884 885} 886