xref: /XiangShan/src/main/scala/xiangshan/mem/lsqueue/StoreQueue.scala (revision 8241cb85f7d34397435cf2810442754e2a0f477d)
1/***************************************************************************************
2* Copyright (c) 2020-2021 Institute of Computing Technology, Chinese Academy of Sciences
3* Copyright (c) 2020-2021 Peng Cheng Laboratory
4*
5* XiangShan is licensed under Mulan PSL v2.
6* You can use this software according to the terms and conditions of the Mulan PSL v2.
7* You may obtain a copy of Mulan PSL v2 at:
8*          http://license.coscl.org.cn/MulanPSL2
9*
10* THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND,
11* EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT,
12* MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE.
13*
14* See the Mulan PSL v2 for more details.
15***************************************************************************************/
16
17package xiangshan.mem
18
19import chisel3._
20import chisel3.util._
21import difftest._
22import difftest.common.DifftestMem
23import org.chipsalliance.cde.config.Parameters
24import utility._
25import utils._
26import xiangshan._
27import xiangshan.cache._
28import xiangshan.cache.{DCacheLineIO, DCacheWordIO, MemoryOpConstants}
29import xiangshan.backend._
30import xiangshan.backend.rob.{RobLsqIO, RobPtr}
31import difftest._
32import device.RAMHelper
33import xiangshan.backend.Bundles.{DynInst, MemExuOutput}
34
35class SqPtr(implicit p: Parameters) extends CircularQueuePtr[SqPtr](
36  p => p(XSCoreParamsKey).StoreQueueSize
37){
38}
39
40object SqPtr {
41  def apply(f: Bool, v: UInt)(implicit p: Parameters): SqPtr = {
42    val ptr = Wire(new SqPtr)
43    ptr.flag := f
44    ptr.value := v
45    ptr
46  }
47}
48
49class SqEnqIO(implicit p: Parameters) extends MemBlockBundle {
50  val canAccept = Output(Bool())
51  val lqCanAccept = Input(Bool())
52  val needAlloc = Vec(LSQEnqWidth, Input(Bool()))
53  val req = Vec(LSQEnqWidth, Flipped(ValidIO(new DynInst)))
54  val resp = Vec(LSQEnqWidth, Output(new SqPtr))
55}
56
57class DataBufferEntry (implicit p: Parameters)  extends DCacheBundle {
58  val addr   = UInt(PAddrBits.W)
59  val vaddr  = UInt(VAddrBits.W)
60  val data   = UInt(VLEN.W)
61  val mask   = UInt((VLEN/8).W)
62  val wline = Bool()
63  val sqPtr  = new SqPtr
64  val prefetch = Bool()
65}
66
67// Store Queue
68class StoreQueue(implicit p: Parameters) extends XSModule
69  with HasDCacheParameters with HasCircularQueuePtrHelper with HasPerfEvents {
70  val io = IO(new Bundle() {
71    val hartId = Input(UInt(8.W))
72    val enq = new SqEnqIO
73    val brqRedirect = Flipped(ValidIO(new Redirect))
74    val storeAddrIn = Vec(StorePipelineWidth, Flipped(Valid(new LsPipelineBundle))) // store addr, data is not included
75    val storeAddrInRe = Vec(StorePipelineWidth, Input(new LsPipelineBundle())) // store more mmio and exception
76    val storeDataIn = Vec(StorePipelineWidth, Flipped(Valid(new MemExuOutput))) // store data, send to sq from rs
77    val storeMaskIn = Vec(StorePipelineWidth, Flipped(Valid(new StoreMaskBundle))) // store mask, send to sq from rs
78    val sbuffer = Vec(EnsbufferWidth, Decoupled(new DCacheWordReqWithVaddrAndPfFlag)) // write committed store to sbuffer
79    val uncacheOutstanding = Input(Bool())
80    val mmioStout = DecoupledIO(new MemExuOutput) // writeback uncached store
81    val forward = Vec(LoadPipelineWidth, Flipped(new PipeLoadForwardQueryIO))
82    val rob = Flipped(new RobLsqIO)
83    val uncache = new UncacheWordIO
84    // val refill = Flipped(Valid(new DCacheLineReq ))
85    val exceptionAddr = new ExceptionAddrIO
86    val sqEmpty = Output(Bool())
87    val stAddrReadySqPtr = Output(new SqPtr)
88    val stAddrReadyVec = Output(Vec(StoreQueueSize, Bool()))
89    val stDataReadySqPtr = Output(new SqPtr)
90    val stDataReadyVec = Output(Vec(StoreQueueSize, Bool()))
91    val stIssuePtr = Output(new SqPtr)
92    val sqDeqPtr = Output(new SqPtr)
93    val sqFull = Output(Bool())
94    val sqCancelCnt = Output(UInt(log2Up(StoreQueueSize + 1).W))
95    val sqDeq = Output(UInt(log2Ceil(EnsbufferWidth + 1).W))
96    val force_write = Output(Bool())
97    val vecStoreRetire = Flipped(ValidIO(new SqPtr))
98  })
99
100  println("StoreQueue: size:" + StoreQueueSize)
101
102  // data modules
103  val uop = Reg(Vec(StoreQueueSize, new DynInst))
104  // val data = Reg(Vec(StoreQueueSize, new LsqEntry))
105  val dataModule = Module(new SQDataModule(
106    numEntries = StoreQueueSize,
107    numRead = EnsbufferWidth,
108    numWrite = StorePipelineWidth,
109    numForward = LoadPipelineWidth
110  ))
111  dataModule.io := DontCare
112  val paddrModule = Module(new SQAddrModule(
113    dataWidth = PAddrBits,
114    numEntries = StoreQueueSize,
115    numRead = EnsbufferWidth,
116    numWrite = StorePipelineWidth,
117    numForward = LoadPipelineWidth
118  ))
119  paddrModule.io := DontCare
120  val vaddrModule = Module(new SQAddrModule(
121    dataWidth = VAddrBits,
122    numEntries = StoreQueueSize,
123    numRead = EnsbufferWidth + 1, // sbuffer + badvaddr 1 (TODO)
124    numWrite = StorePipelineWidth,
125    numForward = LoadPipelineWidth
126  ))
127  vaddrModule.io := DontCare
128  val dataBuffer = Module(new DatamoduleResultBuffer(new DataBufferEntry))
129  val debug_paddr = Reg(Vec(StoreQueueSize, UInt((PAddrBits).W)))
130  val debug_vaddr = Reg(Vec(StoreQueueSize, UInt((VAddrBits).W)))
131  val debug_data = Reg(Vec(StoreQueueSize, UInt((XLEN).W)))
132
133  // state & misc
134  val allocated = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // sq entry has been allocated
135  val addrvalid = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // non-mmio addr is valid
136  val datavalid = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // non-mmio data is valid
137  val allvalid  = VecInit((0 until StoreQueueSize).map(i => addrvalid(i) && datavalid(i))) // non-mmio data & addr is valid
138  val committed = Reg(Vec(StoreQueueSize, Bool())) // inst has been committed by rob
139  val pending = Reg(Vec(StoreQueueSize, Bool())) // mmio pending: inst is an mmio inst, it will not be executed until it reachs the end of rob
140  val mmio = Reg(Vec(StoreQueueSize, Bool())) // mmio: inst is an mmio inst
141  val atomic = Reg(Vec(StoreQueueSize, Bool()))
142  val prefetch = RegInit(VecInit(List.fill(StoreQueueSize)(false.B))) // need prefetch when committing this store to sbuffer?
143  val vec = Reg(Vec(StoreQueueSize, Bool()))
144
145  // ptr
146  val enqPtrExt = RegInit(VecInit((0 until io.enq.req.length).map(_.U.asTypeOf(new SqPtr))))
147  val rdataPtrExt = RegInit(VecInit((0 until EnsbufferWidth).map(_.U.asTypeOf(new SqPtr))))
148  val deqPtrExt = RegInit(VecInit((0 until EnsbufferWidth).map(_.U.asTypeOf(new SqPtr))))
149  val cmtPtrExt = RegInit(VecInit((0 until CommitWidth).map(_.U.asTypeOf(new SqPtr))))
150  val addrReadyPtrExt = RegInit(0.U.asTypeOf(new SqPtr))
151  val dataReadyPtrExt = RegInit(0.U.asTypeOf(new SqPtr))
152  val validCounter = RegInit(0.U(log2Ceil(VirtualLoadQueueSize + 1).W))
153
154  val enqPtr = enqPtrExt(0).value
155  val deqPtr = deqPtrExt(0).value
156  val cmtPtr = cmtPtrExt(0).value
157
158  val validCount = distanceBetween(enqPtrExt(0), deqPtrExt(0))
159  val allowEnqueue = validCount <= (StoreQueueSize - StorePipelineWidth).U
160
161  val deqMask = UIntToMask(deqPtr, StoreQueueSize)
162  val enqMask = UIntToMask(enqPtr, StoreQueueSize)
163
164  val commitCount = RegNext(io.rob.scommit)
165
166  // store can be committed by ROB
167  io.rob.mmio := DontCare
168  io.rob.uop := DontCare
169
170  // Read dataModule
171  assert(EnsbufferWidth <= 2)
172  // rdataPtrExtNext and rdataPtrExtNext+1 entry will be read from dataModule
173  val rdataPtrExtNext = WireInit(Mux(dataBuffer.io.enq(1).fire,
174    VecInit(rdataPtrExt.map(_ + 2.U)),
175    Mux(dataBuffer.io.enq(0).fire || io.mmioStout.fire || io.vecStoreRetire.valid,
176      VecInit(rdataPtrExt.map(_ + 1.U)),
177      rdataPtrExt
178    )
179  ))
180
181  // deqPtrExtNext traces which inst is about to leave store queue
182  //
183  // io.sbuffer(i).fire is RegNexted, as sbuffer data write takes 2 cycles.
184  // Before data write finish, sbuffer is unable to provide store to load
185  // forward data. As an workaround, deqPtrExt and allocated flag update
186  // is delayed so that load can get the right data from store queue.
187  //
188  // Modify deqPtrExtNext and io.sqDeq with care!
189  val deqPtrExtNext = Mux(RegNext(io.sbuffer(1).fire),
190    VecInit(deqPtrExt.map(_ + 2.U)),
191    Mux(RegNext(io.sbuffer(0).fire) || io.mmioStout.fire || io.vecStoreRetire.valid,
192      VecInit(deqPtrExt.map(_ + 1.U)),
193      deqPtrExt
194    )
195  )
196  io.sqDeq := RegNext(Mux(RegNext(io.sbuffer(1).fire), 2.U,
197    Mux(RegNext(io.sbuffer(0).fire) || io.mmioStout.fire || io.vecStoreRetire.valid, 1.U, 0.U)
198  ))
199  assert(!RegNext(RegNext(io.sbuffer(0).fire) && io.mmioStout.fire))
200
201  for (i <- 0 until EnsbufferWidth) {
202    dataModule.io.raddr(i) := rdataPtrExtNext(i).value
203    paddrModule.io.raddr(i) := rdataPtrExtNext(i).value
204    vaddrModule.io.raddr(i) := rdataPtrExtNext(i).value
205  }
206
207  // no inst will be committed 1 cycle before tval update
208  vaddrModule.io.raddr(EnsbufferWidth) := (cmtPtrExt(0) + commitCount).value
209
210  /**
211    * Enqueue at dispatch
212    *
213    * Currently, StoreQueue only allows enqueue when #emptyEntries > EnqWidth
214    */
215  io.enq.canAccept := allowEnqueue
216  val canEnqueue = io.enq.req.map(_.valid)
217  val enqCancel = io.enq.req.map(_.bits.robIdx.needFlush(io.brqRedirect))
218  for (i <- 0 until io.enq.req.length) {
219    val offset = if (i == 0) 0.U else PopCount(io.enq.needAlloc.take(i))
220    val sqIdx = enqPtrExt(offset)
221    val index = io.enq.req(i).bits.sqIdx.value
222    when (canEnqueue(i) && !enqCancel(i)) {
223      uop(index) := io.enq.req(i).bits
224      // NOTE: the index will be used when replay
225      uop(index).sqIdx := sqIdx
226      allocated(index) := true.B
227      datavalid(index) := false.B
228      addrvalid(index) := false.B
229      committed(index) := false.B
230      pending(index) := false.B
231      prefetch(index) := false.B
232      mmio(index) := false.B
233      vec(index) := io.enq.req(i).bits.instr(6, 0) === "b0100111".U // TODO
234
235      XSError(!io.enq.canAccept || !io.enq.lqCanAccept, s"must accept $i\n")
236      XSError(index =/= sqIdx.value, s"must be the same entry $i\n")
237    }
238    io.enq.resp(i) := sqIdx
239  }
240  XSDebug(p"(ready, valid): ${io.enq.canAccept}, ${Binary(Cat(io.enq.req.map(_.valid)))}\n")
241
242  /**
243    * Update addr/dataReadyPtr when issue from rs
244    */
245  // update issuePtr
246  val IssuePtrMoveStride = 4
247  require(IssuePtrMoveStride >= 2)
248
249  val addrReadyLookupVec = (0 until IssuePtrMoveStride).map(addrReadyPtrExt + _.U)
250  val addrReadyLookup = addrReadyLookupVec.map(ptr => allocated(ptr.value) && (mmio(ptr.value) || addrvalid(ptr.value) || vec(ptr.value)) && ptr =/= enqPtrExt(0))
251  val nextAddrReadyPtr = addrReadyPtrExt + PriorityEncoder(VecInit(addrReadyLookup.map(!_) :+ true.B))
252  addrReadyPtrExt := nextAddrReadyPtr
253
254  (0 until StoreQueueSize).map(i => {
255    io.stAddrReadyVec(i) := RegNext(allocated(i) && (mmio(i) || addrvalid(i)))
256  })
257
258  when (io.brqRedirect.valid) {
259    addrReadyPtrExt := Mux(
260      isAfter(cmtPtrExt(0), deqPtrExt(0)),
261      cmtPtrExt(0),
262      deqPtrExtNext(0) // for mmio insts, deqPtr may be ahead of cmtPtr
263    )
264  }
265
266  io.stAddrReadySqPtr := addrReadyPtrExt
267
268  // update
269  val dataReadyLookupVec = (0 until IssuePtrMoveStride).map(dataReadyPtrExt + _.U)
270  val dataReadyLookup = dataReadyLookupVec.map(ptr => allocated(ptr.value) && (mmio(ptr.value) || datavalid(ptr.value) || vec(ptr.value)) && ptr =/= enqPtrExt(0))
271  val nextDataReadyPtr = dataReadyPtrExt + PriorityEncoder(VecInit(dataReadyLookup.map(!_) :+ true.B))
272  dataReadyPtrExt := nextDataReadyPtr
273
274  (0 until StoreQueueSize).map(i => {
275    io.stDataReadyVec(i) := RegNext(allocated(i) && (mmio(i) || datavalid(i)))
276  })
277
278  when (io.brqRedirect.valid) {
279    dataReadyPtrExt := Mux(
280      isAfter(cmtPtrExt(0), deqPtrExt(0)),
281      cmtPtrExt(0),
282      deqPtrExtNext(0) // for mmio insts, deqPtr may be ahead of cmtPtr
283    )
284  }
285
286  io.stDataReadySqPtr := dataReadyPtrExt
287  io.stIssuePtr := enqPtrExt(0)
288  io.sqDeqPtr := deqPtrExt(0)
289
290  /**
291    * Writeback store from store units
292    *
293    * Most store instructions writeback to regfile in the previous cycle.
294    * However,
295    *   (1) For an mmio instruction with exceptions, we need to mark it as addrvalid
296    * (in this way it will trigger an exception when it reaches ROB's head)
297    * instead of pending to avoid sending them to lower level.
298    *   (2) For an mmio instruction without exceptions, we mark it as pending.
299    * When the instruction reaches ROB's head, StoreQueue sends it to uncache channel.
300    * Upon receiving the response, StoreQueue writes back the instruction
301    * through arbiter with store units. It will later commit as normal.
302    */
303
304  // Write addr to sq
305  for (i <- 0 until StorePipelineWidth) {
306    paddrModule.io.wen(i) := false.B
307    vaddrModule.io.wen(i) := false.B
308    dataModule.io.mask.wen(i) := false.B
309    val stWbIndex = io.storeAddrIn(i).bits.uop.sqIdx.value
310    when (io.storeAddrIn(i).fire) {
311      val addr_valid = !io.storeAddrIn(i).bits.miss
312      addrvalid(stWbIndex) := addr_valid //!io.storeAddrIn(i).bits.mmio
313      // pending(stWbIndex) := io.storeAddrIn(i).bits.mmio
314
315      paddrModule.io.waddr(i) := stWbIndex
316      paddrModule.io.wdata(i) := io.storeAddrIn(i).bits.paddr
317      paddrModule.io.wmask(i) := io.storeAddrIn(i).bits.mask
318      paddrModule.io.wlineflag(i) := io.storeAddrIn(i).bits.wlineflag
319      paddrModule.io.wen(i) := true.B
320
321      vaddrModule.io.waddr(i) := stWbIndex
322      vaddrModule.io.wdata(i) := io.storeAddrIn(i).bits.vaddr
323      vaddrModule.io.wmask(i) := io.storeAddrIn(i).bits.mask
324      vaddrModule.io.wlineflag(i) := io.storeAddrIn(i).bits.wlineflag
325      vaddrModule.io.wen(i) := true.B
326
327      debug_paddr(paddrModule.io.waddr(i)) := paddrModule.io.wdata(i)
328
329      // mmio(stWbIndex) := io.storeAddrIn(i).bits.mmio
330
331      uop(stWbIndex) := io.storeAddrIn(i).bits.uop
332      uop(stWbIndex).debugInfo := io.storeAddrIn(i).bits.uop.debugInfo
333      XSInfo("store addr write to sq idx %d pc 0x%x miss:%d vaddr %x paddr %x mmio %x\n",
334        io.storeAddrIn(i).bits.uop.sqIdx.value,
335        io.storeAddrIn(i).bits.uop.pc,
336        io.storeAddrIn(i).bits.miss,
337        io.storeAddrIn(i).bits.vaddr,
338        io.storeAddrIn(i).bits.paddr,
339        io.storeAddrIn(i).bits.mmio
340      )
341    }
342
343    // re-replinish mmio, for pma/pmp will get mmio one cycle later
344    val storeAddrInFireReg = RegNext(io.storeAddrIn(i).fire && !io.storeAddrIn(i).bits.miss)
345    val stWbIndexReg = RegNext(stWbIndex)
346    when (storeAddrInFireReg) {
347      pending(stWbIndexReg) := io.storeAddrInRe(i).mmio
348      mmio(stWbIndexReg) := io.storeAddrInRe(i).mmio
349      atomic(stWbIndexReg) := io.storeAddrInRe(i).atomic
350    }
351    // dcache miss info (one cycle later than storeIn)
352    // if dcache report a miss in sta pipeline, this store will trigger a prefetch when committing to sbuffer (if EnableAtCommitMissTrigger)
353    when (storeAddrInFireReg) {
354      prefetch(stWbIndexReg) := io.storeAddrInRe(i).miss
355    }
356
357    when(vaddrModule.io.wen(i)){
358      debug_vaddr(vaddrModule.io.waddr(i)) := vaddrModule.io.wdata(i)
359    }
360  }
361
362  // Write data to sq
363  // Now store data pipeline is actually 2 stages
364  for (i <- 0 until StorePipelineWidth) {
365    dataModule.io.data.wen(i) := false.B
366    val stWbIndex = io.storeDataIn(i).bits.uop.sqIdx.value
367    // sq data write takes 2 cycles:
368    // sq data write s0
369    when (io.storeDataIn(i).fire) {
370      // send data write req to data module
371      dataModule.io.data.waddr(i) := stWbIndex
372      dataModule.io.data.wdata(i) := Mux(io.storeDataIn(i).bits.uop.fuOpType === LSUOpType.cbo_zero,
373        0.U,
374        genWdata(io.storeDataIn(i).bits.data, io.storeDataIn(i).bits.uop.fuOpType(1,0))
375      )
376      dataModule.io.data.wen(i) := true.B
377
378      debug_data(dataModule.io.data.waddr(i)) := dataModule.io.data.wdata(i)
379
380      XSInfo("store data write to sq idx %d pc 0x%x data %x -> %x\n",
381        io.storeDataIn(i).bits.uop.sqIdx.value,
382        io.storeDataIn(i).bits.uop.pc,
383        io.storeDataIn(i).bits.data,
384        dataModule.io.data.wdata(i)
385      )
386    }
387    // sq data write s1
388    when (
389      RegNext(io.storeDataIn(i).fire)
390      // && !RegNext(io.storeDataIn(i).bits.uop).robIdx.needFlush(io.brqRedirect)
391    ) {
392      datavalid(RegNext(stWbIndex)) := true.B
393    }
394  }
395
396  // Write mask to sq
397  for (i <- 0 until StorePipelineWidth) {
398    // sq mask write s0
399    when (io.storeMaskIn(i).fire) {
400      // send data write req to data module
401      dataModule.io.mask.waddr(i) := io.storeMaskIn(i).bits.sqIdx.value
402      dataModule.io.mask.wdata(i) := io.storeMaskIn(i).bits.mask
403      dataModule.io.mask.wen(i) := true.B
404    }
405  }
406
407  /**
408    * load forward query
409    *
410    * Check store queue for instructions that is older than the load.
411    * The response will be valid at the next cycle after req.
412    */
413  // check over all lq entries and forward data from the first matched store
414  for (i <- 0 until LoadPipelineWidth) {
415    // Compare deqPtr (deqPtr) and forward.sqIdx, we have two cases:
416    // (1) if they have the same flag, we need to check range(tail, sqIdx)
417    // (2) if they have different flags, we need to check range(tail, VirtualLoadQueueSize) and range(0, sqIdx)
418    // Forward1: Mux(same_flag, range(tail, sqIdx), range(tail, VirtualLoadQueueSize))
419    // Forward2: Mux(same_flag, 0.U,                   range(0, sqIdx)    )
420    // i.e. forward1 is the target entries with the same flag bits and forward2 otherwise
421    val differentFlag = deqPtrExt(0).flag =/= io.forward(i).sqIdx.flag
422    val forwardMask = io.forward(i).sqIdxMask
423    // all addrvalid terms need to be checked
424    val addrValidVec = WireInit(VecInit((0 until StoreQueueSize).map(i => addrvalid(i) && allocated(i))))
425    val dataValidVec = WireInit(VecInit((0 until StoreQueueSize).map(i => datavalid(i))))
426    val allValidVec  = WireInit(VecInit((0 until StoreQueueSize).map(i => addrvalid(i) && datavalid(i) && allocated(i))))
427
428    val storeSetHitVec =
429      if (LFSTEnable) {
430        WireInit(VecInit((0 until StoreQueueSize).map(j => io.forward(i).uop.loadWaitBit && uop(j).robIdx === io.forward(i).uop.waitForRobIdx)))
431      } else {
432        WireInit(VecInit((0 until StoreQueueSize).map(j => uop(j).storeSetHit && uop(j).ssid === io.forward(i).uop.ssid)))
433      }
434
435    val forwardMask1 = Mux(differentFlag, ~deqMask, deqMask ^ forwardMask)
436    val forwardMask2 = Mux(differentFlag, forwardMask, 0.U(StoreQueueSize.W))
437    val canForward1 = forwardMask1 & allValidVec.asUInt
438    val canForward2 = forwardMask2 & allValidVec.asUInt
439    val needForward = Mux(differentFlag, ~deqMask | forwardMask, deqMask ^ forwardMask)
440
441    XSDebug(p"$i f1 ${Binary(canForward1)} f2 ${Binary(canForward2)} " +
442      p"sqIdx ${io.forward(i).sqIdx} pa ${Hexadecimal(io.forward(i).paddr)}\n"
443    )
444
445    // do real fwd query (cam lookup in load_s1)
446    dataModule.io.needForward(i)(0) := canForward1 & vaddrModule.io.forwardMmask(i).asUInt
447    dataModule.io.needForward(i)(1) := canForward2 & vaddrModule.io.forwardMmask(i).asUInt
448
449    vaddrModule.io.forwardMdata(i) := io.forward(i).vaddr
450    vaddrModule.io.forwardDataMask(i) := io.forward(i).mask
451    paddrModule.io.forwardMdata(i) := io.forward(i).paddr
452    paddrModule.io.forwardDataMask(i) := io.forward(i).mask
453
454
455    // vaddr cam result does not equal to paddr cam result
456    // replay needed
457    // val vpmaskNotEqual = ((paddrModule.io.forwardMmask(i).asUInt ^ vaddrModule.io.forwardMmask(i).asUInt) & needForward) =/= 0.U
458    // val vaddrMatchFailed = vpmaskNotEqual && io.forward(i).valid
459    val vpmaskNotEqual = (
460      (RegNext(paddrModule.io.forwardMmask(i).asUInt) ^ RegNext(vaddrModule.io.forwardMmask(i).asUInt)) &
461      RegNext(needForward) &
462      RegNext(addrValidVec.asUInt)
463    ) =/= 0.U
464    val vaddrMatchFailed = vpmaskNotEqual && RegNext(io.forward(i).valid)
465    when (vaddrMatchFailed) {
466      XSInfo("vaddrMatchFailed: pc %x pmask %x vmask %x\n",
467        RegNext(io.forward(i).uop.pc),
468        RegNext(needForward & paddrModule.io.forwardMmask(i).asUInt),
469        RegNext(needForward & vaddrModule.io.forwardMmask(i).asUInt)
470      );
471    }
472    XSPerfAccumulate("vaddr_match_failed", vpmaskNotEqual)
473    XSPerfAccumulate("vaddr_match_really_failed", vaddrMatchFailed)
474
475    // Fast forward mask will be generated immediately (load_s1)
476    io.forward(i).forwardMaskFast := dataModule.io.forwardMaskFast(i)
477
478    // Forward result will be generated 1 cycle later (load_s2)
479    io.forward(i).forwardMask := dataModule.io.forwardMask(i)
480    io.forward(i).forwardData := dataModule.io.forwardData(i)
481    // If addr match, data not ready, mark it as dataInvalid
482    // load_s1: generate dataInvalid in load_s1 to set fastUop
483    val dataInvalidMask1 = (addrValidVec.asUInt & ~dataValidVec.asUInt & vaddrModule.io.forwardMmask(i).asUInt & forwardMask1.asUInt)
484    val dataInvalidMask2 = (addrValidVec.asUInt & ~dataValidVec.asUInt & vaddrModule.io.forwardMmask(i).asUInt & forwardMask2.asUInt)
485    val dataInvalidMask = dataInvalidMask1 | dataInvalidMask2
486    io.forward(i).dataInvalidFast := dataInvalidMask.orR
487
488    // make chisel happy
489    val dataInvalidMask1Reg = Wire(UInt(StoreQueueSize.W))
490    dataInvalidMask1Reg := RegNext(dataInvalidMask1)
491    // make chisel happy
492    val dataInvalidMask2Reg = Wire(UInt(StoreQueueSize.W))
493    dataInvalidMask2Reg := RegNext(dataInvalidMask2)
494    val dataInvalidMaskReg = dataInvalidMask1Reg | dataInvalidMask2Reg
495
496    // If SSID match, address not ready, mark it as addrInvalid
497    // load_s2: generate addrInvalid
498    val addrInvalidMask1 = (~addrValidVec.asUInt & storeSetHitVec.asUInt & forwardMask1.asUInt)
499    val addrInvalidMask2 = (~addrValidVec.asUInt & storeSetHitVec.asUInt & forwardMask2.asUInt)
500    // make chisel happy
501    val addrInvalidMask1Reg = Wire(UInt(StoreQueueSize.W))
502    addrInvalidMask1Reg := RegNext(addrInvalidMask1)
503    // make chisel happy
504    val addrInvalidMask2Reg = Wire(UInt(StoreQueueSize.W))
505    addrInvalidMask2Reg := RegNext(addrInvalidMask2)
506    val addrInvalidMaskReg = addrInvalidMask1Reg | addrInvalidMask2Reg
507
508    // load_s2
509    io.forward(i).dataInvalid := RegNext(io.forward(i).dataInvalidFast)
510    // check if vaddr forward mismatched
511    io.forward(i).matchInvalid := vaddrMatchFailed
512
513    // data invalid sq index
514    // check whether false fail
515    // check flag
516    val s2_differentFlag = RegNext(differentFlag)
517    val s2_enqPtrExt = RegNext(enqPtrExt(0))
518    val s2_deqPtrExt = RegNext(deqPtrExt(0))
519
520    // addr invalid sq index
521    // make chisel happy
522    val addrInvalidMaskRegWire = Wire(UInt(StoreQueueSize.W))
523    addrInvalidMaskRegWire := addrInvalidMaskReg
524    val addrInvalidFlag = addrInvalidMaskRegWire.orR
525    val hasInvalidAddr = (~addrValidVec.asUInt & needForward).orR
526
527    val addrInvalidSqIdx1 = OHToUInt(Reverse(PriorityEncoderOH(Reverse(addrInvalidMask1Reg))))
528    val addrInvalidSqIdx2 = OHToUInt(Reverse(PriorityEncoderOH(Reverse(addrInvalidMask2Reg))))
529    val addrInvalidSqIdx = Mux(addrInvalidMask2Reg.orR, addrInvalidSqIdx2, addrInvalidSqIdx1)
530
531    // store-set content management
532    //                +-----------------------+
533    //                | Search a SSID for the |
534    //                |    load operation     |
535    //                +-----------------------+
536    //                           |
537    //                           V
538    //                 +-------------------+
539    //                 | load wait strict? |
540    //                 +-------------------+
541    //                           |
542    //                           V
543    //               +----------------------+
544    //            Set|                      |Clean
545    //               V                      V
546    //  +------------------------+   +------------------------------+
547    //  | Waiting for all older  |   | Wait until the corresponding |
548    //  |   stores operations    |   | older store operations       |
549    //  +------------------------+   +------------------------------+
550
551
552
553    when (RegNext(io.forward(i).uop.loadWaitStrict)) {
554      io.forward(i).addrInvalidSqIdx := RegNext(io.forward(i).uop.sqIdx - 1.U)
555    } .elsewhen (addrInvalidFlag) {
556      io.forward(i).addrInvalidSqIdx.flag := Mux(!s2_differentFlag || addrInvalidSqIdx >= s2_deqPtrExt.value, s2_deqPtrExt.flag, s2_enqPtrExt.flag)
557      io.forward(i).addrInvalidSqIdx.value := addrInvalidSqIdx
558    } .otherwise {
559      // may be store inst has been written to sbuffer already.
560      io.forward(i).addrInvalidSqIdx := RegNext(io.forward(i).uop.sqIdx)
561    }
562    io.forward(i).addrInvalid := Mux(RegNext(io.forward(i).uop.loadWaitStrict), RegNext(hasInvalidAddr), addrInvalidFlag)
563
564    // data invalid sq index
565    // make chisel happy
566    val dataInvalidMaskRegWire = Wire(UInt(StoreQueueSize.W))
567    dataInvalidMaskRegWire := dataInvalidMaskReg
568    val dataInvalidFlag = dataInvalidMaskRegWire.orR
569
570    val dataInvalidSqIdx1 = OHToUInt(Reverse(PriorityEncoderOH(Reverse(dataInvalidMask1Reg))))
571    val dataInvalidSqIdx2 = OHToUInt(Reverse(PriorityEncoderOH(Reverse(dataInvalidMask2Reg))))
572    val dataInvalidSqIdx = Mux(dataInvalidMask2Reg.orR, dataInvalidSqIdx2, dataInvalidSqIdx1)
573
574    when (dataInvalidFlag) {
575      io.forward(i).dataInvalidSqIdx.flag := Mux(!s2_differentFlag || dataInvalidSqIdx >= s2_deqPtrExt.value, s2_deqPtrExt.flag, s2_enqPtrExt.flag)
576      io.forward(i).dataInvalidSqIdx.value := dataInvalidSqIdx
577    } .otherwise {
578      // may be store inst has been written to sbuffer already.
579      io.forward(i).dataInvalidSqIdx := RegNext(io.forward(i).uop.sqIdx)
580    }
581  }
582
583  /**
584    * Memory mapped IO / other uncached operations
585    *
586    * States:
587    * (1) writeback from store units: mark as pending
588    * (2) when they reach ROB's head, they can be sent to uncache channel
589    * (3) response from uncache channel: mark as datavalidmask.wen
590    * (4) writeback to ROB (and other units): mark as writebacked
591    * (5) ROB commits the instruction: same as normal instructions
592    */
593  //(2) when they reach ROB's head, they can be sent to uncache channel
594  val s_idle :: s_req :: s_resp :: s_wb :: s_wait :: Nil = Enum(5)
595  val uncacheState = RegInit(s_idle)
596  switch(uncacheState) {
597    is(s_idle) {
598      when(RegNext(io.rob.pendingst && pending(deqPtr) && allocated(deqPtr) && datavalid(deqPtr) && addrvalid(deqPtr))) {
599        uncacheState := s_req
600      }
601    }
602    is(s_req) {
603      when (io.uncache.req.fire) {
604        when (io.uncacheOutstanding) {
605          uncacheState := s_wb
606        } .otherwise {
607          uncacheState := s_resp
608        }
609      }
610    }
611    is(s_resp) {
612      when(io.uncache.resp.fire) {
613        uncacheState := s_wb
614      }
615    }
616    is(s_wb) {
617      when (io.mmioStout.fire) {
618        uncacheState := s_wait
619      }
620    }
621    is(s_wait) {
622      when(commitCount > 0.U) {
623        uncacheState := s_idle // ready for next mmio
624      }
625    }
626  }
627  io.uncache.req.valid := uncacheState === s_req
628
629  io.uncache.req.bits := DontCare
630  io.uncache.req.bits.cmd  := MemoryOpConstants.M_XWR
631  io.uncache.req.bits.addr := paddrModule.io.rdata(0) // data(deqPtr) -> rdata(0)
632  io.uncache.req.bits.data := shiftDataToLow(paddrModule.io.rdata(0), dataModule.io.rdata(0).data)
633  io.uncache.req.bits.mask := shiftMaskToLow(paddrModule.io.rdata(0), dataModule.io.rdata(0).mask)
634
635  // CBO op type check can be delayed for 1 cycle,
636  // as uncache op will not start in s_idle
637  val cbo_mmio_addr = paddrModule.io.rdata(0) >> 2 << 2 // clear lowest 2 bits for op
638  val cbo_mmio_op = 0.U //TODO
639  val cbo_mmio_data = cbo_mmio_addr | cbo_mmio_op
640  when(RegNext(LSUOpType.isCbo(uop(deqPtr).fuOpType))){
641    io.uncache.req.bits.addr := DontCare // TODO
642    io.uncache.req.bits.data := paddrModule.io.rdata(0)
643    io.uncache.req.bits.mask := DontCare // TODO
644  }
645
646  io.uncache.req.bits.atomic := atomic(RegNext(rdataPtrExtNext(0)).value)
647
648  when(io.uncache.req.fire){
649    // mmio store should not be committed until uncache req is sent
650    pending(deqPtr) := false.B
651
652    XSDebug(
653      p"uncache req: pc ${Hexadecimal(uop(deqPtr).pc)} " +
654      p"addr ${Hexadecimal(io.uncache.req.bits.addr)} " +
655      p"data ${Hexadecimal(io.uncache.req.bits.data)} " +
656      p"op ${Hexadecimal(io.uncache.req.bits.cmd)} " +
657      p"mask ${Hexadecimal(io.uncache.req.bits.mask)}\n"
658    )
659  }
660
661  // (3) response from uncache channel: mark as datavalid
662  io.uncache.resp.ready := true.B
663
664  // (4) writeback to ROB (and other units): mark as writebacked
665  io.mmioStout.valid := uncacheState === s_wb
666  io.mmioStout.bits.uop := uop(deqPtr)
667  io.mmioStout.bits.uop.sqIdx := deqPtrExt(0)
668  io.mmioStout.bits.data := shiftDataToLow(paddrModule.io.rdata(0), dataModule.io.rdata(0).data) // dataModule.io.rdata.read(deqPtr)
669  io.mmioStout.bits.debug.isMMIO := true.B
670  io.mmioStout.bits.debug.paddr := DontCare
671  io.mmioStout.bits.debug.isPerfCnt := false.B
672  io.mmioStout.bits.debug.vaddr := DontCare
673  // Remove MMIO inst from store queue after MMIO request is being sent
674  // That inst will be traced by uncache state machine
675  when (io.mmioStout.fire) {
676    allocated(deqPtr) := false.B
677  }
678
679  /**
680    * ROB commits store instructions (mark them as committed)
681    *
682    * (1) When store commits, mark it as committed.
683    * (2) They will not be cancelled and can be sent to lower level.
684    */
685  XSError(uncacheState =/= s_idle && uncacheState =/= s_wait && commitCount > 0.U,
686   "should not commit instruction when MMIO has not been finished\n")
687  for (i <- 0 until CommitWidth) {
688    when (commitCount > i.U) { // MMIO inst is not in progress
689      if(i == 0){
690        // MMIO inst should not update committed flag
691        // Note that commit count has been delayed for 1 cycle
692        when(uncacheState === s_idle){
693          committed(cmtPtrExt(0).value) := true.B
694        }
695      } else {
696        committed(cmtPtrExt(i).value) := true.B
697      }
698    }
699  }
700  cmtPtrExt := cmtPtrExt.map(_ + commitCount)
701
702  // committed stores will not be cancelled and can be sent to lower level.
703  // remove retired insts from sq, add retired store to sbuffer
704
705  // Read data from data module
706  // As store queue grows larger and larger, time needed to read data from data
707  // module keeps growing higher. Now we give data read a whole cycle.
708
709  // Vector stores are written to sbuffer by vector store flow queue rather than sq
710  XSError(io.vecStoreRetire.valid && !vec(rdataPtrExt(0).value), "Vector store flow queue is trying to retire a scalar store")
711  XSError(io.vecStoreRetire.valid && !allocated(rdataPtrExt(0).value), "Vector store flow queue is trying to retire an invalid entry")
712  when (io.vecStoreRetire.valid) {
713    assert(io.vecStoreRetire.bits === rdataPtrExt(0))
714    vec(rdataPtrExt(0).value) := false.B
715    allocated(rdataPtrExt(0).value) := false.B
716  }
717
718  val mmioStall = mmio(rdataPtrExt(0).value)
719  val vecStall = vec(rdataPtrExt(0).value)
720  for (i <- 0 until EnsbufferWidth) {
721    val ptr = rdataPtrExt(i).value
722    dataBuffer.io.enq(i).valid := allocated(ptr) && committed(ptr) && !mmioStall && !vecStall
723    // Note that store data/addr should both be valid after store's commit
724    assert(!dataBuffer.io.enq(i).valid || allvalid(ptr))
725    dataBuffer.io.enq(i).bits.addr     := paddrModule.io.rdata(i)
726    dataBuffer.io.enq(i).bits.vaddr    := vaddrModule.io.rdata(i)
727    dataBuffer.io.enq(i).bits.data     := dataModule.io.rdata(i).data
728    dataBuffer.io.enq(i).bits.mask     := dataModule.io.rdata(i).mask
729    dataBuffer.io.enq(i).bits.wline    := paddrModule.io.rlineflag(i)
730    dataBuffer.io.enq(i).bits.sqPtr    := rdataPtrExt(i)
731    dataBuffer.io.enq(i).bits.prefetch := prefetch(ptr)
732  }
733
734  // Send data stored in sbufferReqBitsReg to sbuffer
735  for (i <- 0 until EnsbufferWidth) {
736    io.sbuffer(i).valid := dataBuffer.io.deq(i).valid
737    dataBuffer.io.deq(i).ready := io.sbuffer(i).ready
738    // Write line request should have all 1 mask
739    assert(!(io.sbuffer(i).valid && io.sbuffer(i).bits.wline && !io.sbuffer(i).bits.mask.andR))
740    io.sbuffer(i).bits := DontCare
741    io.sbuffer(i).bits.cmd   := MemoryOpConstants.M_XWR
742    io.sbuffer(i).bits.addr  := dataBuffer.io.deq(i).bits.addr
743    io.sbuffer(i).bits.vaddr := dataBuffer.io.deq(i).bits.vaddr
744    io.sbuffer(i).bits.data  := dataBuffer.io.deq(i).bits.data
745    io.sbuffer(i).bits.mask  := dataBuffer.io.deq(i).bits.mask
746    io.sbuffer(i).bits.wline := dataBuffer.io.deq(i).bits.wline
747    io.sbuffer(i).bits.prefetch := dataBuffer.io.deq(i).bits.prefetch
748
749    // io.sbuffer(i).fire is RegNexted, as sbuffer data write takes 2 cycles.
750    // Before data write finish, sbuffer is unable to provide store to load
751    // forward data. As an workaround, deqPtrExt and allocated flag update
752    // is delayed so that load can get the right data from store queue.
753    val ptr = dataBuffer.io.deq(i).bits.sqPtr.value
754    when (RegNext(io.sbuffer(i).fire)) {
755      allocated(RegEnable(ptr, io.sbuffer(i).fire)) := false.B
756      XSDebug("sbuffer "+i+" fire: ptr %d\n", ptr)
757    }
758  }
759  (1 until EnsbufferWidth).foreach(i => when(io.sbuffer(i).fire) { assert(io.sbuffer(i - 1).fire) })
760  if (coreParams.dcacheParametersOpt.isEmpty) {
761    for (i <- 0 until EnsbufferWidth) {
762      val ptr = deqPtrExt(i).value
763      val ram = DifftestMem(64L * 1024 * 1024 * 1024, 8)
764      val wen = allocated(ptr) && committed(ptr) && !mmio(ptr)
765      val waddr = ((paddrModule.io.rdata(i) - "h80000000".U) >> 3).asUInt
766      val wdata = Mux(paddrModule.io.rdata(i)(3), dataModule.io.rdata(i).data(127, 64), dataModule.io.rdata(i).data(63, 0))
767      val wmask = Mux(paddrModule.io.rdata(i)(3), dataModule.io.rdata(i).mask(15, 8), dataModule.io.rdata(i).mask(7, 0))
768      when (wen) {
769        ram.write(waddr, wdata.asTypeOf(Vec(8, UInt(8.W))), wmask.asBools)
770      }
771    }
772  }
773
774  // Read vaddr for mem exception
775  io.exceptionAddr.vaddr := vaddrModule.io.rdata(EnsbufferWidth)
776
777  // misprediction recovery / exception redirect
778  // invalidate sq term using robIdx
779  val needCancel = Wire(Vec(StoreQueueSize, Bool()))
780  for (i <- 0 until StoreQueueSize) {
781    needCancel(i) := uop(i).robIdx.needFlush(io.brqRedirect) && allocated(i) && !committed(i)
782    when (needCancel(i)) {
783      allocated(i) := false.B
784    }
785  }
786
787 /**
788* update pointers
789**/
790  val lastEnqCancel = PopCount(RegNext(VecInit(canEnqueue.zip(enqCancel).map(x => x._1 && x._2)))) // 1 cycle after redirect
791  val lastCycleCancelCount = PopCount(RegNext(needCancel)) // 1 cycle after redirect
792  val lastCycleRedirect = RegNext(io.brqRedirect.valid) // 1 cycle after redirect
793  val enqNumber = Mux(!lastCycleRedirect&&io.enq.canAccept && io.enq.lqCanAccept, PopCount(io.enq.req.map(_.valid)), 0.U) // 1 cycle after redirect
794
795  val lastlastCycleRedirect=RegNext(lastCycleRedirect)// 2 cycle after redirect
796  val redirectCancelCount = RegEnable(lastCycleCancelCount + lastEnqCancel, lastCycleRedirect) // 2 cycle after redirect
797
798  when (lastlastCycleRedirect) {
799    // we recover the pointers in 2 cycle after redirect for better timing
800    enqPtrExt := VecInit(enqPtrExt.map(_ - redirectCancelCount))
801  }.otherwise {
802    // lastCycleRedirect.valid or nornal case
803    // when lastCycleRedirect.valid, enqNumber === 0.U, enqPtrExt will not change
804    enqPtrExt := VecInit(enqPtrExt.map(_ + enqNumber))
805  }
806  assert(!(lastCycleRedirect && enqNumber =/= 0.U))
807
808  deqPtrExt := deqPtrExtNext
809  rdataPtrExt := rdataPtrExtNext
810
811  // val dequeueCount = Mux(io.sbuffer(1).fire, 2.U, Mux(io.sbuffer(0).fire || io.mmioStout.fire, 1.U, 0.U))
812
813  // If redirect at T0, sqCancelCnt is at T2
814  io.sqCancelCnt := redirectCancelCount
815  val ForceWriteUpper = Wire(UInt(log2Up(StoreQueueSize + 1).W))
816  ForceWriteUpper := Constantin.createRecord("ForceWriteUpper_"+p(XSCoreParamsKey).HartId.toString(), initValue = 60.U)
817  val ForceWriteLower = Wire(UInt(log2Up(StoreQueueSize + 1).W))
818  ForceWriteLower := Constantin.createRecord("ForceWriteLower_"+p(XSCoreParamsKey).HartId.toString(), initValue = 55.U)
819
820  val valid_cnt = PopCount(allocated)
821  io.force_write := RegNext(Mux(valid_cnt >= ForceWriteUpper, true.B, valid_cnt >= ForceWriteLower && io.force_write), init = false.B)
822
823  // io.sqempty will be used by sbuffer
824  // We delay it for 1 cycle for better timing
825  // When sbuffer need to check if it is empty, the pipeline is blocked, which means delay io.sqempty
826  // for 1 cycle will also promise that sq is empty in that cycle
827  io.sqEmpty := RegNext(
828    enqPtrExt(0).value === deqPtrExt(0).value &&
829    enqPtrExt(0).flag === deqPtrExt(0).flag
830  )
831  // perf counter
832  QueuePerf(StoreQueueSize, validCount, !allowEnqueue)
833  io.sqFull := !allowEnqueue
834  XSPerfAccumulate("mmioCycle", uncacheState =/= s_idle) // lq is busy dealing with uncache req
835  XSPerfAccumulate("mmioCnt", io.uncache.req.fire)
836  XSPerfAccumulate("mmio_wb_success", io.mmioStout.fire)
837  XSPerfAccumulate("mmio_wb_blocked", io.mmioStout.valid && !io.mmioStout.ready)
838  XSPerfAccumulate("validEntryCnt", distanceBetween(enqPtrExt(0), deqPtrExt(0)))
839  XSPerfAccumulate("cmtEntryCnt", distanceBetween(cmtPtrExt(0), deqPtrExt(0)))
840  XSPerfAccumulate("nCmtEntryCnt", distanceBetween(enqPtrExt(0), cmtPtrExt(0)))
841
842  val perfValidCount = distanceBetween(enqPtrExt(0), deqPtrExt(0))
843  val perfEvents = Seq(
844    ("mmioCycle      ", uncacheState =/= s_idle),
845    ("mmioCnt        ", io.uncache.req.fire),
846    ("mmio_wb_success", io.mmioStout.fire),
847    ("mmio_wb_blocked", io.mmioStout.valid && !io.mmioStout.ready),
848    ("stq_1_4_valid  ", (perfValidCount < (StoreQueueSize.U/4.U))),
849    ("stq_2_4_valid  ", (perfValidCount > (StoreQueueSize.U/4.U)) & (perfValidCount <= (StoreQueueSize.U/2.U))),
850    ("stq_3_4_valid  ", (perfValidCount > (StoreQueueSize.U/2.U)) & (perfValidCount <= (StoreQueueSize.U*3.U/4.U))),
851    ("stq_4_4_valid  ", (perfValidCount > (StoreQueueSize.U*3.U/4.U))),
852  )
853  generatePerfEvent()
854
855  // debug info
856  XSDebug("enqPtrExt %d:%d deqPtrExt %d:%d\n", enqPtrExt(0).flag, enqPtr, deqPtrExt(0).flag, deqPtr)
857
858  def PrintFlag(flag: Bool, name: String): Unit = {
859    when(flag) {
860      XSDebug(false, true.B, name)
861    }.otherwise {
862      XSDebug(false, true.B, " ")
863    }
864  }
865
866  for (i <- 0 until StoreQueueSize) {
867    XSDebug(i + ": pc %x va %x pa %x data %x ",
868      uop(i).pc,
869      debug_vaddr(i),
870      debug_paddr(i),
871      debug_data(i)
872    )
873    PrintFlag(allocated(i), "a")
874    PrintFlag(allocated(i) && addrvalid(i), "a")
875    PrintFlag(allocated(i) && datavalid(i), "d")
876    PrintFlag(allocated(i) && committed(i), "c")
877    PrintFlag(allocated(i) && pending(i), "p")
878    PrintFlag(allocated(i) && mmio(i), "m")
879    XSDebug(false, true.B, "\n")
880  }
881
882}
883